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Abstract

INTRODUCTION: Deepfake technology allows for the overlaying of existing images or videos onto target
images or videos. The misuse of this technology has led to increasing complexity in information dissemination
on the internet, causing harm to personal and societal public interests.
OBJECTIVES: To reduce the impact and harm of deepfake as much as possible, an efficient deepfake detection
method is needed.
METHODS: This paper proposes a deepfake detection method based on a compound scaling dual-stream
attention network, which combines a compound scaling module and a dual-stream attention module based
on Swin Transformer to detect deepfake videos. In architectural design, we utilize the compound scaling
module to extract shallowlevel features from the images and feed them into the deep-level feature extraction
layer based on the dual-stream attention module. Finally, the obtained features are passed through a fully
connected layer for classification, resulting in the detection outcome.
RESULTS: Experiments on the FF++ dataset demonstrate that the deepfake detection accuracy is 9562%,
which shows its superiority to some extent.
CONCLUSION: The method proposed in this paper is feasible and can be used to detect deepfake videos or
images.
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1. Introduction
With the rapid progress of Artificial Intelligence (AI)
technology, AI is widely used in various fields such
as entertainment, finance, education, tourism, and
medical care, bringing great convenience. However,
it is also accompanied by the threat of technology
abuse, among which deepfake technology [1–5] is
particularly prominent. Deepfake is an advanced
technology that uses deep learning algorithms to
seamlessly replace the face of one person in a video or
image with that of another, allowing the target person
to appear as if they are saying or doing things that
were originally done by the source person. Deepfake
techniques are more abused in the fields of extortion,
cyber violence, and political struggle, which has a

∗Corresponding author. Email: wangsyz@njupt.edu.cn

complex impact on information dissemination and
society. This threatens national security and public
interests. Therefore, the motivation of the paper is to
pay attention to and study this technology, finding
more effective and innovative ways to deal with the
problems and challenges it brings. At present, the
mainstream methods to identify and detect deepfakes
are by using deep learning technologies [6–12]. Video
forgery detection, audio forgery detection, and text
forgery detection correspond to three sub-fields of deep
learning, namely, computer vision, speech recognition,
and natural language processing, respectively.

In the field of video forgery within deepfake
technology, this paper proposes a method for detecting
deep forgeries based on a Compound Scaling Dual-
Stream Attention (CSDSA) network. Swin Transformer,
introduced by Liu et al.[13], is a novel image feature
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extraction network that incorporates a local self-
attention mechanism. This makes the transformer
structure suitable for processing large-scale images
through blocking and cross-grouping, enabling the
extraction of multi-sacle feature information at various
processing levels. Building upon the Swin Transformer
architecture, this paper combines the strengths of
Convolutional Neural Networks (CNNs) and Swin
Transformer to achieve higher performance in detecting
deep forgeries. In summary, the main contributions of
the paper are as follows:

• Improvements are made to the downsampling
module within the Compound Scaling (CS)
approach in the shallow feature extraction layer.
By adding a two-dimensional average pooling
to the shortcut connection, this modification
complets the down-sampling operation in the
pooling step and reduces the loss of feature
information during the downsampling process;

• The residual channel attention module was
incorporated into the deep feature extraction layer
to address issues such as gradient vanishing and
information loss in deep neural networks. This
module allows for the adaptive adjustment of
weights for each channel in the network, thereby
enhancing the network’s feature representation
capacity and leading to more stable model
training;

• By combining CNN and the Swin Transformer
together to absorb the advantages of both, this
paper achieves more powerful capabilities for
image representation and modeling, resulting in
higher performance in deepfake detection.

The structure of the paper is summarized as follows.
Section 2 presents related works in deepfake, Section 3
proposes a new architecture for detecting deepfakes in
video frames. Section 4 is dedicated to the experimental
results and analysis. Section 5 gives a discussion of the
experimental results. Finally, conclusions and future
work are given in Section 6.

2. Related Works
With the increasing focus on Generative Adversarial
Networks (GANs), deepfake and face manipulation
techniques have garnered significant attention. These
techniques can be categorized into four groups based
on the tampering region and purpose: identity swap,
face reenactment, attribute manipulation, and entire
face synthesis [14–16]. Numerous studies have been
conducted in these areas. Below, we highlight some
relevant works, and interested readers are encouraged
to explore the review literature for more comprehensive

coverage [14, 16–18].

(1) Identity Swap
Identity swap involves replacing face photos of

a source person with those of a target person in
videos or photos, utilizing various algorithms and
methods such as GANs, Auto-Encoder (AE), and others.
Researchers have proposed methods and technical
solutions like FaceSwap [19] and DeepFaceLab [20]
to generate high-quality identity swapping forgery
images and videos. Currently, GAN-based methods
are predominant in identity swap, with CycleGAN
[21] being a typical representative work introduced
in 2017. Subsequently, many GAN-based methods
have been developed, including Faceswap-GAN [22],
Face swapping GAN [23], and Region-Separative GAN
(RSGAN) [24]. Furthermore, there are several other
methods for identity swapping [25–27].

(2) Face Reenactment
Face reenactment is a conditional face synthesis

task with dual objectives: transferring the shape of
the source face to the target face while preserving the
appearance and identity of the target face. Methods for
detecting face reenactment primarily rely on CNNs,
Recurrent Neural Networks (RNNs), and similar
techniques. For instance, Liu et al. [28] proposed a
lightweight 3D CNN for deepfake detection, while
Kumar et al. [10] proposed the use of multi-stream
CNNs to learn region artifacts and achieve robust
performance across various compression levels. These
methods aim to identify images and videos that have
undergone facial reenactment forgery, thus ensuring
information security and personal privacy.

(3) Attribute Manipulation
Attribute manipulation involves altering specific

attributes (e.g., age, hairstyle) of a face image. This
technique is implemented in models like StarGAN
[29], AttGAN [30], which utilize GANs to manipulate
face attributes and generate realistic tampered images.
To detect attribute manipulation, researchers have
proposed various methods, including those based
on CNNs [31] and color component differences [32].
These methods effectively identify images and videos
that have undergone attribute manipulation, thus
safeguarding information security and personal
privacy. Some notable detection methods include
CNNs [33], Efficient-frequency [34], and Attribute
Manipulation GAN (AMGAN) [35].

(4) Entire Face Synthesis
Entire face synthesis is a technique that differs from

the aforementioned methods in that it generates faces
that do not exist in reality, using information such as
noise, rather than relying on realistic existing faces.
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Figure 1. The model architecture of the proposed scheme.

This technique includes methods like Coupled GAN
(CoGAN) [36] and Glow [37]. According to existing
surveys [10, 28, 38, 39], GANs are the mainstream
technique for entire face synthesis. Examples include
Progressive Growing GAN (PGGAN) [40] and Style-
based GAN (StyleGAN) [41]. Detection techniques for
entire face synthesis include methods based on pairwise
learning [42] and methods based on image non-uniform
response noise [43]. These methods are effective in
identifying images and videos that have undergone full-
face composite forgery.

3. The Proposed Methodology
This paper proposes a new method for detecting
deepfakes, aiming to prevent their abuse. The method
is based on a compound scaling dual-stream attention
network, as illustrated in Figure 1, which draws
on the Swin Transformer structure. The network
comprises three layers: shallow feature extraction, deep
feature extraction, and fully connected classification.
Initially, the compound scaling module is employed
to extract shallow feature information from the image.
Subsequently, the deep feature extraction layer utilizes
the dual-stream attention module to extract deeper
features. These extracted features are then forwarded to
the fully connected layer for classification, resulting in
the detection of deepfake content.

3.1. Extraction of shallow features
Compound scaling method. EfficientNet [44] is a neural
network architecture known for its efficiency, achieved
through the use of compound scaling to optimize the
network’s depth, width, and resolution. This approach
considers three key dimensions: feature mapping
size, the number of channels, and network depth.
By applying compound scaling, EfficientNet achieves
lightweight models and compression. Different model
sizes, such as EfficientNetV2-M and EfficientNetV2-L,
are obtained using neural structure search techniques,
which involve the use of varying compound scaling
coefficients.

In EfficientNetV2, the Mobile Inverted Residual
Bottleneck Convolution (denoted as MBConv) module

shown in Figure 2(a) is further optimized to the
Fused MBConv module, as depicted in Figure 2(b).
The primary distinction between MBConv and Fused-
MBConv is that in MBConv, the depthwise conv3×3 and
expansion conv1×1 are replaced with a single regular
conv3×3, leading to improved accuracy and reduced
training time of the model. To avoid premature global
feature representation in shallow feature extraction,
this paper discards the Squeeze-and-Excitation (SE)
module, resulting in the CSConv module shown in
Figure 2(c), which helps reduce the risk of overfitting.

Conv1×1

H,W,C

H,W,nC

H,W,C

(a) MBConv

SE

Conv1×1

Depthwise 

Conv3×3

Conv3×3

H,W,C
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H,W,C

SE

Conv1×1

(b) Fused MBConv

Conv3×3

Conv1×1

H,W,C

H,W,nC

H,W,C

(c) CSConv

Figure 2. Structure of MBConv, Fused MBConv and CSConv.

Down-sampling method. The standard down-sampling 
residual structure in Residual Neural Network (ResNet)
[45] is illustrated in Figure 3(a). However, this structure 
has a drawback in the channel dimension: when the 
stride is set to 2, the 1×1 convolutional operation, 
instead of the 3×3 convolutional layer, essentially 
performs a weighted summation along the channel 
dimension of the input feature maps, leading to the 
loss of feature information. To address this issue, this 
paper introduces a modified down-sampling structure 
called ResNet-D [46], shown in Figure 3(b). ResNet-D 
adds a two-dimensional average pooling to the shortcut 
connection, completing the down-sampling operation
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in the pooling step. This modification helps preserve
more feature information during down-sampling.
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(a) Standard down-sampling structure
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Figure 3. Modified down-sampling structure.

Compound scaling module. In the three models of 
EfficientNetV2-L, EfficientNetV2-S and EfficientNetV2-
M [47, 48], EfficientNetV2-M ba lances th ree dimen-
sions: accuracy, parameter quantity, and training time. 
Therefore, a compound scaling module as shown in 
Figure 4 is proposed based on the partial structure 
of EfficientNetV2-M by  ad ding th e mo dified down-
sampling residual structure into it.

In Figure 4, CSConv1 and CSConv4 denote that 
the amplification f actors o f t he h idden l ayer a re 1 
and 4, respectively. The improved down-sampling 
residual structure replaces the original structure’s 3×3 
convolution with a stride of 2. Shortcut connections 
are included to enable gradient propagation backward 
through the network during training, which alleviates 
problems such as gradient vanishing and helps 
the network learn richer feature representations. 
Additionally, the network can learn multiscale features 
through these shortcut connections and perform 
information fusion across different levels.

The core of the compound scaling module is the 
CSConv, depicted in Figure 2(c), which incorporates 
two types of convolution operations: fused convolution 
and squeeze convolution. Fused convolution combines 
spatial transformation and channel fusion into a single 
operation, increasing the number of channels in the 
feature map from the input channels to the hidden 
channels. The hidden channels are calculated as the 
input channels multiplied by an expansion factor. This 
design reduces computational steps, thereby improving 
computational efficiency. Co mpared wi th MBConv, 
this approach can reduce the computational cost 
while maintaining good feature extraction capability. 
Compression convolution, on the other hand, reduces

the number of channels in the feature map from the
hidden channels to the output channels using a 1×1
convolutional kernel. This helps the model maintain
good performance while keeping a lower parameter
count. Fused convolution focuses on convolution
operations in the spatial dimension, aiding in capturing
local features of the input feature map. Compression
convolution, on the other hand, facilitates feature
integration between channels, mapping the output
feature map of fused convolution to the desired number
of output channels. Together, these two operations
provide the network with rich feature representations.

3.2. Deep-layer feature extraction method
Residual-channel attention module. Building upon the
residual structure and channel attention, the Residual
Channel Attention Network [49] introduces the Resid-
ual Channel Attention Block (RCAB), illustrated in Fig-
ure 5. The block helps prevent gradient vanishing and
information loss in deep neural networks, leading to
more stable model training. Channel attention enables
adaptive adjustment of the weights for each channel in
the network, enhancing feature representational capac-
ity and further improving model performance.

The RCAB consists of several key steps: (1) shortcut
connections are employed to reduce information loss;
(2) image features are extracted using two consecutive
3×3 convolutional layers; (3) the network adjusts the
weight for each channel adaptively in the channel
dimension using the channel attention mechanism; (4)
finally, the shortcut-connected and weighted feature
maps are added together to merge the features and
produce the output.

Dual-stream attention module. Building upon the
Window-based Multi-head Self-Attention/Shifted
Window-based Multi-head Self-Attention (W-
MSA/SW-MSA) module in Swin Transformer [13]
and combined with RCAB, this paper proposes a
Dual-Stream Attention (DSA) module, illustrated in
Figure 6. The DSA module aims to achieve richer
feature representations by integrating the channel
attention mechanism from CNN with the self-attention
mechanism from Swin Transformer. The RCAB is
instrumental in extracting and enhancing important
features of specific channels. On the other hand,
W-MSA/SW-MSA enables the capture of multi-scale
contextual information. The combination of these
mechanisms allows for the capture of richer feature
representations at various scales and levels, thereby
enhancing model performance. Furthermore, W-
MSA/SW-MSA is adept at capturing image features
at different resolutions by modeling multi-scale
information. When combined with RCAB, the
model gains strong representation capabilities at
different scales, thereby improving its performance
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Figure 4. Compound scaling module.
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Figure 5. The structure of RCAB.

in multi-scale tasks. In terms of global and local
information, RCAB primarily focuses on local features
and inter-channel relationships, while W-MSA/SW-
MSA can capture long-range dependencies and global
information. Combining these mechanisms enables
an effective fusion of global and local information,
further enhancing the model’s performance in complex
computer vision tasks.

Layer Norm

Input

WMSA/SWMSA

RCAB

Layer Norm

 Multi-Layer Perceptron

Figure 6. Dual-stream attention module.

4. Experiments and Results
4.1. Data sets and the evaluation metrics
This paper utilizes the FaceForensics++ (FF++) dataset 
[50] for training, comprising a total of 5000 videos to 
ensure both quantity and diversity in the training data. 
In addition to original videos sourced from YouTube, 
the dataset also includes videos generated by four 
deep forgery methods: Deepfakes [51], Face2Face [52],

FaceSwap [53], and NeuralTextures [54]. The FF++
dataset authors applied varying levels of compression
to the real and fake images, resulting in high-quality
and low-quality versions of the data, respectively. For
this study, the first 50 frames of each video in the
high-quality version of the dataset are extracted as the
training data. The division ratio for the training set,
validation set, and test set follows the official practice
of FF++, where the 1000 videos are divided into 720 for
training, 140 for validation, and 140 for testing. Table 1
provides statistical information regarding the dataset.

In this paper, accuracy is used as the performance
evaluation index, calculated as the ratio of correctly
identified examples to the total size of the test set. The
calculation formula is as follows:

Accuracy =
T P + TN

T P + TN + FP + FN
, (1)

where T P , TN , FP , and FN represent True Posi-
tive, True Negative, False Positive, and False Negative,
respectively. In multi-classification problems, the accu-
racy metric refers to selecting the index corresponding
to the maximum value in the probability vector output
by the model as the prediction. If this index aligns with
the actual class, it indicates a correct prediction.

4.2. Experimental environment and parameter setting
All experiments were conducted on Ubuntu 18, Intel(R)
Xeon(R) Platinum 8338C CPU @ 2.60GHz, DDR 320G
RAM, four NVIDIA GeForce RTX 3090 (24GB) GPU.

The model hyper-parameter configuration is pre-
sented in Table 2, where the channel dimension of the
input multi-channel feature extraction layer is reduced
from 224 to 96 for the small model or 128 for the
base model. Recognizing that as stages progress, the
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Table 1. Statistical information of the dataset.

Type Total Frames Training Set Validation Set Test Set

Original 50k 36k 7k 7k
Deepfakes 50k 36k 7k 7k
Face2Face 50k 36k 7k 7k
FaceSwap 50k 36k 7k 7k

NeuralTextures 50k 36k 7k 7k

Table 2. Model hyper-parameter configuration.

Type Name Values of the small model Values of the base model

Model

Embeding dimension 96 128
In Channels 3 3
Num Heads [3,6,12,24] [4,8,16,32]

Window Size 7 7
Depth [2,2,6,2] [2,2,18,2]

Training

Base Learning Rate 5e-5 5e-5
Epochs 300 300

Warmup Epochs 20 20
Warmup Learning Rate 5e-7 5e-7

Min Learning Rate 5e-6 5e-6
Decay Rate 0.1 0.1

granularity of feature extraction should become finer,
the model proposed in this paper utilizes a compound
scaling module for local, multi-level shallow feature
extraction on input images. Concurrently, the dual-
stream attention mechanism conducts global, multi-
scale deep feature extraction on input features, effec-
tively capturing the structure and information of the
input data. To balance the channel dimension and the
model’s depth, the number of self-attention heads in W-
MSA/SW-MSA has been adaptively adjusted.

4.3. Experimental results

To ensure the robustness of the results, each experiment
was run 20 times, and the average value was taken
as the final result. Table 3 presents a comparison
of the average accuracies obtained on each subset of
the FF++ dataset. From the experimental results of
this paper, the deepfake detection model, based on
CSDSA network, outperforms the other methods listed
in the table in terms of accuracy. Here, CSDSA(S)
and CSDSA(B) denote the CSDSA network for the
small model and the base model, respectively. It is
worth noting that the method described in the FF++
paper involved extracting 100 frames per video, while
this paper only extracted 50 frames. In other words,
the model proposed in this paper achieves improved
accuracy while using only half the amount of data
compared to the other methods.

Table 3. Experimental results.

Methods Accuracy

Steg [55] 70.90%
LD-CNN [56] 78.45%
SB-Conv [57] 82.97%
MesoNet [58] 83.10%
CSDSA(S) 95.60%
CSDSA(B) 95.62%

The results in Table 3 indicate that the small model
proposed in this paper achieves a similar accuracy
to the base model. Regarding the training iteration
process, the small model reached an accuracy of 95.60%
at the 190th epoch, while the base model had already
reached 95.62% at the 150th epoch. This suggests that
the training process can converge faster and approach
the local or global optimal solution as the depth of the
model increases and the number of model parameters
expands. The capacity of the small model may already
be well-suited to the complexity of deepfake detection
tasks. In this scenario, the deeper base model may not
fully leverage its larger capacity advantage, leading to
limited performance improvement. Nevertheless, there
is still potential for optimizing the accuracy of the
base model. For example, one can try adjusting the
learning strategy or employing model pruning methods
to prevent overfitting.
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Table 4. Experimental results of ablation experiments.

Methods
Accuracy of

the small model
Accuracy of

the base model

CSDSA 95.60% 95.62%
No-CS 91.12% 92.81%

No-DSA 94.66% 94.87%
No-CS DSA 87.04% 91.41%

4.4. Ablation experiments
To evaluate the impact of the CS module and DSA
module on the experiments, this paper conducted three
categories of ablation experiments: (1) Removal of the
CS module, reverting to convolution with a 4×4 kernel
and a stride of 4 (denoted as No-CS); (2) Removal of
the RCAB structure from the DSA module, reverting
to W-MSA/WS-MSA structures (denoted as No-DSA);
(3) Simultaneous removal of both the CS module and
the RCAB structure from the DSA module (denoted as
No-CS DSA). The experimental results are presented in
Table 4 under the same experimental conditions and
hyper-parameters. The accuracy curve is depicted in
Figure 7 and Figure 8.

Figure 7. Accuracy curves of the ablation experiments 
for the small model.

5. Discussion
According to the experimental results of this paper, 
from the global perspective, the CSDSA model achieved 
the highest accuracy on both the small and base 
models, reaching 95.60% and 95.62%, respectively. This 
success can be primarily attributed to the collaborative 
efforts o f t he C S a nd D SA c omponents, e nabling the 
model to more effectively e xtract a nd l everage feature 
information. Examining the local perspective reveals 
the contributions of the CS and DSA components to 
the model performance. Removing the CS module

Figure 8. Accuracy curves of the ablation experiments
for the base model.

led to accuracy drops to 91.12% and 92.81% for the 
small and base models, respectively. This suggests 
that CNN feature extraction plays a crucial role in 
the model, aiding in capturing local features and 
texture information within images, thereby enhancing 
the model’s recognition capability. On the other 
hand, removing the DSA module resulted in accuracy 
drops to 94.66% and 94.87% for the small and base 
models, respectively. This indicates that the DSA 
module, through the introduction of a channel attention 
mechanism, can adaptively enhance useful features 
and suppress irrelevant features, further improving 
the model’s performance. When both the CS and DSA 
modules are removed, the accuracy drops significantly 
to 87.04% and 91.41%. This further confirms the 
important contribution of the CS and DSA components 
to the model performance and their synergistic role in 
the overall model. In summary, the collaborative and 
synergistic interaction of key components, including 
CNN feature extraction in the CS module and the 
channel attention mechanism in the DSA module, 
allows the CSDSA model to extract and utilize 
feature information more effectively, resulting in higher 
recognition accuracy.

In the ablation experiments for the small model, the 
epochs at which the individual experiments reached 
the global or local optimal solutions were as follows: 
190 epochs for CSDSA, 165 epochs for No-CS, 213 
epochs for No-DSA, and 264 epochs for No-CS DSA. 
For the large model, the corresponding epochs were 
150 for CSDSA, 177 for No-CS, 160 for No-DSA, and 
231 for No-CS DSA. With the same hyperparameters 
and learning rate, the CSDSA scheme converges to the 
global or local optimal solution faster in the small 
model. Although the scheme with the CS module 
removed outperforms the CSDSA scheme in reaching 
the global or local optimal solution, it is 4.48% less 
accurate, which is an unacceptable loss of accuracy.
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Removing the CS module results in the model lacking
a significant number of parameters during the shallow
feature extraction process, leading to underfitting,
particularly on the FF++ dataset. The large CSDSA
model demonstrates a faster convergence towards
global or local optimal solutions, further confirming the
superiority of the CSDSA approach proposed in this
paper on the FF++ dataset. Additionally, although there
are some similarities between the accuracy curves of
CSDSA and No-DSA, CSDSA not only converges faster
in reaching the optimal solution but also achieves the
highest accuracy in the end.

The limitations of the proposed system are as
follows, and possibly more: (1). Limited Dataset: The
system’s performance heavily relies on the quality
and diversity of the training dataset. A larger and
more diverse dataset could potentially improve the
system’s robustness and generalization capabilities. (2).
Performance evaluation indicator: This paper we only
consider the accuracy, and temporarily do not consider
other performance indicators. In the follow-up work,
more performance indicators will be considered for
analysis. (3). Robustness to Adversarial Attacks: The
system may not be robust against adversarial attacks,
where subtle changes to input data can lead to incorrect
predictions. Enhancing the system’s robustness to such
attacks could be an area for future improvement.
(4). Limited Scope: The proposed system may be
designed for specific types of deepfakes or may not
cover all possible variations of deepfake techniques. Its
effectiveness against emerging deepfake methods may
be limited.

6. Conclusions and Future work
This paper proposes a method to address the issue of
local information loss in existing deepfake detection
approaches, which combines Swin Transformer and
CNN through the design of a CSDSA network. In
this approach, the CS module is used to extract
shallow local features, optimizing depth, width, and
resolution for more efficient local feature extraction.
Meanwhile, the DSA module performs deep global
feature extraction by combining self-attention and
channel attention mechanisms to extract features in
both global and channel dimensions. Experimental
results demonstrate the superiority of this approach.
However, the improvement in accuracy for the base
model is less pronounced compared to the small
model. This may be due to the small model’s capacity
already being well-suited to the complexity of deepfake
detection tasks, whereas the deeper base model may not
fully leverage its larger capacity advantage, resulting in
limited performance gains.

Regarding future work, we will continue to optimize
the base model to improve its accuracy. This paper only

considers accuracy as the performance metric, but other
metrics such as detection time, memory usage, etc., can
also be considered as research directions. Additionally,
other test datasets could be considered in the future
to further validate the effectiveness of the proposed
method in this paper.
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