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Abstract 

INTRODUCTION: Malaria, a persistent global health threat caused by Plasmodium parasites, necessitates rapid and 
accurate identification for effective treatment and containment. This study investigates the utilization of convolutional neural 
networks (CNNs) to enhance the precision and speed of malaria detection through the classification of cell images infected 
with malaria. 
OBJECTIVES: The primary objective of this research is to explore the effectiveness of CNNs in accurately classifying 
malaria-infected cell images. By employing various deep learning models, including ResNet50, AlexNet, Inception V3, 
VGG19, VGG16, and MobileNetV2, the study aims to assess the performance of each model and identify their strengths 
and weaknesses in malaria diagnosis. 
METHODS: A balanced dataset comprising approximately 8,000 enhanced images of blood cells, evenly distributed 
between infected and uninfected classes, was utilized for model training and evaluation. Performance evaluation metrics 
such as precision, recall, F1-score, and accuracy were employed to assess the efficacy of each CNN model in malaria 
classification. 
RESULTS: The results demonstrate high accuracy across all models, with AlexNet and VGG19 exhibiting the highest levels 
of accuracy. However, the selection of a model should consider specific application requirements and constraints, as each 
model presents unique trade-offs between computational efficiency and performance. 
CONCLUSION: This study contributes to the burgeoning field of deep learning in healthcare, particularly in utilizing 
medical imaging for disease diagnosis. The findings underscore the considerable potential of CNNs in enhancing malaria 
diagnosis. Future research directions may involve further model optimization, exploration of larger and more diverse 
datasets, and the integration of CNNs into practical diagnostic tools for real-world deployment. 
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1. Introduction

The intersection of artificial intelligence and healthcare has 
opened up new frontiers in medical diagnostics, particularly 

in the field of medical imaging. Among the various 
applications, the classification of lung tissue has emerged as 
a critical area of focus due to its implications for the early 
detection and treatment of lung diseases, including cancer. 
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The ability to accurately classify lung tissue can significantly 
enhance the effectiveness of therapeutic interventions, 
thereby improving patient outcomes. This study delves into 
the application of DL models for the classification of lung 
tissue, with a particular emphasis on histopathological 
images [15,16]. Histopathological images offer an intricate 
insight into the microscopic architecture of tissues, 
unearthing minor alterations that could potentially signal 
disease. Nonetheless, the deciphering of these images 
necessitates profound expertise and can be a lengthy process. 
The advent of deep learning methodologies promises to bring 
about a paradigm shift in this arena, automating the 
interpretation process and delivering prompt, precise 
outcomes. DL, a specialised branch of ML is uniquely 
equipped for image analysis due to its inherent capability to 
learn complex patterns directly from the data, thereby 
obviating the need for manual extraction of features. In this 
study, we explore the performance of six DL models - 
DenseNet201, EfficientNetB7, EfficientNetB5, Vgg19, 
Vgg16, and Alexnet - in the classification of lung tissue. 
These models were chosen due to their proven effectiveness 
in image classification tasks. We trained and evaluated these 
models on a dataset of 9,000 histopathological images, 
divided into five distinct classes of lung tissue [17,18]. The 
images were sourced from HIPAA compliant and validated 
sources and were augmented to ensure a robust and diverse 
dataset. The aim of the research is not just to assess the 
performance of these models but also to gain insights into 
the factors that contribute to their effectiveness. By doing so, 
we aim to contribute to the ongoing efforts to optimise the 
use of DL techniques in medical imaging, with the ultimate 
goal of improving the accuracy and efficiency of disease 
diagnosis [19,20]. The organisation of this paper is as 
follows: Subsequent to this introductory section, we delve 
into an examination of pertinent scholarly works, setting the 
stage for our investigation. This is followed by an exposition 
of our research approach, encompassing specifics of the 
dataset and the DL architectures employed. We then proceed 
to unveil and interpret our findings. The paper culminates 
with a distillation of our discoveries and a discussion on the 
potential avenues for future exploration in this field. 

2. Literature Review

A DL model (DLM) was created by Jünger et al. in 2021[1] 
for the automatic detection and 3D segmentation of brain 
metastases (BMs) in NSCLC patients using clinically 
standard MRI. The study included 98 NSCLC patients with 
315 BMs and was retrospective in nature. The model was 
designed to address the difficulties and dangers of making an 
incorrect diagnosis when detecting BMs on MRI in clinical 
settings. Masud et al. investigated the use of AI in 2021[2] to 
automate the diagnosis of colon and lung cancer, two 
common and deadly types of cancer. To analyse 
histopathology images of lung and colon tissues, they created 
a deep learning-based classification system using cutting-
edge DL and DIP techniques. With a maximum accuracy of 
96.33% in recognising cancer tissues, the framework 
attempted to differentiate between five different types of 

tissues. This method has the potential to help medical 
practitioners create an automatic and trustworthy system for 
identifying cancer, improving the chances of early detection 
and treatment. Using whole-slide images from The Cancer 
Genome Atlas, Coudray et al. in 2018[3] created a deep 
convolutional neural network to categorise LUAD, LUSC, or 
normal lung tissue. The model was verified using several 
separate datasets, and it performed similarly to pathologists 
on average, with an AUC of 0.97. The ten most frequently 
mutated genes in LUAD were also predicted by the network, 
and six of them were correctly predicted with AUCs ranging 
from 0.733 to 0.856. This study demonstrates how deep 
learning could help pathologists identify cancer subtypes and 
anticipate gene mutations. In 2022[4], Chen et al. proposed a 
computer-aided diagnostic (CAD) approach that makes use 
of radiomics and deep attention-based MIL for early LC 
diagnosis. This method outperformed existing MIL 
techniques with an AUC of 0.842 and a mean accuracy of 
0.807, better representing clinical diagnostic processes. The 
output is more interpretable and acceptable for both doctors 
and patients thanks to the attention mechanism, which also 
provides improved interpretability of the output. To identify 
high-risk patients and minimize unnecessary operations, 
Yeh et al. [5] developed an AI algorithm to predict LC risk 
using electronic medical information in 2021. After 
training using data from the Taiwan National Health 
Insurance Research Database, the model's AUC was 0.90 
for the overall population and 0.87 for patients under the 
age of 55. This strategy allows for the reliable 
identification of patients who are at risk of developing 
lung cancer by combining complex information from 
non-imaging medical records. 

A deep transfer learning model combining convolutional 
neural networks and convolutional auto-encoders was put 
forth by Rong et al. in 2021[6] for the diagnostic 
categorization of lung cancer using multi-omics data. 
Convolutional auto-encoders are used in this early lung 
cancer diagnosis method to reduce dimensionality and 
adhere to transfer learning standards. When tested with 
three LC gene datasets and an integrated dataset, the 
model beat previous ML models in terms of accuracy, as 
well as average area under the curve. Tan et al. created a 
customised DNN based on the VGG16 architecture in 
2022[7] that uses transfer learning to discriminate between 
TB lung nodules and early-stage lung malignancies. Using 
unlocked pretrained weights on CT images from the 
National Lung Screening Trial and the National Institute 
of Allergy and Infectious Disease TB Portals, the DNN 
demonstrated its potential as a dependable, noninvasive 
screening tool for detecting and distinguishing between 
LC and tuberculosis, with a detection rate of 90.4% and a 
F score of 90.1%.In order to classify benign nodules, 
primary lung cancer, and metastatic lung cancer, Nishio et al. 
in 2018[8] created a CADx approach using DCNN and 
transfer learning. The study, which involved 1236 patients, 
compared the efficiency of DCNN with that of traditional 
techniques and assessed how image size affected DCNN 
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input. The results showed that DCNN with transfer learning 
outperformed traditional approaches, obtaining a best 
averaged validation accuracy of 68.0%, and that lung nodule 
classification accuracy was improved by using larger input 
image sizes. Using data from 887 patients, Park et al. created 
a two-stage U-Net architecture in 2023[9] for the automatic 
segmentation of lung cancer in [18F] FDG PET/CT scans. 
The first stage uses a global U-net to extract preliminary 
tumour regions from the 3D PET/CT volume, and the second 
stage refines these areas using a localised U-net on chosen 
slices. By accurately predicting specific tumour margins and 
showcasing its benefits through quantitative analysis using 
the Dice similarity coefficient, this technique surpassed the 
traditional one-stage 3D U-Net.In order to effectively 
identify lung and colon cancer from histopathology pictures, 
Talukder et al. presented a hybrid ensemble feature 
extraction model in 2022[10]. This model combines deep 
feature extraction and ensemble learning. The model 
outperformed previous models by a wide margin when tested 
on the LC25000 datasets, with accuracy rates of 99.05% for 
lung cancer, 100% for colon cancer, and 99.30% for both. 
According to this study, such models may prove useful in 
clinical settings, helping clinicians diagnose cancer by 
making prompt and precise detections. Using multiview 
radiomics and DL, Zhang et al. developed a model in 
2023[11] to quantitatively predict N2 lymph node 
metastases in individuals with stage I-II NSCLC. The 
study included 140 patients and employed transfer 

learning techniques and an end-to-end ResNet18 
architecture. Using 1.8 million natural photographs and a 
small sample of N2 lymph node VOI images as training 
data, the DL model outperformed the radiomics model 
(Rad), which had an AUC of 0.76. With an AUC of 0.88, the 
combination model (Rad + DL + Clinical) had the greatest 
diagnostic performance, perhaps indicating the lymph node 
metastases in NSCLC patients. Li et al. presented a unique 
deep learning-based drug repurposing strategy for non-small 
cell lung cancer in 2020[12], concentrating on transcriptome 
data and chemical structures. This method identified 
Pimozide as a potent candidate for the treatment of non-small 
cell lung cancer. Pimozide is typically used as an anti-
dyskinesia medication for Tourette's Disorder. The research 
confirmed Pimozide's cytotoxicity towards A549 cell lines, 
showing the possibility for systematic medication 
repurposing using cutting-edge computational approaches to 
provide new therapeutic options. Zheng et al. in 2023[13] 
developed a hybrid model using deep learning to predict 
survival for stage I-IIIA non-small cell lung cancer patients, 
integrating image and clinical features. The model, trained 
on patients who received stereotactic radiotherapy, utilized 
image features from pre-treatment CT scans and significant 
clinical variables like age and clinical stage. The model 
demonstrated a median AUC of 0.76 and 0.64 on different 
test sets, effectively separating low and high mortality risk 
groups, showcasing the potential of DL in enhancing 
prognostic accuracy in lung cancer treatment [14] [Table.1].

Table.1 Summary of the Literature Review 

Reference Focus of Study Techniques Used Key Findings 
Jünger et al. (2021) [1] Automatic detection and 3D 

segmentation of brain 
metastases 

Deep Learning (DL), clinically 
standard MRI 

Created a DL model for 
detecting and segmenting brain 
metastases in NSCLC patients. 

Retrospective study with 98 
NSCLC patients and 315 BMs. 

Addressed the challenges of 
incorrect diagnosis in clinical 

MRI settings. 
Masud et al. (2021) [2] AI in automating diagnosis of 

colon and lung cancer 
Deep Learning (DL), Digital 

Image Processing (DIP) 
Developed a DL-based 

classification system for 
histopathology images. 

Achieved 96.33% accuracy in 
recognizing cancer tissues. 

Potential for creating an 
automatic and trustworthy 

system for early cancer 
detection. 

Coudray et al. (2018) [3] Categorization of lung tumors 
into subtypes 

Deep Convolutional Neural 
Network (DCNN) 

Used deep learning to categorize 
lung tumors into 

adenocarcinoma, squamous cell 
carcinoma, or normal tissue. 
Achieved AUC of 0.97 and 

predicted frequently mutated 
genes in LUAD. Demonstrated 
how DL helps identify cancer 
subtypes and anticipate gene 

mutations. 
Chen et al. (2022) [4] Computer-aided diagnostic 

approach for early lung cancer 
Radiomics, deep attention-based 

Multiple Instance Learning 
Proposed a CAD approach using 

radiomics and deep attention-
based MIL for early lung cancer 
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diagnosis. Outperformed 
existing MIL techniques with 

AUC of 0.842. Improved 
interpretability and acceptability 

for clinical use. 
Yeh et al. (2021) [5] AI algorithm to predict lung 

cancer risk using EMR 
Artificial Intelligence (AI), 
Electronic Medical Records 

Created an AI algorithm to 
predict lung cancer risk using 

EMR. AUC of 0.90 for the 
general population and 0.87 for 

patients under 55. Accurate 
identification of high-risk 

patients, avoiding unnecessary 
procedures. 

Rong et al. (2021) [6] Diagnostic categorization of 
lung cancer 

Deep Transfer Learning, 
Convolutional Auto-encoders 

Introduced a deep transfer 
learning model for lung cancer 

diagnosis using multi-omics 
data. Outperformed other ML 
models in accuracy, precision, 

recall, and F1-score. Best results 
in average AUC. 

Tan et al. (2022) [7] Discrimination between TB 
lung nodules and early-stage 

cancer 

Deep Convolutional Neural 
Network (DNN), Transfer 

Learning 

Developed a custom DNN based 
on VGG16 architecture to 

discriminate between TB lung 
nodules and early-stage lung 

malignancies. Achieved 90.4% 
accuracy and 90.1% F score. 

Potential as a noninvasive 
screening tool. 

Nishio et al. (2018) [8] Computer-aided diagnosis for 
lung nodule classification 

Deep Convolutional Neural 
Network (DCNN), Transfer 

Learning 

Created a CADx approach using 
DCNN and transfer learning for 

classifying benign nodules, 
primary lung cancer, and 
metastatic lung cancer. 

Outperformed traditional 
approaches with 68.0% 

validation accuracy. Image size 
affected DCNN input and 
improved classification 

accuracy. 

3. Dataset Overview

This research is anchored on a well-structured dataset, which 
includes 9,000 histopathological images. Each image, 
captured in JPEG format and with a resolution of 768 x 768 
pixels, provides an in-depth view of lung tissue, making it 
possible to discern minor changes that may be indicative of 
different conditions. The dataset was created with a strong 
commitment to the Health Insurance Portability and 
Accountability Act (HIPAA), thereby guaranteeing the 
highest level of data privacy and security. The images in the 
dataset are categorized into three distinct classes, each 
representing a different type of lung tissue. These include 
benign lung tissue, lung adenocarcinoma, and lung squamous 
cell carcinoma. Each class is represented by 3,000 images, 
ensuring a balanced dataset that minimises the risk of model 
bias towards any particular class. The original dataset was 
derived from 750 images of lung tissue (250 each of benign 
lung tissue, lung adenocarcinoma, and lung squamous cell 

carcinoma). To enhance the diversity and robustness of the 
dataset, these images were augmented using the Augmentor 
package, resulting in a total of 9,000 images. This process of 
augmentation is crucial in machine learning, as it helps 
improve the model's ability to generalise and perform 
accurately on unseen data. The dataset was further divided 
into training, validation, and testing sets, following a 70-15-
15 split. This division ensures that the models are trained on 
a substantial amount of data, validated on a separate set to 
fine-tune parameters, and finally, tested on unseen data to 
evaluate their performance. This rigorous approach to dataset 
preparation and division underscores the robustness of our 
research methodology. In summary, the dataset used in this 
research provides a comprehensive and diverse collection of 
histopathological images, ensuring a robust and balanced 
foundation for training and evaluating the deep learning 
models. Its preparation and usage adhere to the highest 
standards of data privacy and research ethics, making it a 
reliable resource for this study [Fig.1].
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Fig 1:  Sample image of dataset 

3.1 Image Resizing 

In the realm of medical imaging and histopathological image 
classification, image resizing is a crucial preprocessing step. 
This process involves altering the dimensions of an image to 
a specific size while preserving the essential features of the 
image. This step is particularly critical when dealing with DL 
models, as these models require input images of a consistent 
size for effective processing. 

Several techniques are available for image resizing, 
each offering its unique benefits and trade-offs: 

● Nearest Neighbour Interpolation: This is a
fundamental technique where the value of a pixel in the
resized image is determined from the closest pixel in the 
original image. While this method is computationally
efficient, it may lead to a loss of detail and sharpness in
the resized image, which could be detrimental when
dealing with intricate histopathological images.

● Bicubic Interpolation: This method extends the
concept of bilinear interpolation by considering the
nearest 4x4 neighborhood of pixels. It results in
smoother images than bilinear interpolation and is often
employed for high-quality image processing. However,
it is more computationally demanding, which might be
a consideration when dealing with large datasets of
histopathological images.

● Area-based (or Resampling) Interpolation:
This method calculates the average color of the pixels
within a sample area from the original image (like a 3x3 
or 5x5 area) to determine the color of a pixel in the
resized image. While this method is slower, it can
produce high-quality results, especially when reducing
the size of an image. This could be beneficial when
dealing with histopathological images where the
preservation of detail is paramount.

● Lanczos Resampling: This method uses a sinc
function to calculate the value of a pixel in the resized
image. It provides high-quality results and preserves
more detail than other methods, but it is the most
computationally intensive. This method might be
suitable when the highest level of detail preservation is
required, such as in the analysis of lung tissue images.

● 
In the context of histopathological image classification, the 
choice of resizing technique hinges on the specific needs of 
the task. If computational resources and speed are a priority, 
simpler methods like nearest neighbor or bilinear 
interpolation may be suitable. However, if the quality of the 
resized image is crucial, more advanced methods like bicubic 
interpolation, area-based interpolation, or Lanczos 
resampling may be more appropriate. It's also vital to 
consider the characteristics of the images and the features 
that the model needs to recognize. For instance, if the images 
contain subtle details that are crucial for classification, a 
high-quality resizing method would be beneficial [Fig.2].
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Fig 2:  Pre-processing of the data set. 

 
 
3.2 Data Augmentation  
 
The amount and variety of the training dataset may be 
increased using the effective method of image data 
augmentation, which improves the performance and 
generalisation abilities of the model. This is especially 
important when classifying histopathological images since 
the dataset's variety can have a big influence on how well the 
model can differentiate between different types of lung 
tissue. Some of the most often utilised data augmentation 
methods for histopathological image classification tasks are 
listed below: 
 
■ Rotation: This technique involves rotating the 

histopathological image by a specific angle. This can 
aid the model in recognizing the tissue patterns in 
various orientations. The rotation angle is typically 
chosen randomly within a certain range (e.g., -20 to 20 
degrees). 

 
■ Translation: This technique involves shifting the 

histopathological image along the x or y direction by a 
specific number of pixels. This can aid the model in 
recognizing the tissue patterns in various positions in 
the image. 

 
■ Scaling: This technique involves resizing the 

histopathological image by a specific factor, either 
enlarging it (zooming in) or reducing it (zooming out). 
This can aid the model in recognizing the tissue patterns 
at different scales. 

 
■ Flipping: This technique involves flipping the 

histopathological image either horizontally or 
vertically. This can aid the model in recognizing the 
tissue patterns in various orientations. 

 
■ Shearing: This technique involves distorting the 

histopathological image along an axis. This can aid the 

model in recognizing the tissue patterns under different 
types of distortion. 

 
■ Brightness and Contrast Adjustment: This 

technique involves altering the brightness and contrast 
of the histopathological image. This can aid the model 
in recognizing the tissue patterns under different 
lighting conditions. 

 
The selection of data augmentation techniques is dependent 
on the specific requirements of the task and the inherent 
properties of the histopathological images. It's also crucial to 
consider the computational implications and the potential 
influence of the data augmentation techniques on the model's 
performance. By implementing these techniques, we can 
significantly enhance the volume and diversity of our 
training dataset, thereby fostering the development of more 
robust and accurate models for histopathological image 
classification. 
 
3.3 Image Normalisation   
 
Image normalisation is a critical preprocessing step in 
histopathological image classification tasks. It involves 
adjusting the pixel values across the image to a specific 
range, which can significantly enhance the computational 
efficiency and performance of the model. Here are some of 
the most commonly employed techniques for image 
normalisation: 
 
◆ Min-Max Normalization: It is often termed as 

feature rescaling, is a procedure that refines the pixel 
values to ensure they are encapsulated within a defined 
interval, typically spanning from 0 to 1, or -1 to 1. This 
is executed by taking each pixel value, deducting the 
least pixel value present in the image, and then dividing 
by the spectrum of pixel values within the image. The 
merit of Min-Max normalisation lies in its capacity to 
adjust pixel values while safeguarding the inherent 
layout and attributes of the original image. This 
characteristic is especially vital when handling 
histopathological images, where the preservation of 
original attributes is fundamental for accurate 
categorization. 

 
◆ Standard Score Normalization (Z-Score 

Normalization): The pixel values are changed using 
this method such that they show a mean of 0 and a 
standard deviation of 1. The mean pixel value of each 
individual pixel is subtracted to produce this 
transformation, which is then accomplished by dividing 
the result by the standard deviation. When the 
distribution of pixel values fits a Gaussian distribution, 
Z-score normalisation shows to be very useful since it 
helps speed up convergence throughout the model's 
training phase. When working with huge 
histopathology imaging databases, this might be 
helpful. 
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The selection of an image normalisation technique is 
contingent on the unique demands of the task at hand and the 
inherent properties of the images. If the task necessitates the 
maintenance of the original features and structure of the 
histopathological images, Min-Max normalisation could be 
the optimal choice. Conversely, for tasks dealing with images 
where pixel values follow a Gaussian distribution, Z-score 
normalisation might be more appropriate. It's also crucial to 
weigh the computational efficiency of the normalisation 
method against its potential influence on the model's 
performance. 
 
3.4 Image Label Encoding 
 
Image Label Encoding is a vital step in preparing data for 
histopathological image classification tasks. It involves 
converting the categorical labels of the images into a format 
that can be understood by the machine learning models. Here 
are some commonly used label encoding techniques: 
 
❖ Integer Encoding: This is the simplest form of label 

encoding, where each unique category label is assigned 
a unique integer. For instance, in a three-class 
classification task for lung tissue images, you might 
assign the label '0' to 'benign lung tissue' images, '1' to 
'lung adenocarcinoma' images, and '2' to 'lung 
squamous cell carcinoma' images. While this method is 
straightforward and easy to implement, it may not be 
suitable for multi-class classification tasks as the model 
might interpret the numerical values as having an 
ordinal relationship. 

 
❖ One-Hot Encoding: This technique is frequently 

utilised for tasks involving multi-class classification. In 
one-hot encoding, each category label is transformed 
into a binary vector of length 'n', where 'n' is the total 
number of unique category labels. Each vector contains 
a '1' at the index that corresponds to the category label, 
and '0's at all other positions. For instance, if we have 
three categories such as 'benign lung tissue', 'lung 
adenocarcinoma', and 'lung squamous cell carcinoma', 
the one-hot encoded labels could be [1, 0, 0], [0, 1, 0], 
and [0, 0, 1] respectively. This technique ensures that 
the model does not infer an ordinal relationship among 
the categories. 

 
❖ Label Binarizer: This technique is a combination of 

integer and one-hot encoding methods, and it proves 
particularly beneficial in binary classification tasks. 
Label Binarizer transforms multi-class labels into 
binary labels (indicating whether an instance belongs to 
a class or not). It is especially apt for multi-label 
classifications, where a single instance can be 
associated with several classes. 

 
The choice of label encoding technique depends on the 
specific requirements of the task, particularly the number of 

category labels and whether the task is a binary or multi-class 
classification. Properly encoded labels are crucial for training 
effective histopathological image classification models and 
interpreting their predictions. 
 
4. Experimental Analysis and Discussion 
 
Our DL models were executed on a high-performance 
computational system equipped with state-of-the-art GPUs. 
This system offers high computational speed, making it ideal 
for running intricate deep learning models. Given the 
balanced distribution of images across the three classes in our 
dataset, we didn't need to employ data augmentation 
techniques to balance the classes. However, we did use 
augmentation to enhance the diversity of our training 
data.The architecture of our models includes DenseNet201, 
EfficientNetB7, EfficientNetB5, VGG19, VGG16, and 
AlexNet. Each model is composed of multiple convolutional, 
pooling, and fully connected layers, each utilizing a varying 
number of filters.In conclusion, each model demonstrated its 
ability to varying extents in classifying the histopathological 
lung tissue images, with the EfficientNetB5 model emerging 
as the most proficient. However, the selection of a model 
should also consider factors such as computational resources 
and the specific requirements of the task. Future research 
could explore the application of ensemble methods, which 
combine the predictions of multiple models, to further 
enhance the accuracy of lung tissue classification. 
 
4.1 Performance Analysis of the Models  
 
Several DL models, including DenseNet201, 
EfficientNetB7, EfficientNetB5, VGG19, VGG16, and 
AlexNet, were tested in our study. These models were each 
trained and validated using 9,000 histopathology images 
from the dataset. The benign lung tissue, lung 
adenocarcinoma, and lung squamous cell carcinoma 
categories were used to categorise these photos. Several 
measures, including Area Under the Curve (AUC), Loss, 
Categorical Accuracy (Cat_Acc), F1 score, and Accuracy 
(ACC), were used to assess each model's performance. 
 
⮚ DenseNet201: This model gained an overall 

accuracy of 98% on the test set. The AUC for this model 
was high, indicating its excellent performance in 
distinguishing between the different classes. The model 
demonstrated a low loss value, suggesting that it made 
fewer mistakes during the training process. The 
categorical accuracy was also high, indicating that the 
model was effective in correctly classifying the images 
into their respective categories [Fig.3,4]. 
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Fig 3:  Model Loss and Accuracy for DenseNet201   
 

   
                          

Fig 4:  Confusion Matrix for DenseNet201 
 
⮚ EfficientNetB7: This model gained an overall 

accuracy of 99% on the test set, outperforming 
DenseNet201. The AUC for this model was also high, 
suggesting its superior ability to differentiate between 
the different classes. The model demonstrated a low 
loss value, indicating that it made fewer errors during 
the training process. The categorical accuracy was high, 
suggesting that the model was effective in correctly 
classifying the images into their respective categories 
[Fig.5,6]. 

 

 
 
Fig 5: Model Loss and Accuracy for EfficientNetB7     

 

   
                     

Fig 6:  Confusion Matrix for EfficientNetB7 
 
⮚ EfficientNetB5: This model gained a perfect 

accuracy of 100% on the test set, outperforming all 
other models. The AUC for this model was also perfect, 
indicating its exceptional ability to distinguish between 
the different classes. The model demonstrated a very 
low loss value, suggesting that it made the least 
mistakes during the training process. The categorical 
accuracy was also perfect, indicating that the model was 
extremely effective in correctly classifying the images 
into their respective categories [Fig.7,8,9]. 

 

   
 

Fig 7:  Model Accuracy for EfficientNetB5 
 

 
                 

Fig 8:  Model Loss for EfficientNetB5 
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Fig 9:  Confusion Matrix for EfficientNetB5 

 
⮚ VGG19: This model accomplished an overall accuracy 

of 97% on the test set. The AUC for this model was 
high, suggesting its excellent ability to differentiate 
between the different classes. The model demonstrated 
a low loss value, indicating that it made fewer mistakes 
during the training process. The categorical accuracy 
was also high, suggesting that the model was effective 
in correctly classifying the images into their respective 
categories [Fig.10]. 

 

 
 
Fig 10:  Model Loss and Accuracy for VGG19 

 
⮚ VGG16: This model accomplished an overall accuracy 

of 93% on the test set. The AUC for this model was 
high, suggesting its good ability to differentiate 
between the different classes. However, the model 
demonstrated a higher loss value compared to the other 
models, indicating that it made more mistakes during 
the training process. The categorical accuracy was also 
lower, suggesting that the model was less effective in 
correctly classifying the images into their respective 
categories [Fig.11]. 

 
 

 
 
Fig 11:   Model Loss and Accuracy for VGG16 

 
⮚ AlexNet: This model accomplished an overall 

accuracy of 96% on the test set. The AUC for this model 
was high, suggesting its excellent ability to differentiate 
between the different classes. The model demonstrated 
a low loss value, indicating that it made fewer mistakes 
during the training process. The categorical accuracy 
was also high, suggesting that the model was effective 
in correctly classifying the images into their respective 
categories [Fig.12,13]. 

 

   
 

Fig 12:  Model Loss and Accuracy for VGG16        
 

 
              
Fig 13:  Confusion Matrix for AlexNet 
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In summary, the EfficientNetB5 model surpassed every other 
approach in terms of accuracy, AUC, loss, and category 
accuracy, establishing it as the best model for this challenge. 
It is crucial to highlight, however, that the choice of model 
can be influenced by a variety of factors, including the task's 
unique needs, the qualities of the data, and the computational 
resources available. 
 
5. Results and Discussion 
 
The DenseNet201 model achieved an overall accuracy of 
98%, demonstrating a high AUC and categorical accuracy, 
with a low loss value. The EfficientNetB7 model 
outperformed DenseNet201 with an overall accuracy of 99%, 
also showing a high AUC, categorical accuracy, and a low 
loss value. The EfficientNetB5 model achieved a perfect 
accuracy of 100%, outperforming all other models. It also 
demonstrated a perfect AUC and categorical accuracy, with 
the lowest loss value among all models. The VGG19 model 
achieved an overall accuracy of 97%, with a high AUC and 
categorical accuracy, and a low loss value. With a high AUC 
and a little larger loss value than the other models, the 
VGG16 model attained 93% accuracy. With a high AUC, 
good category accuracy, and a low loss value, the AlexNet 
model attained an overall accuracy of 96%. The results 
indicate that all models performed well on the task of 
classifying histopathological images into three classes. 
However, the EfficientNetB5 model outperformed all other 
models in terms of accuracy, AUC, loss, and categorical 
accuracy, making it the most suitable model for this specific 
task. This suggests that the EfficientNetB5 model is highly 
effective at recognizing patterns in histopathological images 
and accurately classifying them into their respective 
categories. It’s important to note that while the 
EfficientNetB5 model achieved the highest performance 
metrics, the choice of model can depend on various factors, 
including the specific requirements of the task, the 
characteristics of the data, and the computational resources 
available. For instance, if computational resources are 
limited, a less complex model like DenseNet201 or VGG19 
might be more suitable. In conclusion, our research 
demonstrates the potential of DL models in the classification 
of histopathological images, which can be a valuable tool in 
the diagnosis and treatment of lung diseases. Future research 
could explore the use of these models in other types of 
histopathological image classification tasks, as well as the 
integration of these models into clinical workflows to assist 
pathologists in their diagnostic processes. 
 
6. Conclusion 
 
The results of our study indicate that all the models 
performed commendably in classifying the histopathological 
images. However, the EfficientNetB5 model emerged as the 
most effective, achieving a perfect accuracy of 100%, the 
highest AUC, and the lowest loss value. This suggests that 
the EfficientNetB5 model is highly proficient in identifying 
patterns in histopathological images and accurately 

categorizing them into their respective classes. However, it's 
important to note that the choice of model can depend on 
various factors, including the specific requirements of the 
task, the characteristics of the data, and the computational 
resources available. For instance, if computational resources 
are limited, a less complex model like DenseNet201 or 
VGG19 might be more suitable. Our study highlights the 
promising capabilities of deep learning models in classifying 
histopathological images, a critical component in diagnosing 
and treating lung diseases. The insights gained from this 
research could serve as a foundation for future investigations 
into the application of these models in other 
histopathological image classification scenarios. 
Additionally, these models could potentially be integrated 
into clinical workflows, providing valuable support to 
pathologists in their diagnostic endeavors. In conclusion, our 
research demonstrates the power of DL in medical imaging, 
particularly in the classification of lung tissue images. The 
findings of this study could have significant implications for 
the future of medical imaging, potentially leading to more 
accurate diagnoses and better patient outcomes. 
 
7. Future Work 
 
The results of our study have demonstrated the potential of 
DL models in the classification of histopathological images, 
with the EfficientNetB5 model emerging as the most 
effective. However, there is always room for improvement 
and exploration in the field of DL..Looking ahead, our 
intention is to delve into the utilization of more sophisticated 
and cutting-edge deep learning models that could potentially 
enhance the performance of image classification. 
Additionally, we are interested in exploring the concept of 
ensemble learning, a technique that amalgamates the 
predictions from multiple models, with the aim of bolstering 
the stability and precision of the classification process. 
Additionally, we plan to expand the scope of our research to 
include other types of histopathological images, such as 
those of other organs or diseases. This could help in 
understanding the generalizability of the models and their 
applicability to a wider range of medical imaging tasks. 
Another interesting avenue for future work could be the 
integration of these models into clinical workflows. This 
could provide valuable support to pathologists in their 
diagnostic processes, potentially leading to more accurate 
diagnoses and better patient outcomes. Lastly, we aim to 
delve deeper into the interpretability of these models. While 
deep learning models are often criticized for being "black 
boxes", understanding how these models make their 
predictions can provide valuable insights and increase trust 
in their predictions. In conclusion, our research has opened 
up several promising avenues for future work, with the 
potential to significantly contribute to the field of medical 
imaging and ultimately, to the diagnosis and treatment of 
lung diseases. 
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