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Abstract 

INTRODUCTION: Skull bones typically possess complex structures and features. When scanned with ordinary sensors, 
they are easily affected by noise due to the small difference between abnormal areas and normal tissue. 
OBJECTIVES: In order to solve the problem of small differences between abnormal areas and normal tissues, which make 
them susceptible to noise interference, this paper proposes a multi-sensor fusion based skull scan image anomaly detection 
method. 
METHODS: Firstly, the frequency correction factor is utilized to modify the frequency domain characteristics of the 
sensor signal during the skull scanning image acquisition process, aiming to enhance signal quality and reduce noise 
impact during acquisition. Secondly, bilateral filters and discrete wavelet transform are employed to subject the skull 
scanning image to dual domain decomposition in spatial and transformation domains, aiding in distinguishing between 
normal and abnormal regions. Subsequently, the low-frequency fusion algorithm guided by filtering and the high-
frequency fusion algorithm based on multi-scale morphological gradients are fused, and the fused dual frequency 
components are merged back into the original spatial domain to retain important details. The fused reconstructed image 
aids in improving the accuracy of anomaly detection. Finally, a backbone network with an auto encoder structure is 
established to learn the feature representation of fused images, and an unsupervised deep neural network is employed to 
establish a detection model for anomaly detection in skull scanning images. 
RESULTS: Through experiments, it has been demonstrated that the F1 score approaches 1, the ROC curve closely 
approaches the upper left corner, and the AUC value approaches 1 after applying the proposed method for anomaly 
detection in skull scanning images. 
CONCLUSION: This algorithm has high sensitivity and low specificity, achieving high detection accuracy and 
demonstrating good performance. 
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1. Introduction

With the advancement of science and technology, 
intelligent diagnosis based on medical imaging has 
become a research hotspot. Skull scanning, as an 
advanced medical imaging technology, has been widely 
applied in clinical practice [1,2]. People can use modern 

medical technologies such as skull scanning to understand 
their physical condition and disease situation more 
accurately and thus develop more scientific and 
personalized treatment plans [3,4]. Skull scanning can 
non-invasively detect abnormalities in the cranioskeletal 
system, providing strong support for early detection, 
accurate diagnosis, and effective treatment of diseases 
[5,6]. 
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Skull scanning images mainly include various types 
such as whole-body skull imaging, local skull plane 
imaging, skull three-phase imaging, skull tomography 
imaging, skull SPECT/CT imaging, and F18 positron 
skull imaging. These images detect abnormal morphology 
or metabolism of skull tissue through radioactive 
nuclides, helping doctors accurately evaluate the health 
status of the skull and bones. The abnormal detection of 
skull scanning images can identify skull metastases and 
other lesions early, providing an important basis for 
treatment [7]. This detection method can identify skull 
metastatic tumours early and is of great significance for 
patients with tumours of unknown nature. 

Traditional skull scanning image analysis demands 
doctors to possess rich experience and professional 
knowledge. However, with the continuous development 
of image processing technology and machine learning 
algorithms, anomaly detection methods for skull scanning 
images will increasingly play a significant role in the 
medical field [8-9]. Currently, abnormal detection of skull 
scanning images can be automatically accomplished 
through machine learning algorithms, partially analyzing 
the skull scanning images, accurately identifying 
abnormal parts in the images, improving diagnostic 
accuracy, and reducing doctors' workload [10]. Moreover, 
algorithms for medical image processing are continually 
maturing. 

In Ref [11], the authors proposed a CT image 
segmentation and recognition method based on artificial 
neural networks and morphology. Segmentation and 
fusion of CT images were achieved through morphology, 
and fusion thresholds were improved using means, 
standard deviation, etc. Artificial neural networks were 
utilized to classify and recognize parts with malignant 
tumour markers. This method can effectively reduce the 
workload of doctors and assist in recognizing malignant 
tumours to a certain extent. However, morphological 
fusion was usually conducted at a single scale. When 
processing images with complex scale features, important 
information may be lost or multi-scale information may 
not be fully extracted and utilized, potentially reducing 
the accuracy of final recognition and affecting detection 
performance. 

Ref [12] studied a lung CT scan image recognition 
method based on deep learning algorithms. It constructed 
a malignant tumour recognition model through deep 
learning, created a training set for training, and trained the 
global recognition model using block chain technology 
and joint learning algorithms. By normalizing the features 
of different CT scan images and incorporating the 
CapsNets method to classify malignant tumours, this 
method had been proven effective in classifying and 
recognizing CT images through experiments. This method 
integrated CT images transmitted by different CT devices. 
Although it can improve the accuracy of classification 
recognition to a certain extent, it also increased the false 
detection rate with increased data. This was because that 
the CT images from different devices and scanning 
conditions introduced more heterogeneity as the data 

grows, which leads to poor performance in processing 
certain types of images and increased the false detection 
rate. There was still room for improvement in practical 
applications. 

Reference [13] proposed the construction of a 
YOLOv5x deep learning network model based on SPECT 
full-body skull scanning. The training and validation set 
data were enhanced and input into the YOLOv5x deep 
learning network for training to obtain the model. The 
model was evaluated based on the test set to identify skull 
lesions in skull scanning images, and the accuracy of this 
method was verified through testing. However, when 
processing skull scan images, the position of pixels in 
space had not been taken into account. Therefore, not all 
image features can be extracted in the recognition, leading 
incorrect recognition of real abnormal images. This 
reduces the recall rate and the F1 value. 

In Ref [14], the authors proposed a 3D depth feature 
anomaly recognition method for CT scan images based on 
deep learning algorithms. Using deep learning algorithms 
to construct an anomaly image detection model, CT scan 
images were converted into videos, and a pre-trained 3D 
ConvNet video classification network was used as the 
architecture. Combined with a support vector machine 
recursive algorithm to remove deep features from the 
training set, the classifier learned to classify CT anomaly 
images, achieving the detection of CT scan images. 
However, noise and artifacts may be present in CT scan 
images, which can interfere with the recognition 
performance of deep learning algorithms. Moreover, the 
algorithm was too complex, and it reduced the accuracy 
of detection when the training data was insufficient to 
cover all possible abnormal situations. 

Sensor information fusion is a technology that 
combines data from multiple sensors to provide more 
accurate and comprehensive information. In the field of 
medical imaging, this technology can be applied to 
various imaging modalities, including skull scanning. 
Different sensors can provide different information, and 
by fusing skull scanning image information, more 
comprehensive and accurate skull bone images can be 
obtained, thereby enabling more accurate anomaly 
detection. 

Therefore, in order to address the shortcomings of 
existing skull scan image anomaly detection methods and 
improve the accuracy of detection, this article designs a 
skull scan image anomaly detection method based on 
multi-sensor fusion. The aim is to enhance the automation 
level of skull scanning image detection, promote the 
development and innovation of medical imaging 
technology, and provide better medical services for 
patients. 

The proposed algorithm solves the certain deviation 
problem which is generated between multiple sensors due 
to noise interference in the scanning process. It uses the 
frequency correction factor to correct the frequency 
domain features of sensor signals during the acquisition of 
bone scan images, so as to provide reliable support for 
subsequent fusion.  
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First, domain decomposition of the image for the 
spatial and the transform domains is carried out by using 
the bilateral filter and the discrete wavelet transform. 
Then, low frequency fusion based on guided filtering and 
high frequency fusion based on multi-scale morphological 
gradient are used to achieve whole frequency fusion 
respectively, and the whole frequency components after 
fusion are merged back into the original spatial domain to 
obtain the fused reconstructed image by retaining 
important details. Finally, the backbone network of auto 
encoder-decoder structure is built to learn the complex 
image feature representation, and the abnormal detection 
model is proposed according to unsupervised deep neural 
network. 

2. Multi sensor feature data fusion and
anomaly detection in skull scanning

2.1. Signal correction for multi-sensor skull 
scanning image acquisition 

To achieve anomaly detection in skull scanning images, it 
is necessary to collect skull scanning images to provide 
input support for detection. Skull scans are typically 
performed using techniques such as X-rays, CT 
(computed tomography), MRI (magnetic resonance 
imaging), or nuclear medicine [15]. The application of 
multi-sensor fusion in skull scanning image acquisition 
results in fused data containing richer information, which 
helps detect image anomalies more accurately. However, 
during the process of skull scanning image acquisition, 
multi-sensor signals may be affected by the surrounding 
environment, potentially altering the frequency domain 
characteristics of each sensor signal and reducing the 
accuracy of skull scanning image acquisition [16]. 

Therefore, it is necessary to correct the frequency 
domain characteristics of the sensor signal. The 
transmission ability of sensor power is related to its 
amplitude frequency characteristics. Assuming that the 
input self-power spectrum of the skull scanning image I

is ( )xS I
 and the output self power spectrum is ( )yS I

,
the calculation formula for the output self power spectrum 
is: 

( ) ( ) ( )2
y xS I E I S I= ×    （1） 

where, ( )E I
 represents the response function of signal

frequency. The calculation formula for ( )xS I
 is: 

( ) ( ) 2
  = o

x

P I
S I

M
   （2） 

where, ( )oP I  represents the power spectral density of 

the sensor output signal at frequency o , and M
represents the length of the sensor output signal. 

The frequency domain correction factor of the sensor 
signal is represented by K , and the unilateral self-power

spectrum of the received sensor signal is set to ( )yG I
.

The mean square value of the recovered sensor 
transmission signal is set to ϕ . Therefore, the mean
square value of the recovered sensor transmission signal 
can be effectively calculated using the following formula: 

( ) ( )
0

ϕ
=

= ∑
N

y
y

y

KS I
G I

N

     （3） 

where, N  represents the number of sampling points of
the sensor signal node.  

From Eq.3, we know that the larger ϕ  means better
mean square value, indicating the better correction 
effect. The correction is completed when ϕ  is greater
than the preset threshold. When it fails to meet the 
requirements, the K  is necessary adjusted to make ϕ  
meet the requirements by strengthening the adjustment 
of the output self-power spectrum of the signal. 

At this point, the frequency correction factor can be 
used to modify the frequency domain characteristics of 
the sensor signal during the acquisition process of skull 
scanning image I , in order to enhance signal quality,
reduce noise impact, and improve the accuracy of skull 
scanning image acquisition. 

2.2. Dual domain decomposition of multi-
sensor signals in skull scanning images 

This article conducts dual-domain decomposition on skull 
scanning images, which divides the images into spatial 
and transformation domains. The spatial domain pertains 
to the distribution of pixel values in an image, while the 
transformation domain involves the mathematical 
transformation of an image into another domain to better 
analyze its features. Through dual-domain decomposition, 
skull scanning image fusion can extract feature 
information from images in different domains and merge 
this information according to specific fusion rules. 
    To effectively address the complex structures and 
features commonly encountered in skull scanning images, 
and to solve the problem of differentiating between 
abnormal areas and normal tissues, this paper combines 
bilateral filters and discrete wavelet transform to conduct 
dual-domain decomposition of spatial and transformation 
domains on multi-sensor signals in images. This process 
aims to extract more accurate and comprehensive feature 
information, aid in distinguishing between normal and 
abnormal areas, and establish the foundation for 
subsequent detection. 
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2.2.1 Spatial domain decomposition 

A bilateral filter is a nonlinear filter that considers not 
only the spatial distance between pixels but also the 
differences in grayscale values between pixels [17]. 
Therefore, bilateral filters can preserve edge information 
while smoothing images, which is highly beneficial for 
spatial domain decomposition in skull scan image fusion. 
   This article employs a bilateral filter on the original 
skull scan image to decompose the spatial domain 
information of the skull scan image [18], which can 
preserve edge and texture information while smoothing 
the image. The calculation formula for pixel point and 
pixel neighbourhood in skull scanning images after 
bilateral filter decomposition is as follows: 

( )2 2

, 2 2exp exp
2

ϕ
ε δ σ

   − −
= −  − 

  
  

b c
b c

e d

f f
R

r
B C

（4） 

In the formula, R  represents the bilateral filter kernel
function; B  and C  represent the change vectors of pixel
point b  and pixel neighborhood c ; r  represents the

radius of the square window; eε  represents the parameter 

of kernel function space e ; bf  and cf  represent the
pixel values of pixel point b  and pixel neighborhood c ;

dδ  represents the parameter of kernel function pixel 

range d ; 
2σ  represents the variance of noise.

    The spatial domain feature information of E pixel 
points is obtained using the following calculation formula: 

,
1

2
,

1

W

b c c
w

W

b c
w

R f w
F

R w

=

=

=
∑

∑
     （5） 

In the formula, F  represents the spatial domain
feature information of the pixel b  output through a
bilateral filter; w  represents the filtering window of
pixels; W  represents the total number of pixel filtering
windows. 
    The inclusion of bilateral filters in spatial domain 
decomposition means that, when processing skull 
scanning images, not only the positional relationship of 
pixels in space is considered, but also their similarity in 
pixel values is taken into account. This approach enables 
bilateral filters to effectively preserve edges and details 
while smoothing digital images, resulting in clearer and 
more natural processing outcomes. Consequently, this 
aids in enhancing the accuracy of anomaly detection in 
subsequent skull scan images. 

2.2.2 Transform domain decomposition 

In the decomposition of transformation domains, the 
Discrete Wavelet Transform (DWT) is a commonly used 
tool. The discrete wavelet transform is a time-frequency 
analysis method that can break down skull scanning 
images into a set of components with different 
frequencies. For skull scanning images, the discrete 
wavelet transform can decompose the image into low-
frequency and high-frequency components [19]. The low-
frequency component represents the overall trend and 
rough structure of the skull scanning image, usually 
containing the main information of the image, which 
generally corresponds to the overall shape and position of 
the lesion area. The high-frequency component represents 
the details and local changes of the skull scanning image, 
such as edges, textures, etc., generally corresponding to 
details such as the boundaries and morphological changes 
of the lesion area [20]. By applying the discrete wavelet 
transform to skull scanning images, low-frequency and 
high-frequency components can be processed separately 
to achieve better image fusion results. For example, while 
maintaining the low-frequency components, high-
frequency components can be enhanced or suppressed to 
highlight the detailed information of the lesion area or 
remove noise. 

Assuming the filter length is l , obtain the low-
frequency sub image I  and high-frequency sub image

LI  of the original skull scan image LI  after being
decomposed by the Haar filter. The formula is calculated 
as follows: 

( )

( ) ( )

1

0

∈

∈

 =



= −


∑

∑

L
U N

H L
U N

I FUl h

I U I I l h

   （6） 

In the formula, U  represents the discrete time domain;

1h  and 0h  represent the coefficients of the low-pass
(approximation) filter and the coefficients of the high pass 
(detail) filter, respectively. 

    After obtaining low-frequency sub image LI  and high-

frequency sub image HI , use two-dimensional discrete
wavelet transform to further decompose the skull scan 
image into LL , LH , HL and HH . By repeating the
one-dimensional decomposition process on the LL  sub
band, more layers of sub bands are obtained, achieving 
dual domain decomposition of skull scanning images. The 
calculation formula is as follows:
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, 2 1,2 1 2 1,2 2 ,2 1 2 ,2

, 2 1,2 1 2 1,2 2 ,2 1 2 ,2

, 2 1,2 1 2 1,2 2 ,2 1 2 ,2

, 2 1,2 1 2 1,2 2 ,2 1 2 ,2

LL

LH

HL

HH

I i j I i j I i j I i j I i j

I i j I i j I i j I i j I i j

I i j I i j I i j I i j I i j

I i j I i j I i j I i j I i j

= − − + − + − +


= − − − − − + − +


= − − − + − − − +
 = − − − − − − +

（ 7
） 

In the formula, i  and j  represent the pixel values of
pixel point b  and pixel neighborhood c  in the original
skull scan image after wavelet decomposition. 

Through wavelet decomposition, the original skull scan 
image is transformed into a series of subbands, each 
containing information about the image at different scales 
and directions. In summary, the dual-domain 
decomposition of skull scanning images in spatial and 
transformation domains has been completed, extracting 
more accurate and rich feature information as the basis for 
subsequent image fusion. 

2.3 High and Low Frequency Fusion of 
Skull Scanning Images 

Next, to enhance the accuracy of anomaly detection, 
building upon the dual-domain decomposition of skull 
scanning images mentioned earlier, high and low-
frequency fusion processing of multi-sensor information 
in skull scanning images is conducted. 

Firstly, multi-scale decomposition is performed on the 
original image to decompose it into components with 
different frequencies. Among them, the high and low 
frequency components contain different details of the 
image. Then, fusion rules are selected to handle high-
frequency components, including maximum method and 
weighted fusion, where maximum method preserves 
sharper and more significant details in the images, while 
the weighted fusion method adjusts the contribution of 
different image sources to the fusion. Next, according to 
the selected fusion rules, the high-frequency components 
are fused. Finally, the fused high frequency component is 
reconstructed with the low frequency component 
(possibly from another image or after processing) to show 
the final fused image. 

This process effectively integrates high and low-
frequency information, preserves crucial details for all 
frequencies, and aids in improving the accuracy of 
subsequent image anomaly detection. 

2.3.1 Low frequency fusion 

Dual-domain decomposition typically divides an image 
into high-frequency and low-frequency parts. The low-
frequency part usually contains the main structure and 
contour information of the image, while the high-
frequency part contains the details and noise of the image. 
This article employs guided filtering to fuse the low-
frequency part of skull scanning images, ensuring that the 

fused image retains important structural information of 
the original image. Guided filtering is an edge-preserving 
filtering method that can maintain the clarity of edges 
while smoothing images. The use of guided filtering for 
low-frequency fusion of skull scanning images helps 
reduce possible artifacts and noise during the fusion 
process, improve the quality of fusion images, and 
ultimately enhance the accuracy of anomaly detection in 
skull scanning images. 

Take the low-frequency sub-band ( ),AI LL LH
 of 

image  AI  as the input image for the guidance filter, and

the low-frequency sub-band ( ),PI LL LH
 of image PI

as the guidance image to obtain the blurred image 
( ),AO LL LH

 of ( ),AI LL LH
; Take the low-

frequency sub-band ( ),PI LL LH
 of image PI  as the

input image for the guidance filter, and the low-frequency 

sub-band ( ),AI LL LH
 of image AI  as the guidance

image to obtain a blurred image of ( ),PO LL LH
. The

calculation formula is as follows: 

( ) ( ) ( )
( ) ( ) ( )

1

2

, , , , , ,

, , , , , ,
A A P

P P A

O LL LH g I LL LH I LL LH Q D

O LL LH g I LL LH I LL LH Q D

 =    


=    
（8） 

where, Q  represents the significant difference in the

guided image determined by the window radius; 1D  and

2D  are regularization parameters in guided filtering.
The fusion coefficient of the low-frequency sub-band is 

determined by the improved Laplacian energy of the 
sharpened image, so it is necessary to first obtain the 

sharpened images of image AI  and image PI , which can
be obtained through simple calculations: 

( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,
A A A

P P P

M LL LH I LL LH O LL LH

M LL LH I LL LH O LL LH

= −


= −
     （9） 

Based on this, the improved Laplacian energy of 

sharpened image ( ),AM LL LH
 and sharpened image 

( ),PM LL LH
 is determined to be ( )AT M

 and 
( )PT M

. Combined with the fusion weight a , the final

fusion coefficients AI  and PI  of the low-frequency sub

bands of image ( )A A

a
T M IV

 and image ( )P P

a
T M IV

 are 
obtained. Based on the weighted average fusion strategy, 
the possible artificial textures generated during the low-
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frequency fusion process are further smoothed to achieve 
low-frequency fusion of skull scanning images. The 
formula has been calculated as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

, ,
, ,

A A P P

A A P P

a a
A AT M I T M I

A P a a
T M I T M I

V T M u v V T M u v
I L

V u v V u v
+

=
+

（10） 

where, ( ),A PI L
 represents the low-frequency fusion 

result of the skull scanning image; ( ),u v
 represents the

fusion area. 

2.3.2 High frequency fusion 

The high-frequency part usually contains detailed 
information of the image, such as edges, textures, etc. 
Morphological operations have a certain inhibitory effect 
on noise. High frequency fusion of skull scanning images 
through multi-scale morphological gradients can 
effectively suppress noise in the image and improve the 
signal-to-noise ratio while enhancing details. High 
frequency information contains multi-scale detail 
information in the image, making the fused image have 
higher resolution and clarity in detail representation. 

Let the multi-scale morphological gradients of the q -
th high-frequency sub band in the m -th layer of image

AI  and image PI  be ( )
,

,A

m q
I HL HHY

 and ( )
,

,P

m q
I HL HHY

. The 

weighted local energy values of the two in the ( ),u v
-

region are represented by AIYη

 and PIYη

, respectively.
( )

AIYη β
 and ( )

PIYη β
 are the initial weights of the high-

frequency sub bands in image AI  and image PI , and the
final weight range for high-frequency fusion of the two 
can be determined. The calculation formula is as follows: 

( ) ( ),
1,

0,
A PI Im q

if Y Y
J

otherwise

η ηβ β= 


＞
       （11） 

Then, using multi-scale morphological gradients, the 

high-frequency sub bands of image AI  and image PI  are

fused to obtain the fusion results 
,
,

m q
A PI

 of the high-
frequency sub bands. The calculation formula is: 

( ) ( )
( ) ( ) ( ) ( )

,
, ,
, , ,

, ,

+
1

, ,
A P

A P

m q
I Im q m q

A P m q m q
I HL HH I HL HH

J Y Y
I J

Y u v Y u v

η ηβ β  ×   = × −
 + 

（12） 

Using guided filtering based low-frequency fusion 
algorithm and multi-scale morphological gradient based 
high-frequency fusion algorithm, respectively, after 
achieving high and low frequency fusion, using inverse 
wavelet transform, the fused low-frequency and high-

frequency components are merged back into the original 
spatial domain to obtain the reconstructed image after 
fusion. The calculation formula is as follows: 

( )
( ) ( )

2

,
, ,

exp
, +

e
dm q

A P A P

RZ I
U u v I L I

ε
δ

 × =
    

    （13） 

2.4 Abnormal detection of skull scanning 
images 

After image fusion, to enhance the accuracy and 
robustness of anomaly detection in skull scanning images, 
this paper utilizes a backbone network established by a 
deep learning auto encoder structure to learn complex 
image feature representations. Subsequently, it combines 
unsupervised deep neural networks to achieve anomaly 
detection in skull scanning images. 

Unsupervised learning is a machine learning technique 
that enables models to learn inherent structures and 
patterns from input data, rather than relying on manually 
annotated labels. In skull scan image anomaly detection, 
unsupervised deep neural network models can learn 
patterns of normal and abnormal images from a large 
dataset of skull scan images without the need for pre-
labeling which images are normal and which are 
abnormal. 

A deep neural network (DNN) is a machine learning 
model that mimics human brain neural networks, with 
multiple hidden layers capable of learning and extracting 
complex features from input data. In unsupervised 
learning, DNNs can be trained to learn intrinsic features 
of input skull scan images for anomaly detection. 

The structure of a skull scan image anomaly detection 
model constructed using unsupervised deep neural 
networks is shown in Figure 1: 

image
Refactoring loss function encoder output

Discriminator

Figure 1. Schematic diagram of the structure of the 
anomaly detection model for skull scanning images 

In the process of establishing an unsupervised deep 
neural network-based anomaly detection model for skull 
scanning images, the training of the model requires three 
completely different loss functions, namely: 

(1) Prioritize defining the reconstruction loss function

( )1ossl
between different images based on the degree of
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difference between input image I  and reconstructed

image ( )Z I
, ensuring that the auto encoder in the

network structure can learn the semantic information of 
the input skull scan image more comprehensively and 
accurately. The corresponding calculation formula is as 
follows: 

( ) ( ) ( ) 2

1oss s
l X I s Z I= − （14）

where, X  represents the Manhattan distance; ( )I s
represents the semantic information of the original skull 
scan image; Reconstruct the semantic information of skull 

scanning images using ( )s
Z I

. 

(2) By setting the encoder loss function ( )2ossl
 through 

the output hidden space z  and encoder output t , it is
possible to learn related content such as feature 
description in the hidden space through two encoders. The 
calculation formula is as follows: 

( ) ( ) ( ) 2

2ossl X z s z tχ= − +           （15）

where, ( )z s
 represents the semantic information

contained in the output hidden space; χ  represents
learning information. 

(3) Set the anti-loss function ( )3ossl
based on the 

discriminator λ  of the third subnet, and the 
corresponding expression is as follows: 

( )
( ) ( )

( ) ( )

2

3 2oss

z s z t
l X

z s z t

χ

χ

− ×
=

− +
       （16）

Based on formulas (14) to (16), establish a 
comprehensive loss function osscoml  for the anomaly 
detection model of skull scanning images, as shown in 
formula (17): 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3osscom oss oss ossl l l lψ ψ ψ= + +    
（17）

where, ( )1ψ
, ( )2ψ

, and ( )3ψ
 represent adjusting

parameters. 
The main purpose of adjusting parameters is to 

effectively avoid the negative impact of the loss function 
on model training. It is necessary to conduct adjustment 
analysis based on actual situations. 

In the initial stage of model training, the third 
discriminator corresponding to the subnet needs to be 
frozen, and the encoder corresponding to the first two 
subnets is used to search for normal and abnormal data, 
obtaining the optimal hidden space between the two. 
Furthermore, the optimal latent space is used as the basis 
for determining whether there are abnormalities (lesions) 
in the skull scan image. In the second stage of training, it 
is necessary to fix the parameters corresponding to the 

first two encoders and use the third discriminator to locate 
abnormal points in the skull scanning image. 

Based on the above analysis, detailed operational steps 
for anomaly detection in skull scanning images are 
provided as follows: 

(1) Input the skull scanning images collected by
multiple sensors, and after dual-domain decomposition 
and fusion, establish a set of skull scanning images θ  as
shown in formula (18): 

11 12 13 1

21 22 23 2

1 2 3

o o o o
o o o o

o o o o

ς

ς

ϑ ϑ ϑ ϑς

θ

 
 
 =  
 
  

  
  （18） 

(2) Due to the fixed position of the human skull in the
collected skull scanning images, it is necessary to crop out 
areas that may have anomalies to improve detection 
accuracy. 

(3) Establish the backbone network ζ  of the auto
encoder-decoder structure, and the corresponding 
calculation formula is as follows: 

{ }1 2 3 4 5, , , ,ζ γ γ γ γ γ=          
（19）

where, 1γ  represents the distance between two random

encoders; 2γ  represents the true output of the encoder;

3γ  represents running time; 4γ  represents the range of

values for encoder parameters; 5γ  represents the best
hidden space. 

(4) Establish an anomaly detection model κ  for skull
scanning images based on unsupervised deep neural 
networks, and the corresponding calculation formula is: 

( )
( )( ) ( )

osscoml
z s z t
ζ θ

κ
χ

× −
=

− ×
  （20）

(5) Input all normal skull scan images into the model
for training, obtain anomaly thresholds from all normal 
skull scan images, and ultimately achieve skull scan 
image anomaly detection. 

Thus, the anomaly detection of the skull scanning 
image is completed through the above steps. The 
proposed method utilizes a frequency correction factor to 
modify the frequency domain characteristics of sensor 
signals during the acquisition process of skull scanning 
images, effectively reducing the impact of noise and 
improving data accuracy. On this basis, a combination of 
bilateral filters and discrete wavelet transform is used to 
complete the dual-domain decomposition of skull 
scanning images, extract more accurate and rich feature 
information, and help distinguish between normal and 
abnormal regions. Then, the low-frequency fusion 
algorithm based on guided filtering and the high-
frequency fusion algorithm based on multi-scale 
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morphological gradients are used to achieve high and 
low-frequency fusion respectively, while retaining 
important details. Finally, establish a backbone network 
of auto encoder-decoder structure, learn complex image 
feature representations, and implement anomaly detection 
in skull scanning images based on unsupervised deep 
neural networks. 

3. Experimental design and result
analysis

3.1 Experimental Environment Setting 

To investigate the practical application performance of the 
bone scan image anomaly detection method based on 
multi-sensor fusion proposed in this article, comparative 
tests were conducted. This study selected imaging 
equipment from Neusoft Group as the test subject. This 
imaging department encompasses various types of bone 
scan images from the hospital. To safeguard patient 
privacy, consent was obtained from all patients before 
collecting 600 skull scan images as the foundational 
image data, including images of both disease-free patients 
and those undergoing follow-up visits for diseases. To 
meet the experimental requirements, a testing 
environment was established for this experiment, as 
shown in Figure 2: 

Figure 2. Schematic diagram of experimental testing 
environment 

The environmental parameters are shown in Table 1. 
Table 1 Experimental Environment Parameters 

Serial 
Number Project Parameter 

（1） Visual terminal operating
system 

Windows 10 and 
above 

（2） Programming language Python 

（3） Tool Library Provided by third 
parties 

（4） Image processing tools Opencv-contrib 
（5） Deep learning framework Pytorch 
（6） Acceleration kits GPU 
（7） Simulation Run Platform MATLAB 2019a

After establishing the experimental environment, utilize 
the method designed in this article to train the bone scan 
images. The training parameters are presented in Table 2. 

Table 2 Image preprocessing and training 
parameters 

Serial 
Number Project Parameter 

（1） Training model RTX2080ti 
（2） Learning rate 0.01 
（3） Batchsize 2.0 
（4） Resolution 1024×768 
（5） Loss degree 0.01% 
（6） Weight decay 0.0005 
（7） Periodization 100 

After completing the processing, different methods are 
used to detect abnormal bone scan images. In order to 
ensure the fairness of experimental testing, the methods in 
reference [10] and reference [11] were used as 
comparison methods, and the methods in this paper were 
jointly tested. 

3.2 Indicator Setting 

Based on the above settings, firstly, to verify the 
effectiveness of the proposed method, skull scanning 
image fusion testing is conducted. The better the fusion 
effect, the stronger the support provided for subsequent 
skull scanning image anomaly detection, and the higher 
its reliability. Subsequently, to further validate the 
performance of the proposed method, the F1 score index 
and ROC curve index were selected, and a comparative 
test was carried out between the proposed method, the 
method in reference [10], and the method in reference 
[11]. 

Among these, the F1 score is the harmonic mean of 
Precision and Recall. It takes into account both accuracy 
and recall, making it a suitable evaluation metric for 
binary classification problems, particularly when 
categories are imbalanced. The F1 score ranges from 0 to 
1, where a higher score indicates better performance of 
the method in detecting abnormal images in skull 
scanning. 

True Positive Rate (TPR) and False Positive Rate 
(FPR) are two key indicators in the ROC curve. TPR 
represents the proportion of correctly predicted abnormal 
samples among all true abnormal samples, which is the 
recall rate. FPR represents the proportion of samples 
incorrectly predicted as abnormal among all normal 
samples, i.e., 1-specificity, where specificity represents 
the proportion of samples correctly predicted as normal 
among all normal samples. By adjusting the classification 
threshold, different TPR and FPR values can be obtained, 
and then the ROC curve can be plotted. The area under 
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the ROC curve (AUC) is an important indicator for 
measuring detection performance. The closer the AUC 
value is to 1, the higher the accuracy and effectiveness of 
the anomaly detection method. 

3.3 Result analysis 

3.3.1 Fusion effect 

In the detection of anomalies in skull scanning images, 
the fusion effect of skull scanning images directly impacts 
the results of anomaly detection. Therefore, to verify the 
effectiveness of the proposed method, the skull scanning 
image fusion processing is first conducted using the 
proposed method. Following the design process described 
in this article, the skull scan images are initially fused, 
and the fusion effect is demonstrated by randomly 
selecting brain CT images and brain MRI images of the 
same patient, as depicted in Figure 3. 

Source CT image

Source MRI-T2 
image

low-frequency component

High-frequency component

DWT

DWT

Fused image

low-frequency component

High-frequency component

low-frequency component

High-frequency component

Figure 3. Skull scan image fusion effect 

According to Figure 3, it is evident that the method 
proposed in this article can effectively fuse CT images 
with MRI images. The fused image exhibits clearer 
morphology and contours compared to the source image. 
While enhancing details, it effectively suppresses noise in 
the image and improves the signal-to-noise ratio. This 
indicates that the proposed method can effectively achieve 
fusion processing of skull scanning images, and it has a 
significant processing effect, providing reliable support 
for subsequent abnormal detection of skull scanning 
images. 

3.3.2 F1 score comparison 

Next, building upon the above tests, to verify the 
performance of the proposed method, a comparative test 
was conducted on the F1 score index between the 
proposed method, the method in reference [10], and the 

method in reference [11]. The F1 score results of the 
different methods are displayed in Figure 4. 

Proposed method

Reference [10] Method

Reference [11] Method

1.0

0.8

0.6

0.4

0.2

Recall

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ec

is
io

n

0.0

0.9

0.7

0.5

0.3

0.1

Figure 4. F1 scores of different methods 

From Figure 4, it is evident that after applying the 
method proposed in this paper for anomaly detection in 
skull scanning images, the F1 score consistently 
outperforms the two compared methods, approaching 1. 
This indicates that the method proposed in this paper can 
accurately identify true anomalous images (with high 
accuracy) and cover as many actual anomalous images as 
possible (with high recall) when recognizing anomalous 
images. 

However, the F1 scores of the two comparative 
literature methods remained consistently low, with a 
certain gap between them and 1. Comparing the F1 score 
results of the three methods reveals that our method 
exhibits good performance in anomaly detection tasks and 
can effectively recognize abnormal images from normal 
images. This is attributed to the method used in this 
article, which employs frequency correction factors to 
modify the frequency domain characteristics of sensor 
signals, enhancing signal quality, reducing noise 
interference, improving data accuracy, making abnormal 
areas more prominent in the frequency domain, and 
helping to identify abnormal signals more accurately. By 
combining bilateral filters and discrete wavelet transform, 
more accurate and richer feature information can be 
extracted from the spatial and transformation domains, 
aiding in better distinguishing abnormal areas from 
normal tissues and improving the accuracy of anomaly 
detection algorithms. 

3.3.3 AUC Comparison 

True Positive Rate (TPR) and False Positive Rate (FPR) 
are two key indicators in the ROC curve. By adjusting the 
classification threshold, different TPR and FPR values 
can be obtained, and then the ROC curve can be plotted. 
The area under the ROC curve (AUC) is an important 
indicator for measuring detection performance. Closer 
AUC to 1 means the higher accuracy and effectiveness of 
the anomaly detection method. The comparison of AUC 
using methods in References 10-11 is shown in Figure 5. 
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Figure 5. Comparison of AUC using different 
methods 

According to Figure 5, it is evident that after applying 
the method proposed in this paper for anomaly detection 
in skull scanning images, the ROC curve is closest to the 
upper left corner. This indicates that the proposed method 
can accurately identify both positive and negative samples 
with high sensitivity and low specificity. The AUC (Area 
Under Curve) area under the ROC curve is relatively 
close to 1, signifying that the anomaly detection accuracy 
of this method is high and the effect is favorable. 

In contrast, the ROC curves of the methods in 
references [10] and [11] are both lower in radian than 
those of the proposed method, and the AUC area is 
relatively small, resulting in lower accuracy in anomaly 
detection. Therefore, comparing the results obtained from 
the three methods can verify the strong reliability of our 
method in detecting anomalies in skull scanning images. 
This is because the method proposed in this article is 
based on a fusion algorithm of guided filtering and multi-
scale morphological gradients, which effectively 
integrates the high and low-frequency information of the 
image, preserves important details, and improves the 
accuracy of anomaly detection. On this basis, a backbone 
network with an auto encoder-decoder structure is 
established to learn complex image feature 
representations, and an anomaly detection model based on 
unsupervised deep neural networks is established to 
capture the features of abnormal areas and further 
improve the effectiveness of anomaly detection. 

4. Conclusion

In summary, to address the issues of low accuracy and 
poor effectiveness in anomaly detection of skull scanning 
images, this paper proposes a skull scanning image 
anomaly detection method based on multi-sensor fusion. 
The quality of skull scanning images and the accuracy of 
feature extraction have been enhanced through techniques 
such as frequency correction, dual domain decomposition, 
and high and low-frequency fusion. Simultaneously, a 

skull scan image anomaly detection model was 
established by combining the backbone network of auto 
encoder structure and unsupervised deep neural network, 
achieving efficient and accurate anomaly detection. The 
experimental results demonstrate that this method exhibits 
high F1 score, AUC value, and sensitivity, as well as low 
specificity, thus confirming its effectiveness and 
superiority in anomaly detection of skull scanning images. 
This study presents a new solution for anomaly detection 
in skull scanning images, which holds certain theoretical 
significance and practical value. 
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