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Abstract 
INTRODUCTION: The SARS-COV-2 pandemic has led to a significant increase in the number of infected individuals and 
a considerable loss of lives. Identifying SARS-COV-2-induced pneumonia cases promptly is crucial for controlling the 
virus's spread and improving patient care. In this context, chest X-ray imaging has become an essential tool for detecting 
pneumonia caused by the novel coronavirus. 
OBJECTIVES: The primary goal of this research is to differentiate between pneumonia cases induced specifically by the 
SARS-COV-2 virus and other types of pneumonia or healthy cases. This distinction is vital for the effective treatment and 
isolation of affected patients. 
METHODS: A streamlined stacked Convolutional Neural Network (CNN) architecture was employed for this study. The 
dataset, meticulously curated from Johns Hopkins University's medical database, comprised 2292 chest X-ray images. This 
included 542 images of COVID-19-infected cases and 1266 non-COVID cases for the training phase, and 167 COVID-
infected images plus 317 non-COVID images for the testing phase. The CNN's performance was assessed against a well-
established CNN model to ensure the reliability of the findings. 
RESULTS: The proposed CNN model demonstrated exceptional accuracy, with an overall accuracy rate of 98.96%. In 
particular, the model achieved a per-class accuracy of 99.405% for detecting SARS-COV-2-infected cases and 98.73% for 
identifying non-COVID cases. These results indicate the model's significant potential in distinguishing between COVID-
19-related pneumonia and other conditions. 
CONCLUSION: The research validates the efficacy of using a specialized CNN architecture for the rapid and precise 
identification of SARS-COV-2-induced pneumonia from chest X-ray images. The high accuracy rates suggest that this 
method could be a valuable tool in the ongoing fight against the COVID-19 pandemic, aiding in the swift diagnosis and 
effective treatment of patients. 
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1. Introduction 

The COVID-19 pandemic had a profound global impact, 
resulting in significant loss of life and affecting millions of 

people worldwide. Despite the availability of vaccines to 
mitigate the virus's spread and severity, practical strategies 
for diagnosis and containment remain critical. Accurate 
identification of infected cases was essential for preventing 
further transmission and managing outbreaks efficiently. 
While vaccines have provided a crucial tool in the fight 
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against SARS-COV-2, diagnostic methods continue to play 
a vital role in pandemic management. Various diagnostic 
procedures, including molecular, antigen, and antibody 
tests, are commonly employed to detect and monitor the 
disease. Molecular tests offer high accuracy but often have 
longer turnaround times. 
In contrast, antigen and antibody tests provide faster results 
but may have higher rates of false negatives. SARS-COV-
2 symptoms may vary from mild to severe, with severe 
cases potentially leading to pneumonia. Understanding the 
disease's incubation period and progression remains 
crucial.  
While vaccines are a crucial tool in pandemic management, 
diagnostic methods remain essential, particularly for 
identifying new variants, managing breakthrough 
infections, and ensuring timely medical care. Over eight 
lakh people have died from SARS-CoV-2 infections, 
affecting more than 24 million people worldwide. Because 
it is incredibly contagious, contact tracing and detection are 
the only effective control methods. Since no vaccine is 
currently in development, the only option is to precisely 
identify and isolate infected cases to halt the spread of 
illnesses. Molecular testing, antigen tests, and antibody 
tests are used to detect disease in general. Though the 
Molecular test is exact, it is time-consuming as it may take 
days for the result to come. While the Antigen and 
Antibody tests take less time, the false-negative results rate 
is higher [1][2]. SARS-COV-2 symptoms often mimic the 
seasonal flu, including cough, myalgia, throat pain, 
headache, fever, and other flu-like symptoms. It can lead to 
breathing difficulties in severe cases, especially in 
individuals with comorbidities or compromised immune 
systems [3]. When the infection reaches the lungs, it can 
result in SARS-COV-2-induced pneumonia, requiring 
immediate medical attention. Coronaviruses are a group of 
RNA viruses that primarily infect animals and birds but can 
also infect humans, causing respiratory tract infections. 
The severity of the pandemic varies, with around 80% of 
cases being mild, 13% severe, and 6% critical. Adhering to 
government guidelines is crucial to fighting the virus [31]. 
During the monsoon season, seasonal flu and pneumonia, 
often caused by viruses, become prevalent in many 
developing countries like India, putting additional strain on 
fragile healthcare infrastructures. Chest X-rays, a 
commonly used diagnostic tool, can potentially serve as a 
first-line method for detecting and diagnosing SARS-
COV-2-induced pneumonia, particularly in regions with 
limited testing access (NCIP). This approach can help 
distinguish between the symptoms of pneumonia resulting 
from viral infections like SARS-COV-2 and those caused 
by the seasonal flu. 
Even with the availability of vaccines, the need for 
effective prediction and diagnosis methods persists. Early 
detection and accurate diagnosis remain critical in regions 
with prevalent seasonal flu and other respiratory illnesses. 
These methods can help identify breakthrough cases in 
vaccinated individuals, monitor virus mutations, and guide 
appropriate medical interventions. While vaccines have 
significantly reduced the severity of SARS-COV-2 cases 

and curbed the spread, ongoing research explores various 
computational techniques to predict and manage the 
pandemic. Forecasting models continue to assess mortality 
rates and associated risks, with machine learning and deep 
learning models playing a pivotal role in diagnosing 
SARS-COV-2 and differentiating it from other respiratory 
conditions. 
Intelligent prediction and diagnosis techniques are highly 
desirable because early detection can help contain the 
virus's spread and ensure appropriate medical care. Various 
computational methods, including deep learning, machine 
learning, mathematics, and statistical approaches, have 
been employed successfully to predict and monitor the 
SARS-COV-2 pandemic [4][5][34][35]. These approaches 
include forecasting models to assess mortality rates and 
associated risks. Researchers have used these models to 
predict SARS-COV-2 cases efficiently, even with limited 
data [26][33]. Additionally, deep learning models have 
played a vital role in diagnosing SARS-COV-2 and 
distinguishing it from other respiratory conditions [30][32]. 
Artificial intelligence (AI) systems, including the Multi-
Scale Convolutional Neural Networks (MSCNN), have 
found utility in analyzing CT scans from SARS-CoV-2 
patients. These AI algorithms exhibit promising diagnostic 
capabilities in recognizing SARS-CoV-2 infections and 
distinguishing them from other forms of pneumonia, 
achieving a notably high recall rate of 99.39%. What 
distinguishes this Lightweight Stacked Convolutional 
Neural Network Architecture from others is its remarkable 
reduction in time complexity and memory demands. It 
attains impressive accuracy levels while employing 
significantly fewer parameters, thereby enhancing 
efficiency [6][28][29][30]. 
While introducing vaccines has reshaped the battle against 
SARS-CoV-2, the significance of precise diagnostic and 
predictive methods remains unwavering. These 
methodologies are crucial in ongoing efforts to manage the 
pandemic, adapt to emerging challenges, and identify novel 
variants. The Lightweight Stacked Convolutional Neural 
Network Architecture proposed in this research paper 
represents a promising stride forward in SARS-CoV-2 
diagnosis, offering a highly efficient and accurate tool for 
the detection and ongoing monitoring of the disease. 
In this context, incorporating machine learning and deep 
learning models [7][8], such as the one presented in this 
research, remains invaluable. These models complement 
vaccination initiatives by providing efficient diagnostic 
and monitoring capabilities, ensuring a comprehensive 
approach to tackling the pandemic. 

2. Research Design

This section will explore the dataset employed in this 
research and the fundamental meth-odology that drives our 
approach. This section is structured into two primary 
subsections: the first section addresses the dataset utilized 
in our methods, while the subsequent part elucidates the 
central concept underpinning our model. 
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2.1. Dataset Description  

The dataset utilized for this study is open-sourced and is 
obtained from the Johns Hopkins University medical 
database (USA), with a corresponding dataset available at 
the following URL: 
https://github.com/education454/datasets.git. This dataset 
consists of chest X-ray im-ages, explicitly focusing on 
individuals with SARS-COV-2-induced pneumonia and 
those with normal chest X-ray findings. It is imperative to 
note that the dataset includes chest X-ray images from 
individuals of diverse demographic backgrounds, 
including varying age groups, genders, and ethnicities. 

• Training Set: The training set includes X-ray 
images of the Chest from 545 indi-viduals infected with 
SARS-COV-2 and 1266 standard Chest X-ray images. 

• Validation Set: The validation set comprises 167 
SARS-COV-2 X-ray images of the Chest and 317 standard 
X-ray images of the Chest. 

 

Figures 1.1, 1.2, and 1.3 show the images of the X-Ray of the 
Chest of SARS-COV-2 infected and the X-Ray of the normal 
Chest. 

   

Figure 1.1: Composition of Training Data Images 

 

 

Figure 1.2: Composition of Validation Data Images 

 

 

 Figure 1.3: SARS-COV-2 and Normal chest X-Ray images 
 
As observed from the dataset, a significant data imbalance 
exists, with more standard chest X-ray images than SARS-
COV-2-induced pneumonia cases. Such data imbalance 
can pose challenges during model training and evaluation, 
potentially leading to biases in the model's performance. To 
mitigate this issue, a data balancing strategy has been 
employed to ensure that the model is exposed to nearly 
equal amounts of data from each class during training. To 
ensure accurate detection, an Image data augmentation 
approach has been employed. 

Image data augmentation [9] serves as a technique 
employed to artificially expand the size of a training dataset 
by generating modified versions of the images contained 
within the dataset. 
This augmentation process enriches the training data, 
ultimately enhancing the capabilities of deep-learning 
neural network models. By introducing various 
transformations to the images, such as shifts, flips, zooms, 
and other operations, this approach aims to present a more 
comprehensive array of potential patterns in the training 
dataset. These variations represent diverse instances of the 
training set images that the model is expected to encounter. 
In this research, image augmentation is achieved by 
applying a 20 percent zoom in and out on the images and 
performing horizontal flips on the dataset images. 

2.2 Proposed Algorithm and Architecture 

This study presents a practical methodology for analyzing 
and detecting COVID-19 in chest X-rays. A robust and 
lightweight stacked convolutional neural network has been 
developed to handle datasets of varying sizes and contend 
with noise. This innovation addresses a common challenge 
conventional methods face and ensures the most precise 
detection possible, boasting an impressive overall average 
accuracy rate of 98.76%. What sets this approach apart is 
its shallow time complexity, requiring only 240 
milliseconds for execution, and its minimal memory 
footprint, resulting in an exceptionally efficient algorithmic 
process. Below, we provide an overview of the Stacked 
Convolutional Neural Network layers and elucidate their 
functions. 
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2.2.1 Stacked Convolutional Neural Network 
(CNN) 

The Stacked Convolutional Neural Network comprises 
various essential layers, including Convolution Layers, 
Pooling Layers, Dropout Layers, Flattening Layers, and 
Fully Connect-ed Layers. For image processing tasks, 
Convolutional Neural Networks (CNNs) represent a 
robust deep-learning framework [10]. In our system, the 
entire foundation is constructed using a CNN. CNNs, 
such as the one illustrated [11], exemplify deep learning 
techniques capable of discerning images by extracting 
meaningful features, a pivotal aspect in comput-er 
vision applications and fine-tuning. This multi-layer 
perceptron-based architecture is employed in tasks like 
image classification, image segmentation, and object 
detection, pre-senting valuable applications in fields 
such as robotic vision and autonomous drone control. 
CNNs, with their deep learning capabilities, have also 
found a niche in the healthcare indus-try. 
CNN Architecture Components: A CNN comprises two 
fundamental components. First, a convolution layer aids 
in extracting diverse features and intricate details from 
the input image. Second, a fully connected layer utilizes 
the convolution layer's insights to make precise 
predictions regarding the image's characteristics, often 
producing a vector of proba-bility scores indicating the 
likelihood of certain attributes belonging to specific 
classes. The design and functioning of a Basic 
Convolutional Neural Network draw inspiration from 
the organizational patterns of neurons in the human 
brain's visual cortex. 
 
Within a CNN, neurons are organized in a three-
dimensional structure, with each set of neurons 
analysing small patches or fragments of the input image. 
These groups of neurons specialize in extracting specific 
image features, assisting in identifying patterns. The 
CNN employs a sequence of layers to produce a final 
output, represented as a vector of probabil-ity scores, 
indicating the likelihood of specific attributes belonging 
to classes. 

Key CNN Layers  

 
• The fully connected input layer establishes 

connections between individual neurons and the 
deeper, concealed layers of the neural network. This 
facilitates the amal-gamation of feature extraction 
procedures and feature retrieval. 

• Within the Convolutional Layer, feature maps are 
generated by applying filters that progressively scan 
the entire image. This process extracts a range of 
features, in-cluding corners and edges. 

• The Pooling Layer performs feature map-down 
sampling, gradually diminishing the spatial 
dimensions of the representation. Consequently, this 

reduces the quantity of network parameters and 
computational workload. 

• To mitigate overfitting, the Dropout Layer introduces 
a regularization technique that randomly activates and 
deactivates neurons. 

• Data is reshaped into a one-dimensional array via the 
Flatten Layer, making it compat-ible with passing to 
subsequent layers. Typically, this layer is connected 
to the fi-nal classification model, often a fully 
connected layer. 

• In a fully connected layer, feature maps are merged 
using weighted connections to make precise label 
predictions, capturing interdependencies among these 
features. 

•The fully connected output layer generates the ultimate 
probability scores, aiding in identifying specific 
classes within the output image. Time Complexity and 
System Specifications: Table 1 provides an overview 
of time complexity and system spec-ifications. Each 
epoch requires 55.5 seconds, and the total training 
time is 27.5 minutes for execution. 

Table 1: System Specifications of the work conducted. 
 
 

 
In Figure 2, we visually represent the arrangement and 
interplay of the numerous layers within the Convolutional 
Neural Network (CNN). The functionality and operation of 
each segment of this Neural Network are further elucidated 
through the visual aids in Figures 3, 4, 5, and 6. These 
figures offer a detailed insight into how each network 
section operates. 

 

Figure.2: Working of Convolution Neural Network 

 

 

Aspect Specification 
CPU AMD Ryzen 5 5600X Processor 

GPU AMD Radeon RX 6700 XT 
Memory 16 GB DDR4 RAM @ 3200 MHz 
OS   Ubuntu 22.04 LTS, 64-bit 
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Figure. 3: Conv stratum 
 

 
Figure. 4: Maximum-Pool stratum 

 

 
 

Figure. 5:  Vectorization layer 
 

 
 
 

Figure .6: Dense Layer and Predicted Layer 
 

 

2.2.2 Suggested Lightweight Stacked CNN 
Structure  

The Lightweight Stacked Convolutional Neural Network 
architecture introduced in this study is specifically 
designed to detect SARS-CoV-2 in chest X-ray images. 
This innovative architecture is tailored to process input 
chest X-ray images and utilizes a series of distinct layers to 
extract essential features necessary for accurate disease 
detection. The proposed model encompasses a 
configuration that includes two Convolutional Layers, two 
Max-Pooling and Dropout Layers, and culminating in 
Flattening and Dense Layers. These com-ponents are 
visually depicted in Figure 7 for clarity and understanding. 
 

 
 

Figure 7: Diagram Depicting the Flow of the Stacked 
Convolutional Neural Network 

 
When identifying SARS-CoV-2 presence in chest X-ray 
images and analysing standard chest X-ray images, the 
procedure involves inputting these X-ray images into 
the Light-weight Stacked Convolutional Neural 
Network. Within this neural network, the diverse layers 
are crucial in extracting intricate details and features 
from the chest X-ray images. This collective effort 
dramatically contributes to the automated detection 
process [12]. Here, we elucidate how these individual 
layers function, as well as their interplay and respective 
roles in the creation of feature maps: 

(i) The Neural Network receives chest X-ray pictures 
with dimensions of (150 ✕ 150 ✕ 3). The Neural 
Network can effectively handle any noise that the 
photos may have.  

(ii) A Convolution Layer with 32 filters for 32 feature 
maps makes up the following neural network layer. 
For extracting the fine details & features from the 
input image, a (5 x 5) kernel is used as a window in 
this scenario. Zero Padding is also employed in these 
two layers to protect the data in the following layers. 
Additionally, each convolution layer in-corporates the 
L1 Regularization approach, often known as Lasso 
Regularization [13], al-lowing the model to learn all 
the hyperparameters precisely and well-defined, 
preventing overfitting and delivering Low Bias and 
Low Variance. The Activation Function used after 
each of the two layers is Leaky ReLU (Leaky 
Rectified Linear Unit)   [14], which helps in extracting 
the non-linear features from the image. 

(iii) A pooling layer makes up the third layer. In this 
instance, spatial down sampling is done with the help 
of a Max Pooling layer. This layer's kernel has a size 
of (2✕2). The high-intensity fine details are retrieved 
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to create the feature maps and, thus, the Encoder 
portion of the network. To preserve the image's 
information in this instance, Zero Padding (SAME) is 
once again applied. After this layer, dropout 
regularisation is applied. It is a training tech-nique that 
ignores a subset of neurons chosen at random. They 
suddenly "disappeared." As a result, on the forward 
pass, their contribution to the temporary deactivation 
of down-stream neurons' activation is hindered. On 
the backward pass, weight updates are not added to 
the neuron. A p = 0.5 (50 percent) dropout is applied 
in this instance. 

(iv) A Convolution Layer with 64 filters is again present 
in the fourth layer. In this instance, additional features 
from the input image, such as numerous edges, 
contours, texture, forms, corners, etc., are extracted 
using a (5 x 5) filter. To maintain the spatial 
information in the following layers, Zero Padding 
(SAME) is once more used in this layer. The L1 
regularisa-tion technique is also incorporated with the 
two layers to reduce overfitting issues. Leaky ReLU 
(Leaky Rectified Linear Unit) Activation function, 
which helps extract the non-linear features from the 
image, is again used after this layer. Leaky ReLU is 
linear (identity) for all positive values and a small 
value of 0.01 for all negative values. Leaky ReLU is 
used re-peatedly as it does not suffer from the 
Vanishing Gradient problem [15]. 

(v) The fifth layer then employs the Max Pooling layer 
with a kernel size of (5 x 5) to perform additional 
spatial down-sampling, which aids in the extraction of 
the image's most crucial fine details and features, such 
as edge, corner, and morphological features as well as 
other essential features like the blur and sharpening 
features. After this layer, dropout regularisa-tion 
randomly activates and deactivates the neurons. This 
aids in extracting the key features and guards against 
overfitting issues.  

(vi) The High Dimensional Feature Maps are then Vector-
Space Transformed in the Flattening Layer into a One-
Dimensional Vector. Next, each neuron connects to 
another to form a Dense Layer. This layer has 256 
feature maps, which are put through non-linear 
operations by adding a Leaky ReLU Activation 
Function. After this layer, dropout p = 0.5 is employed 
once more to standardize the procedure.  

(vii) To conclude, the output layer comprises a solitary 
neuron, and using a Sigmoid Activation Function 
determines its outcome. A sigmoid function is a 
numerical function with a charac-teristic "S"-shaped 
or sigmoid curve [16]. The sigmoid function is used 
since it occurs be-tween two points (0 to 1). As a 
result, it is suitable for models that need to predict 
probabil-ity as an output. This activation function has 
a 0.5 threshold, with a chance greater than 0.5 
indicating the NORMAL case and a possibility less 
than 0.5 showing SARS-COV-2.  

(viii) Figure 8 provides a visual representation of how the 
proposed lightweight stacked convolu-tional neural 

network functions, showcasing the interplay and 
operation of its diverse layers as employed in this 
research. 
Upon obtaining the final layer's output during the 
training phase, a crucial step involves comparing this 
output with the original labelled image to determine 
the loss incurred. To quantify this loss, we employ the 
binary Cross-Entropy loss function, as delineated in 
Equation 1 [17] 

𝐻𝐻𝑝𝑝(𝑞𝑞) = −
1
𝑁𝑁�𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 . 𝑙𝑙𝑙𝑙𝑙𝑙� 𝑝𝑝( 𝑦𝑦𝑖𝑖)�

+ ( 1 −  𝑦𝑦𝑖𝑖). 𝑙𝑙𝑙𝑙𝑙𝑙� 1
− 𝑝𝑝( 𝑦𝑦𝑖𝑖)�                               (𝟏𝟏)  

(ix) In this context, where "y" represents the label, and 
"p(y)" signifies the predicted proba-bility for a given 
data point, the process of back-propagation is 
employed. This technique is utilized to minimize the 
loss, aided by the Adaptive Delta Optimizer, to reach 
the global minimum. This iterative process makes 
adjustments to every element within the network's 
filters. Consequently, the loss diminishes gradually, 
ultimately leading to the attainment of an output with 
the highest achievable level of accuracy. 
The "Adam optimization algorithm" represents an 
extension of the conventional sto-chastic gradient 
descent, and it has gained significant popularity in 
recent years within the realm of deep learning 
applications. Diederik Kingma, affiliated with 
OpenAI, and Jimmy Ba, from the University of 
Toronto, introduced the Adam model in their 2015 
ICLR paper titled "Adam: A Method for Stochastic 
Optimization." This optimizer has emerged as a top 
choice among the research community for addressing 
non-convex optimization problems, primarily due to 
its enhanced computational efficiency. Furthermore, 
Adam's hyper-parameters possess straightforward 
interpretations and typically necessitate minimal 
tuning [18]. 

(x) The number of Epochs used during the training is 30. 
It is a measure of the number of training vectors that 
are used once for updating the weights. For batch 
training, each training sample passes through the 
learning algorithm together in one epoch before 
weights are up-dated. The value of the Learning Rate 
used in this neural network is 0.001. The Learning 
Rate parameter helps to decide the rate at which the 
derivative of the Loss Function of the Neural Network 
will reach zero and attain the Global Minima Position, 
thus optimizing the entire network. Mini-batch 
processing is used in the process for fast and efficient 
computa-tion in Neural networks, thus eradicating 
space and time complexity problems. The Batch size 
used for the training process is 32. 

(xi) To ensure a comprehensive assessment of this Neural 
Network's performance, we employ the k-fold Cross-
Validation Technique as an integral part of the 
network's training process. In this paper, the value of 
k is 10. Thus, through the continuous training process, 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 10 | 2024 |



Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced 
Pneumonia Detection 

 
 
 

7 

the 10-fold Cross-Validation helps to calculate the 
Validation accuracy apart from the training accuracy, 
which helps to give us a clear picture of whether the 
model is overfitting. The overall average Validation 
accuracy achieved due to the Light Weight Stacked 
Convolution Neural Network application is 98.96 %. 
The refinement of the work lies in the fact that this 
paper brings about a new interpreta-tion of the 
Convolution Neural Network Mechanism with the 
help of the Laws of Thermo-dynamics and the Kinetic 
Theory of Gases. Using the work of illustrious 
scientists such as Maxwell, Gibbs, and Boltzmann as 
a guide, Thermodynamics [19] examples and mecha-
nisms of the working of the different layers of the 
Convolution Neural Network presented in this paper 
open a new dimension in the understanding of the 
working of Neural Net-works, which essentially 
optimizes the ways of thought and explanation of 
different neu-rons and synapses of the Neural 
Network. "We employed Gibbs sampling as a 
probabilistic technique to analyze the dataset. This 
method allowed us to estimate probability distribu-
tions, which were instrumental in our data 
augmentation strategy."  
"The Boltzmann equation has been extensively used 
in statistical mechanics. In our study, we draw 
parallels between the distribution of SARS-COV-2 
cases and the statistical distributions described by 
Boltzmann's equation, which helped inform our 
predictive mod-eling." The Convolutional Neural 
Network (CNN) models employed in the research are 
described as an Energy-Based Model (EBM). This 
perspective primarily centers on gas mol-ecules 
within a given spatial environment striving to attain a 
state of minimum energy. It parallels the principles of 
the Kinetic Theory of Gases and the fundamental laws 
of Ther-modynamics, which apply universally to all 
particles within the cosmos. The concept is based 
upon attaining Zero Entropy by all the particles in the 
universe by minimum energy state attainment. The 
idea can be explained by the Boltzmann Distribution 
[20] for Gaseous Particles, which applies to any 
particle present in any space in the universe. 

Likewise, the neurons within the neural network achieve 
a state of minimal energy through the optimization of 
trainable parameters employed in the network. 
Optimization functions are crucial in guiding them 
towards this minimum free energy state, which can be 
mathematically likened to reaching a global minimum 
point when the cost function (or loss function applied 
to the entire training dataset) reaches zero. 
Consequently, one can concep-tualize the world and 
its constituent particles within the universe as akin to 
a neural network, converging toward a state of 
maximum entropy characterized by minimum free 
energy. 

 
 

 
Figure. 8. Lightweight Stacked Convolutional Neural 

Network 
 
 

3. Result and Discussions 

This section provides a comprehensive presentation of 
the proposed scheme and algorithm and a detailed 
analysis of the results obtained. Throughout the Neural 
Network training process, conducted on a training set 
comprising 545 SARS-COV-2 cases and 1266 Normal 
cases, it is noteworthy that the overall average training 
set accuracy reached an impressive 97.54%. It's worth 
noting that Image Augmentation techniques have 
effectively addressed the challenge of data imbalance. 
In the evaluation phase, the proposed Lightweight 

Stacked 
Convolutional Neural Net-work is rigorously tested 
against a validation set comprising 167 SARS-COV-2 
cases and 317 standard cases. The overall validation 
accuracy is 98.96%, demonstrating the model's robust 
performance. Specifically, the per-class accuracy for 
detecting SARS-COV-2 patients is recorded at 
99.405%, while the accuracy for detecting standard 
cases is 98.73%. 
In addition to these core performance metrics, this study 
delves into a comprehensive exploration of alternative 
evaluation metrics and methodologies, providing a 
deeper under-standing of the suggested deep learning 
model's capabilities. 
Since the data set is comparatively tiny, apart from using 
several techniques for determining the model's 
accuracy, the n-fold Cross-Validation technique has also 
been used to evaluate accuracy properly. We have 
considered the value of k=10 using the "Early Stopping 
Poli-cy." The value of accuracy, as shown above, has 
been achieved using this technique. 
Confusion Matrix [21] has been developed for the 
detailed evaluation of the model from where we get to 
calculate the Recall Score (Sensitivity), Precision Score, 
and  Score. The confusion matrix, an error matrix, 
summarizes the model's performance in classifying 
instances into different categories. It consists of four key 
metrics: 
• True Positives (TP): These are the cases where the 

model correctly predicted posi-tive outcomes. In our 
context, it refers to instances where the model 
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correctly identified SARS-COV-2 cases in X-ray 
images. 

• True Negatives (TN): These are the cases where the 
model correctly predicted ad-verse outcomes. In our 
context, it refers to instances where the model 
correctly identified non-SARS-COV-2 cases in X-ray 
images. 

• False Positives (FP): These are the cases where the 
model incorrectly predicted positive outcomes when 
the actual effect was negative. In our context, it refers 
to instances where the model incorrectly identified 
non-SARS-COV-2  cases as SARS-COV-2  cases in 
X-ray images. 

• False Negatives (FN): These are the cases where the 
model incorrectly predicted adverse outcomes when 
the actual effect was positive. In our context, it refers 
to instances where the model incorrectly identified 
SARS-COV-2 cases as non-SARS-COV-2  cases in 
X-ray images. 

Understanding these metrics is essential for evaluating 
the model's performance in de-tecting SARS-COV-2-
induced pneumonia in chest X-ray images. 
Furthermore, our examination extends to conducting an 
in-depth assessment of two pivotal error categories: 
Type 1 error and Type 2 error. The assessment 
outcomes, employing a range of metrics, are derived 
from equations denoted as 1, 2, 3, and 4 for the proposed 
algorithm. 

Accuracy (overall average) = TP + TN
TP + FP + TN + FN

  (2) 
 
                      Recall (Sensitivity) = TP

TP + FN
  (3) 

    
                  Precision = TP

TP + FP
   (4) 

   
Fβ Score = (1 +  β2) � Precision × Recall

β2(Precision + Recall)
�  (5) 

 
As the challenges addressed in this research pertain to 
medical contexts, the importance of the Recall metric is 
particularly emphasized. Consequently, we have chosen 
a value for the parameter β, set at 0.5, to compute the    
Score. This specific choice ensures that the resulting.    
The score must exceed two, making it a robust and 
meaningful evaluation metric, as outlined in Equation 6 
below: 
 

𝐹𝐹0.5 Score = 5 � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅)

�  (6)  

The number of correctly classified images of a class is 
TP (True Positive), the number of incorrectly classified 
images of a class is FP (False Positive), and the number 
of images of a class that have been detected as another 
class is FN (False Negative). The count of images that 
do not belong to a class and were not classified as 
belonging to that class is TN (True Negative) is shown 

in the equations. The Recall is naturally the capability of 
the classifier to detect all the positive samples. The best 
select value is 1, and the worst value is 0. The fidel-ity 
is intuitively the capacity of the classifier not to mark as 
positive a sample that is nega-tive. The F-beta Score 
[22] is the weighted harmonic mean of Precision and 
Recall, with 1 being the best and 0 being the worst. The 
beta parameter determines the weight of Recall in the 
combined score. Figure 9 illustrates the confusion 
matrix, while Table 2 presents the tabulated evaluation 
metrics. 
 

 

                               Figure. 9: Confusion Matrix 
 

Our findings showed that, for the decision parameters 
True Positives (TP), True Nega-tives (TN), False 
Positives (FP), and False Negatives (FN), the values 
were TP = 167, TN = 312, FP = 4, and FN = 1. In the 
context of detecting SARS-CoV-2 from chest X-ray 
images in our study, we use specific terms to describe 
the outcomes. Identifying a True Negative (TN) 
signifies that the model's prediction for a given chest X-
ray image, labelled NORMAL, matches the input 
dataset, which also classifies it as NORMAL. On the 
other hand, a True Positive (TP) corresponds to 
correctly identifying a chest X-ray image as SARS-
COV-2, and it was initially a case of SARS-COV-2. 
Interestingly, even if the original chest X-ray image was 
categorized as NORMAL, a False Positive (FP) 
indicates that the model erroneously identified it as 
SARS-COV-2. Lastly, a False Negative (FN) denotes 
instances where the model failed to place an image with 
NORMAL characteristics while it was initially a case of 
SARS-COV-2. 
 
We derive various evaluation metrics from the Confusion 
Matrix, and the resulting values are presented in the Evaluation 
Metrics table, which includes the following indicators: 

 
Accuracy = 167 + 312

167 + 312 + 1 + 4
= 0.9896 = 98.96 % 

 
                        Recall (Sensitivity) = 167

167 + 1
= 0.9940 = 99.40 % 

 
                        Precision = 167

167 + 4
= 0.9766 = 97.66 % 
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F0.5 Score = 5 �0.9766 ×  0.9940
0.9766 + 0.9940

�= 2.463     (> 2.0 ) 
 

SARS-COV-2 class accuracy =  167
167 + 1

= 0.99404 = 99.404 % 
 
                     NORMAL class accuracy =  312

312 + 4
= 0.9873 = 98.73 

% 
 

The Recall Score is paramount in this case as it pertains 
to minimizing False Negative (FN) cases, aiming for the 
smallest possible FN value (FN = 1). This imperative 
underscores the necessity for a higher Recall Score than 
Precision, a distinction evident in the presented results. 
Therefore, our evaluation metrics collectively 
demonstrate a high degree of agreement. 
 
From the comprehensive evaluation metrics presented in 
this paper, it is evident that all values align 
harmoniously. Specifically, the three primary evaluation 
parameters—Recall Score (99.40%), F0.5 score (2.463), 
and accuracy in classifying SARS-CoV-2 cases 
(99.405%)—attain the highest levels, surpassing 
previous works within our knowledge and literature 
survey. 
Throughout this study, we explored various 
optimization functions during the algorithm's training 
phase to assess its effectiveness in detecting SARS-
CoV-2-induced pneumonia. Additional optimization 
functions include Adaptive Momentum, Adaptive 
Gradient, Adaptive Delta, RMSProp, and Momentum-
based stochastic gradient descent. Stochastic gradient 
descent [23] entails an iterative process for optimizing 
objective functions with appropriate smoothness 
properties, often used for high-dimensional optimization 
problems by replacing the actual gradient from the entire 
dataset with an estimate based on a randomly selected 
subset of data. While this approach reduces 
computational demands, it tends to exhibit a slower 
convergence rate. It is worth noting that this 
Optimization Algorithm, though one of the oldest and 
more traditional methods, yields lower accuracy than the 
Adam Optimizer. 
On the other hand, RMSProp [24] acts as a gradient 
normalizer, considering the magnitude of recent 
gradients and dividing the current angle by a moving 
average over the root mean squared gradients. This 
optimization method yields better accuracy than the 
SGD Optimizer but falls slightly short of the Adam 
Optimizer's accuracy. The performance of these various 
optimization functions and the resulting overall 
accuracy are detailed in Table 2 for reference. 

Table 2: Optimization Algorithms vs. Accuracy Score 
 

Optimization 
Algorithms 

Validation Accuracy (%) 

Adaptive 
Momentum  

98.96 

Adaptive Gradient 97.31 

Adaptive Delta 96.65 

RMSProp 91.51 

Stochastic Gradient 
Descent with   
Momentum 

86.25 

 
Figure.10: Training vs. Validation   

 

 
 
                            Figure. 11: Training vs. loss 

 
Table 2 presents an overview of the application of the 
Adaptive Momentum (Adam) Optimization Algorithm, 
which blends principles from the Stochastic Gradient 
Descent with Momentum (SGDM) and RMSProp 
Algorithms. Figures 10 and 11 furnish visual 
representations showcasing the training and validation 
accuracy and the training and loss trends during the 
experimentation. These graphical depictions illustrate 
the refinement of weights and parameters, yielding an 
impressive validation accuracy of 98.96%. 
Moreover, the principal aim of this Lightweight Neural 
Network model is to enhance performance and response 
time in detecting SARS-CoV-2-induced Pneumonia 
from Chest X-ray images. Consequently, it's pertinent to 
consider factors such as Time Complexity and Space 
Complexity. The model demonstrates remarkable 
swiftness in execution, requiring just 240 milliseconds 
for the detection process, and it maintains a minimal 
runtime memory footprint, occupying a mere 275 
kilobytes. 
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In evaluating a Neural Network model's practical utility, 
it's imperative to account for various critical aspects. 
The architecture proposed within this research paper 
signifies a noteworthy advancement in medical science. 
Notably, when supplied with ample training data, the 
Shallow Convolution Neural Network (S-ConvNet) 
exhibits an enhanced capacity to learn intricate, non-
linear functions, rendering it adept at distinguishing 
results compared to other CNN architectures. 
Furthermore, S-ConvNet excels in computational 
efficiency and input parameters, often integrating subtle 
features into the optimization process, contributing to its 
overall effectiveness. 
Compared to other CNN architectures with deep 
representation in each layer, the architecture's optimal 
hidden layer design allows the input network to learn a 
new, more abstract input model [32]. This collective set 
of attributes underscores the innovation and potential of 
this research. 

4.  Future Research 

This study presents a promising approach to automating 
the detection of SARS-COV-2-induced pneumonia 
from chest X-ray images. The high accuracy achieved 
by the proposed model has significant implications for 
clinical practice, particularly in resource-constrained 
settings. However, further research and validation are 
needed to fully realize the potential of this technology in 
improving patient care and public health efforts during 
the SARS-COV-2  pandemic and beyond. The utility 
and applicability of the Lightweight Stacked Convolu-
tional Neural Network architecture extend beyond its 
initial purpose of binary detection tasks. This versatile 
architecture can be effectively employed for multi-class 
detection sce-narios, broadening its scope significantly. 
Beyond detecting SARS-CoV-2, standard cases, and 
pneumonia, it can also be adapted to identify various 
types of pneumonia and other medical conditions, 
utilizing diverse imaging modalities such as CT, 
mammography, ultra-sonography, and blood sample 
images. 
Furthermore, this proposed Neural Network model is 
adaptable to classify different protein structure images, 
aiding in detecting various diseases. Its lightweight 
nature enables seamless deployment on standard 
computing devices, including personal computers and 
smartphones. Future research should focus on the 
model's robustness in real-world clinical settings, 
including external validation on diverse datasets. 
Integration with electronic health records and clinical 
decision support systems can enhance the model's 
practical utility. Moreover, ethical considerations 
regarding patient data privacy and regulatory approvals 
should be addressed when implementing such 
automated diagnostic tools in healthcare. To enhance the 
applicability of our model, future research directions 
may include: 

• Localization Techniques: Exploring advanced 
computer vision techniques, such as object detection 
and segmentation, to precisely identify the ROI within 
the af-fected lung region. This would require 
annotated datasets that include ROI infor-mation. 

• Multi-Modal Fusion: Integrating additional medical 
imaging modalities, such as CT scans or MRI, to 
complement X-ray data and provide a more 
comprehensive view of the infection's location and 
extent. 

• Clinical Validation: Collaborating with medical 
experts and conducting clinical studies to assess the 
model's performance in real-world healthcare settings 
and its impact on diagnosis and patient care. 

• Data Augmentation: Expanding the dataset with 
diverse and well-annotated im-ages that include ROI 
information, enabling the model to learn and 
generalize bet-ter to capture specific infection 
patterns. 

5. Conclusion 

This study represents a significant achievement in 
applying supervised Stacked Convolutional Neural 
Networks to medical science and biomedical 
applications. Departing from prior SARS-COV-2 
research, our methodology stands out due to its unique 
approach, delivering exceptional accuracy while 
maintaining minimal Time Complexity and Memory 
requirements. In ongoing advancements in Deep Neural 
Network architectures striving for higher accuracy, our 
research introduces a pioneering concept by adopting a 
Shallow Learning paradigm with the Lightweight 
Stacked CNN architecture. This innovative approach 
achieves impressive accuracy and brings notable 
efficiency in response time and computational resource 
usage. 
The streamlined Lightweight architecture we propose is 
crucial in expediting and enhancing the response time 
for SARS-COV-2 diagnosis. Given the medical nature 
of this research, it's essential to emphasize our 
unwavering commitment to ethical practices, data 
privacy, and the protection of patient rights. All data in 
this study underwent thorough anonymization and 
adhered to relevant data protection regulations and 
guidelines. 
Furthermore, it's worth noting that this research received 
approval from the Institutional Review Board (IRB). 
This IRB approval assures that our research aligns with 
ethical standards and upholds the rights and privacy of 
patients. While our study presents promising results in 
the accurate detection of SARS-COV-2 -induced 
pneumonia using a lightweight stacked Convolutional 
Neural Network (CNN), it is essential to acknowledge 
the following limitations: 
a. Dataset Imbalance: The dataset used in this study 

exhibits a significant imbalance between SARS-
COV-2 cases and standard cases. While we employed 
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data aug-mentation techniques to address this issue, a 
more extensive and diverse dataset would further 
enhance the model's robustness. 

b. Clinical Validation: Although our model shows 
promising results in detecting SARS-COV-2-induced 
pneumonia in chest X-rays, it should be validated in 
clini-cal settings with a broader range of patient 
populations and imaging equipment. 

c. Interpretability: Deep learning models, including 
CNNs, are often considered black-box models due to 
their complex architecture. Ensuring model 
interpretabil-ity and providing insights into its 
decision-making process is an ongoing challenge. 

d. Ethical Considerations: Deploying AI-based 
diagnostic tools in healthcare raises ethical concerns, 
such as data privacy, bias, and transparency. These 
aspects need careful consideration and mitigation 
strategies. 

Addressing these limitations and further research in 
these areas will contribute to the refinement and broader 
applicability of our proposed model for SARS-COV-2 
diagnosis in clinical practice. 
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