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Abstract 
Sickle cell disease (SCD) affects 30 million people worldwide, causing a range of symptoms from mild to severe, 
including Vaso occlusive crises (VOC). SCD leads to damaging cycles of sickling and desickling of red blood cells due to 
HbS polymer formation, resulting in chronic haemolytic anaemia and tissue hypoxia. We propose using machine learning 
to categorize SCD patients based on haemoglobin, reticulocyte count, and LDH levels, crucial markers of hemolysis. 
Statistical analysis, particularly Linear Regression, demonstrates how haemoglobin depletion occurs using LDH and 
reticulocyte parameters. 
Bilirubin and haemoglobin, two integral biomarkers in clinical biochemistry and haematology, serve distinct yet 
interconnected roles in human physiology. Bilirubin, a product of heme degradation, is a critical indicator of liver function 
and various hepatic disorders, while haemoglobin, found in red blood cells, is responsible for oxygen transport throughout 
the body. Understanding the statistical relationship between these biomarkers has far-reaching clinical implications, 
enabling improved diagnosis, prognosis, and patient care. This research paper conducts a comprehensive statistical 
analysis of bilirubin and haemoglobin using various regression techniques to elucidate their intricate association. The 
primary objective of this study is to characterize the relationship between bilirubin and haemoglobin. Through meticulous 
data analysis, we explore whether these biomarkers exhibit positive, negative, or no correlation. Additionally, this research 
develops predictive models for estimating haemoglobin levels based on bilirubin data, offering valuable tools for 
healthcare professionals in clinical practice. 
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1. Introduction

Hemoglobinopathy, a prevalent monogenic disorder 
affecting humans, poses significant genetic and social 
health challenges in various regions including India, 
South Africa, Saudi Arabia, South America, and other 
South Asian and African nations. Sickle cell disease 
(SCD) is among the oldest recognized molecular 
disorders, characterized by the HbS mutation (HBB 
Glu6Val), while HbE disease (HBB Glu26Lys) ranks as 
one of the most reported hemoglobin disorders after HbS. 

HbE arises from a mutation replacing glutamic acid with 
lysine at the 26th position of the Beta chain of 
hemoglobin. 

In India, SCD predominantly affects the population in the 
central belt, spanning from Odisha to Maharashtra and 
Gujarat, with HbS, HbE, and HbDPunjab being the three 
main genotypes observed. Anemia, the most common 
blood condition, results from a deficiency of red blood 
cells (RBCs), impairing the body's oxygen supply. Acute 
anaemia stems from a sudden drop in RBC count, while 
chronic anaemia develops gradually, often accompanying 
inflammatory conditions. SCD disrupts normal RBC 
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formation, leading to characteristic sickle-shaped cells 
and a shortened lifespan for RBCs. 

Symptoms of sickle cell anaemia typically manifest 
around five months of age, marked by RBC destruction 
and reduced circulation. Common manifestations include 
edema, frequent infections, eye issues, stunted growth, 
and delayed puberty. SCA results from the abnormal 
haemoglobin type, HbS, inherited from both parents, 
leading to the sickle cell homozygote phenotype. 

 
While SCD has no cure, management strategies aim to 
alleviate symptoms and prevent complications through 
regular clinical and hematobiochemical monitoring. 
Machine learning techniques offer promise in predicting 
and assessing the health status of SCD patients, aiding in 
early intervention to mitigate future complications. This 
study focuses on utilizing machine learning tools to 
analyse data from a patient database in Odisha, aiming to 
predict and evaluate the health status of individuals 
suffering from sickle cell anemia. Bilirubin and 
haemoglobin, although distinct in their functions and 
origins, are vital elements in the complex web of human 
physiology. Bilirubin, a yellow pigment formed during 
the breakdown of heme, serves as a crucial marker for 
evaluating liver function and diagnosing a wide spectrum 
of hepatic disorders, including jaundice, hepatitis, and 
cirrhosis [1]. In contrast, haemoglobin, an iron-containing 
protein found in red blood cells, plays an indispensable 
role in the transport of oxygen throughout the body, 
ensuring the oxygenation of tissues and organs [2]. Given 
their central roles in health and disease, a detailed 
statistical analysis of the relationship between bilirubin 
and haemoglobin becomes imperative. 

This research paper embarks on an in-depth exploration of 
the statistical analysis of bilirubin and haemoglobin, 
employing a range of regression techniques as powerful 
analytical tools. The fundamental objective of this study is 
to unravel the intricate interplay between these two 
biomarkers. This knowledge holds immense clinical 
significance, offering insights into the pathophysiological 
mechanisms underpinning a myriad of medical 
conditions. Moreover, the research endeavours to 
construct predictive models capable of estimating 
haemoglobin levels based on bilirubin data. Such models 
hold substantial promise in clinical practice, facilitating 
early diagnosis, treatment monitoring, and individualized 
patient care. 
The clinical relevance of this research paper is profound 
and multifaceted. By delving into the statistical nuances 
of bilirubin and haemoglobin, this study contributes to a 
deeper understanding of the pathophysiology of various 
diseases. Moreover, it equips healthcare professionals 
with robust analytical tools that can aid in early detection, 
prognosis, and therapeutic decision-making. The 
development of predictive models is not undertaken 
lightly; rigorous statistical validation ensures the accuracy 

and generalizability of these models across diverse patient 
populations. As the statistical intricacies of bilirubin and 
hemoglobin are elucidated, this research aims to empower 
medical practitioners with knowledge and resources to 
enhance patient outcomes. Ultimately, the findings of this 
study promise to improve the quality of care, offering new 
avenues for diagnosis and treatment in the realm of liver 
diseases, anaemia, and related medical conditions. 
 
2. Literature Review 

Sen et al. (2021) [3] conducted a study utilizing 
microscopic blood samples and employing techniques 
such as image processing and machine learning to 
automate the detection of sickle cells. They categorized 
the detected RBCs based on shape into three categories: 
circular, elongated sickle cell-shaped, and others. The 
images were pre-processed, and segmentation was 
performed using the Otsu thresholding technique. 

 
Petrović et al. (2020) [4] utilized peripheral blood 

smears to observe RBC images, which were then 
segmented and classified based on morphology using 
machine learning techniques. 

 
Nkpordee (2022) [5] conducted a case study in Nigeria, 

employing time series trend models and statistics to 
project SCD prevalence over six years and predict a 
decline in the coming years. 

 
Patel et al. (2021) [6] emphasized the importance of 

early sickle cell detection for symptom identification and 
subsequent management. They employed data mining 
techniques, including classification algorithms, to 
accurately identify sickle cells in the human body. 

 
Yang (2018) [7] and Yeruva (2021) [8] utilized 

machine learning algorithms to predict hospital 
readmissions in SCD cases. They partitioned patients into 
testing and training groups and evaluated predictions 
using various algorithms and metrics. 

 
Dean (2019) [9] used Multinomial Logistic Regression 

to analyse pain scores in SCD patients, developing a 
machine learning model to predict pain scores effectively. 

 
Wing (2019) [10] proposed a low-cost, non-invasive 

sickle cell screening device suitable for use in developing 
countries. 

 
Stone (2021) [11] presented a case report highlighting 

the severity of a delayed haemolytic transfusion reaction 
in an SCD patient undergoing red cell exchange for gene 
therapy. 

 
Ranjana (2020) [12] explored automatic categorization 

of SCA using image processing techniques and machine 
learning, achieving high classification accuracy. 

 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 10 | 2024 |



Enhancing Disease Diagnosis: Statistical Analysis of Haematological Parameters in Sickle Cell Patients, Integrating 
Predictive Analytics 

 
 
 

3 

Patgiri (2022) [13] demonstrated a hybrid segmentation 
procedure combining fuzzy C-means segmentation with 
adaptive thresholding for analysing blood smear samples, 
achieving promising results with supervised classifiers. 

 
Machine learning algorithms have the potential to be 

employed in forecasting Acute Kidney Injury (AKI) [14] 
in individuals diagnosed with Sepsis-Associated Acute 
Respiratory Distress Syndrome (ARDS). As a result, an 
easily navigable Shiny application, utilizing the XGBoost 
model known for its trustworthy predictive accuracy, has 
been made accessible on the internet. This application 
aims to estimate the likelihood of AKI occurrence in 
patients who have been diagnosed with sepsis-associated 
ARDS. 

This study [15] involved 329 patients with delayed 
Methotrexate (MTX) elimination and 1400 patients 
without this issue, all meeting the inclusion criteria. Using 
univariate and LASSO regression, eleven predictors were 
identified, including age, weight, creatinine, uric acid, 
total bilirubin, albumin, white blood cell count, 
haemoglobin, prothrombin time, immunological 
classification, and omeprazole co-medication. The 
XGBoost algorithm with SMOTE showed strong 
performance with an AUROC of 0.897, AUPR of 0.729, 
sensitivity of 0.808, and specificity of 0.847, 
outperforming other models. External validation 
confirmed an AUROC of 0.788. 

The authors in this study [16] conveyed how acute 
heart failure (AHF) is a common and severe condition 
often complicated by worsening renal function (WRF), 
worsening the prognosis. They have used clustering, a 
machine learning technique, on data from 312 AHF 
patients with 86 variables and identified three distinct 
patient clusters with significantly different WRF 
incidences (p = 0.004). 

In this research paper, the authors [17] have 
demonstrated the efficiency of a non-invasive technique 
for the detection of jaundice, which offers a more 
comfortable experience compared to conventional 
methods. The primary objective of the authors is to 
deliver bilirubin test results and patient treatment in a 
cost-effective and expedited manner, addressing the 
specific needs of such healthcare settings. 

This study addresses [18] blood sample rejection due to 
haemolysis in clinical labs, developing a cost-effective 
method for haemolysis detection in small plasma 
volumes, even with bilirubin and lipid interferents. 
Experimental samples used plasma from whole blood 
with varying haemoglobin, bilirubin, and lipid 
concentrations. An optical setup measured haemoglobin 
from 0 to 400 mg/dL using <1 μL of detection volume, 
achieving >90% sensitivity with ~10% variation across 27 
samples. This approach's sub-microliter detection and 
high sensitivity hold potential for point-of-care medical 
devices, mitigating haemolysis-related inaccuracies in 
clinical measurements. 

The authors [19] used modern machine learning to 
optimize sensor performance, introducing a behaviour-
predicting sensor through polynomial regression. They 
explored three meta surface variations, aiming for 
maximum sensitivity. Notably, the double split-ring 
resonator and single split-ring resonator designs showed 
the highest sensitivity. The study also analysed parameter 
changes, like thickness, affecting absorption. A 
polynomial regression model efficiently predicted 
absorption values, with consistently high R2 scores above 
5, demonstrating its accuracy. This biosensor, designed 
using the PR model, holds promise for biomedical 
applications, including haemoglobin detection. 

In this study [20], the methodology comprises three 
phases: dataset collection of palm images, image 
preprocessing (including extraction, augmentation, ROI 
segmentation, and color space analysis), and the 
development of anemia detection models using various 
algorithms (CNN, k-NN, Naive Bayes, SVM, and 
Decision Tree). The initial dataset had 527 samples, 
expanded to 2635 through augmentation (rotation, 
flipping, and translation). This augmented dataset was 
randomly divided into training (70%), validation (10%), 
and testing (20%) sets for model assessment. 

Within this research [21], the diagnosis of various 
forms of anaemia is identified as a resource-intensive 
endeavour, often demanding subsequent costly 
examinations due to the inherent constraints of the 
complete blood count (CBC). Smaller healthcare 
establishments may encounter challenges in accessing 
specialized diagnostic tools, thereby complicating the 
differentiation of anaemia types, including beta 
thalassemia trait (BTT), iron deficiency anaemia (IDA), 
haemoglobin E (HbE), and combination anaemias. To 
address this intricate issue, the authors have developed a 
meticulously precise automated prediction model through 
the utilization of the extreme learning machine (ELM) 
algorithm. Remarkably, this model has demonstrated 
noteworthy achievements, boasting a remarkable 99.21% 
accuracy, 98.44% sensitivity, 99.30% precision, and an 
F1 score of 98.84%, all of which were attained by 
harnessing historical data. 

In this study [22], 158 cases of end-stage renal disease 
(ESRD) occurred, constituting 40.51% of cases over a 3-
year follow-up. The Random Forest (RF) algorithm 
excelled in predicting ESRD progression, achieving an 
impressive AUC of 0.90 and an accuracy rate of 82.65%. 
The RF algorithm identified five key predictors: Cystatin-
C, serum albumin (sAlb), haemoglobin (Hb), 24-hour 
urine urinary total protein, and estimated glomerular 
filtration rate. A predictive nomogram was developed 
using these factors to anticipate ESRD incidence. 

In their study [23], the authors identified and analyzed 
2935 patients from the MIMIC-III database and an 
additional 499 patients from their local database to create 
and validate the AKI risk prediction model. The incidence 
of AKI in these two cohorts was 18.3% and 61.7%, 
respectively. Key factors associated with AKI included 
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various laboratory parameters, age, and hospital stay 
duration. The analysis revealed that the XGBoost model 
performed the best, with an AUROC of 0.880 (95%CI: 
0.831–0.929), indicating its superior ability to predict 
AKI risk in patients with acute cerebrovascular disease. 

The authors [24] detailed that both systemic and non-
systemic conditions leading to iron deposition in the 
spleen exhibit distinct MRI characteristics due to the 
susceptibility effects of deposited iron or hemosiderin. 
Dual-echo gradient-echo sequences reveal signal loss on 
longer echo sequences attributable to the T2* effect. 
Understanding the pathophysiology of these iron 
sequestration diseases, whether systemic or localized, can 
aid in diagnosing underlying conditions when combined 
with clinical data. 

In this study, the authors [25] investigated human 
erythrocytes, essential for oxygen transport. These 
organelle-free cells, numbering around 25 trillion per 
person, have a 120-day lifespan, contributing significantly 
to tissue homeostasis. While erythropoiesis mechanisms 
are well-understood, erythrocyte clearance, particularly 
eryptosis, was the focus. Eryptosis involves factors like 
Ca2+ influx, ceramide generation, oxidative stress, kinase 
activation, and iron metabolism. The study also explored 
parallels with ferroptosis, an iron-dependent death of 
nucleated blood cells, and its relevance in infectious 
diseases and hematologic disorders. 

In this study [26], the authors created a model to 
predict phototherapy need in 98 out of 362 neonates. 
Achieving an impressive 95.20% accuracy, the model 
forecasts treatment necessity up to 48 hours in advance 
using just four key variables: bilirubin levels, weight, 
gestational age, and hours since birth. This tool, named 
the early phototherapy prediction tool (EPPT), is available 
as an open web application. 

3. Linear Regression 
 
Linear Regression is a well-known supervised learning 
algorithm used for predicting dependent variables based 
on given independent variables. When given a set of 
independent variables, Logistic Regression is employed 
for categorical prediction of dependent variables. It can be 
represented as: 
 

y = c0 + c1x+e                                             (1) 

Here,  y  is the dependent variable, x  is the independent 
variable, c0  is the constant term and intercept, c1 is the 
regression coefficient or slope, and e  represents the 
random error, as illustrated in Figure 1.  

 
Fig. 1. Linear regression graph 

The goal is to determine the best values for  c0 and  c1  to 
minimize the error between predicted and actual values, 
expressed in equations 2 and 3: 

                 (2) 
Q=                            (3) 

This function aims to minimize the squared error between 
actual and predicted values, commonly known as Mean 
Squared Error (MSE). Q represents the average squared 
error across all data points. The values of  c0  and  c1 are 
adjusted iteratively to minimize MSE. 
 
Figure 2 illustrates the workflow of fitting a linear 
regression model. It involves importing data, employing 
an optimization technique and cost function for 
performance evaluation, adjusting parameters to improve 
quality, and obtaining output. 

 

Fig. 2. Flowchart of the working of linear regression while 
using a dataset. 

Stochastic Gradient Descent (SGD) is a variant of 
gradient descent used to optimize machine learning 
models. It calculates the gradient and updates parameters 
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using only one random training example per iteration. 
This algorithm is beneficial when optimal points cannot 
be found by setting the slope of the function to zero. In 
linear regression, the sum of squared residuals is mentally 
mapped as the function "y," and the weight vector 
represents "x" in the parabola. 
 
 4. Proposed Work 

In the proposed approach we have used sickle cell patient 
dataset from a hospital in Western Odisha. The dataset 
comprises 100 rows and 5 columns, which have been 
extracted following preprocessing steps. These columns 
encompass a range of essential parameters including 
White Blood Cell (WBC) count, Red Blood Cell (RBC) 
count, Haemoglobin (HGB) levels, as well as parameters 
denoted as BIT, BID, LDH, and RETICS%. These 
parameters collectively represent key indicators of health 
and disease progression in individuals affected by sickle 
cell disease. Through meticulous preprocessing, the data 
has been refined to ensure accuracy and reliability, laying 
the groundwork for comprehensive analysis and insights 
into the physiological profiles of these patients. The 
extracted data was analysed and used as an input for our 
machine learning algorithm models. Various regression 
models were used, and the best of the model will be used 
further for analysis. So, we transformed and cleaned the 
data before feeding it to the suitable algorithms for both 
testing and training as shown in Fig.3. Following the 
visualisation and train-test split, we choose an appropriate 
model to perform our intended task. We arrived at an 
appropriate conclusion after acquiring the accuracy and 
correct graphs (as shown in the Graphs and Results 
section). 

 
Fig. 3. Flowchart describing the methodology that was 

used in this study. 

Fig 4 illustrates the deployment process of the regression 
models employed in the paper, which include Linear 
Regression, Decision Tree Regression, and Weighted 
Averaging Models. 
 

 
Fig 4: Flowchart depicting the statistical analysis used for 

deploying various regression models. 
 
Leveraging statistical methodologies provides a robust 
framework for the classification, prediction, and 
development of optimal models aimed at assessing the 
health and clinical status of individuals afflicted with 
sickle cell anaemia or experiencing reduced haemoglobin 
levels. These statistical tools enable in-depth analyses of 
patient data, encompassing various factors such as genetic 
profiles, blood cell characteristics, and clinical 
manifestations. Through the application of techniques like 
linear regression, logistic regression, and gradient descent, 
researchers can construct predictive models capable of 
evaluating disease severity, progression, and potential 
complications. 
Moreover, statistical methods offer a means to identify 
biomarkers and risk factors associated with these 
conditions, facilitating early detection and intervention 
efforts. By employing meticulous data preprocessing, 
feature selection, and model validation procedures, the 
accuracy and reliability of these predictive models are 
bolstered. This holistic approach empowers healthcare 
practitioners to tailor personalized treatment strategies, 
monitor disease trajectories, and optimize therapeutic 
interventions for individuals grappling with 
hemoglobinopathies or related ailments. 
By expanding the integration of statistical methodologies 
within healthcare contexts, we can unlock deeper insights 
into the intricate nature of these disorders, thereby 
fostering more effective clinical management and 
fostering improved patient outcomes. 
 
The pseudocode for the methodology proceeds as shown 
in Table 1 below. 
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TABLE 1. Pseudocode of proposed work 
 

Algorithm: Predicting Health/Clinical Status of 
Individuals with Sickle Cell Anaemia or Low 
Haemoglobin 

Input: Patient dataset 

       Data preprocessing 

Process: 

1. Divide the dataset into Train (80%) and Test (20%) 
sets. 

2. For each data in the dataset: 

   a. Apply Linear Regression on Train and Test data. 

   b. Implement gradient descent. 

   c. Predict the test results. 

Output: Predicted percentages, Correlation matrix 

5. Results 

The proposed work under section IV has been analysed 
using various regression models and the difference 
between the results were hence derived. The dataset has 
been collected from the western part of Odisha which is 
highly affected by sickle cell disease patients.  
Data was gathered from the western region of Odisha 
state, a region highly affected by Sickle Cell Disease 
(SCD). The dataset comprises six distinct categories: 
White Blood Cell count (WBC), Red Blood Cell count 
(RBC), Hemoglobin concentration (HGB), Bilirubin 
Induced Transcription factor (BIT), Lactate 
Dehydrogenase (LDH), and Reticulocyte Percentage 
(RETICS%). All values, except for RETICS%, have been 
normalized to per unit levels. 
To mitigate redundancy, the dataset underwent analysis 
with a novel value set at 0.17. Scatter plot analyses were 
conducted using LDH and RETICS% as target variables, 
with the other four parameters serving as predictors. The 
effects of LDH and RETICS% were further analyzed in 
relation to HGB levels.  
 
Of the total dataset, 80% was allocated for model training, 
while the remaining 20% was reserved for testing 
purposes. 
 
Table 2 presents the statistical results from three distinct 
machine learning (ML) algorithms: Decision Tree, Linear 

Regression, and Support Vector Machine. Notably, Linear 
Regression exhibited the lowest Root Mean Squared Error 
(RMSE) of 3.60, with an R-squared error of -0.39. 
However, the Mean Absolute Error (MAE) was calculated 
at 2.72, potentially influenced by the homogeneity of data 
within the training dataset. Subsequent analysis was 
performed using Linear Regression with Gradient 
Descent. 
 

TABLE. 2. Statistical analysis of ML algorithms 
 

 RMSE MSE R2 Error MAE 
DT 4.32 18.70 -0.93 2.41 
LR 3.60 13.03 -0.39 2.72 
SVM 5.32 28.30 -1.92 2.56 

 
In Figure 5, the regression analysis depicts the 
relationship between RETICS and HGB. The majority of 
the data points exhibit characteristics of a negative slope, 
indicating that as the HGB content increases, there is a 
corresponding decrease in RETICS levels. Across most 
cases, the HGB content falls within the range of 8.5 to 11, 
corresponding to a decrease of approximately 17% in 
RETICS. 
 

 
Fig. 5. Regression analysis of RETICS vs HGB 

 
 
Similarly, Figure 6 illustrates the statistical graphical 
analysis depicting the relationship between LDH and 
HGB. Notably, within the same range of HGB values as 
seen in Figure 5, which ranges from 8.5 to 11, the LDH 
content fluctuates between 385 to 460. 
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Fig. 7. Regression analysis of LDH vs HGB 
Table 3 presents the statistical analysis results of various 
machine learning (ML) algorithms applied to the LDH vs 
HGB relationship. Meanwhile, Figure 8 displays a 
heatmap generated based on the autocorrelation function, 
where each diagonal element possesses a magnitude of 1 
per unit.  

 
TABLE. 3. Statistical Analysis of ML Algorithms 

 
 RMSE MSE R2 Error MAE 
DT 383.04 1.46 x 

105 
-1.08 180.6 

LR 274.32 75251 -0.07 181.41 
SVM 286.16 81885 -0.165 155.05 
 
This correlation suggests as shown in Table 4 that 
individuals who exhibit higher levels of LDH relative to 
HGB may indicate insufficient hemoglobin production in 
their bodies. Consequently, this imbalance may impede 
their capacity to adequately transport oxygen throughout 
their system. 
 

TABLE. 4.  Correlation statistical analysis with Hb 
 

Sr. No. Parameter Magnitude Remarks 

1. RETICS% -0.39248 NEGATIVE 

2. LDH -0.37992 NEGATIVE 

3. BIT -0.137320 NEGATIVE 

4. RBC 0.300613 POSITIVE 

5. WBC -0.09364 NEGATIVE 

 
One of the important parameters that was analysed here 
was BIT(Bilirubin) with conjunction with Haemoglobin 
(Hb).  The goal of this study was to use several regression 
approaches to investigate the relationship between 
bilirubin and haemoglobin levels. According to the 
findings of this study, there was a very weak negative 

correlation between bilirubin and haemoglobin levels, as 
assessed by regression analysis. Furthermore, the data 
imply that this association may vary between people, as 
evidenced by increase in bilirubin concentrations in the 
gallbladder.  
Redundancy analysis was conducted on the processed 
data, resulting in an assigned new value of 0.17. 
Subsequently, a scatter plot analysis was executed on a 
target data, BIT, leveraging four additional parameters as 
predictors. HGB was employed to stratify the influence of 
BIT. The dataset was partitioned, allocating 80% for 
training purposes and the remaining 20% for testing the 
model. 
Table 5 shows the statistical analysis of various regression 
analysis such as Decision Tree Regression, Linear 
Regression and Weighted averaging Regression models.  
 
Table.6:- Various regression models evaluated based on 

MSE 
 

Models MSE 

DTR 8.737012440376152 

LR 6.669681797743141 

WAR 7.739959209300224 

 
It was found that all the models showed a very weak 
negative correlation among which DTR (Fig 8) and LR 
(Fig 9) showed a very weak negative corelation existed 
between the two parameters, and the WAR visually shows 
no proper correlation, visually (Fig 10). 
 The results show that with the decreasing amount of 
bilirubin in patients’ body, haemoglobin levels are 
increasing. 
Hence this will prove that due to constant haemolysis in a 
sickle cell patients’ body bilirubin level falls which leads 
to jaundice and various other renal problem in a SCD 
patient. Hence as compared to a normal patient the 
bilirubin level in a SCD patient is very high i.e. below 
300mg/dL but compared to normal patients’ whole 
bilirubin levels lie between 0.5mg/dL to 1mg/dL.  
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Fig 8. Curve Fitting graph for decision Tree Regression 

analysis 

 
Fig 9. Curve Fitting Graph for Linear Regression analysis 

 
Fig 10. Curve Fitting Graph for Weighted Averaging 

Regression Analysis 

6. Conclusion and Future Work 

In conclusion, our study, utilizing machine learning 
models, predicts that patients with sickle cell disorder 
(HbSS) and low hemoglobin levels may experience 
various clinical symptoms attributed to elevated LDH 
levels, increased WBC counts, and reticulocyte counts. 
Their reduced hemoglobin levels hinder oxygen transport, 
leading to a deoxygenated state, elevated lactic acid, and 
heightened reticulocyte counts. Consequently, regular 

blood transfusions and hemoglobin tests are 
recommended for effective management. 
 
Furthermore, introducing non-invasive methods for 
hemoglobin measurement is crucial to alleviate patient 
discomfort associated with traditional painful methods. 
Meanwhile, leveraging machine learning techniques for 
managing patient data is essential for effective monitoring 
and treatment. 
 
Moreover, our comprehensive statistical analysis of 
bilirubin and hemoglobin relationships provides valuable 
insights, establishing correlations and predictive models 
with clinical significance. Future research endeavors 
should aim to expand upon these findings, incorporating 
additional biomarkers, conducting rigorous clinical 
validations, and exploring longitudinal studies to deepen 
our understanding of disease dynamics and treatment 
responses. 
 
The application of advanced machine learning techniques 
holds promise for enhancing predictive capabilities, 
contributing to improved diagnostics and patient care 
across various medical conditions. As we continue to 
explore the complexities of bilirubin and hemoglobin, our 
efforts aim to advance medical knowledge and enhance 
patient outcomes. 
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	TABLE 1. Pseudocode of proposed work
	Algorithm: Predicting Health/Clinical Status of Individuals with Sickle Cell Anaemia or Low Haemoglobin
	Input: Patient dataset
	       Data preprocessing
	Process:
	1. Divide the dataset into Train (80%) and Test (20%) sets.
	2. For each data in the dataset:
	   a. Apply Linear Regression on Train and Test data.
	   b. Implement gradient descent.
	   c. Predict the test results.
	Output: Predicted percentages, Correlation matrix



