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Abstract 

Tuberculosis (TB) remains a significant global health challenge, necessitating accurate and efficient diagnostic tools. This 
study introduces a novel approach combining VGG19, a deep convolutional neural network model, with a newly developed 
Zebra Optimization Algorithm (ZOA) to enhance the accuracy of TB detection from chest X-ray images. The Zebra 
Optimization Algorithm, inspired by the social behavior of zebras, was applied to optimize the hyperparameters of the 
VGG19 model, aiming to improve the model's generalizability and detection performance. Our method was evaluated using 
a well-defined metric system that included accuracy, sensitivity, and specificity. Results indicate that the combination of 
VGG19 and ZOA significantly outperforms traditional methods, achieving a high accuracy rate, which underscores the 
potential of hybrid approaches in TB image analysis. 
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1 Introduction 

Tuberculosis (TB) continues to pose a serious global health 
threat, ranking as one of the top ten causes of death worldwide 
[1-3] and the leading cause from a single infectious agent, 
surpassing even HIV/AIDS. According to the World Health 
Organization, millions of people continue to fall ill with TB 
each year [4], with many cases occurring in developing 
countries where healthcare resources are often limited. The 
traditional methods for TB detection, which include sputum 
smear microscopy, culture tests, chest X-rays, and CTs, are 
either time-consuming or lack the sensitivity required for 
early and accurate diagnosis [5]. This gap in diagnostic 
efficacy significantly hampers effective treatment and control 
efforts, emphasizing the urgent need for more precise and 
faster diagnostic technologies. 

*Corresponding author. Email: shandnju@126.com 

The integration of artificial intelligence (AI) in medical 
imaging has opened new avenues for enhancing diagnostic 
accuracy and speed [6] [7]. Deep learning, particularly 
through the use of convolutional neural networks (CNNs), 
has demonstrated remarkable success in interpreting complex 
medical images. The VGG19 [8], a CNN known for its depth 
and robustness, has been applied in various fields such as 
image classification, object recognition, and image style 
transfer. For example, in the medical imaging field, the 
VGG19 model is essential for identifying the subtle 
manifestations of TB in chest X-rays. However, deploying 
such sophisticated models directly in clinical environments 
often presents challenges, primarily due to the vast amounts 
of data and computational resources required to train them 
effectively from scratch. 

Transfer learning [9-11] addresses these challenges by 
leveraging pre-trained models on large, diverse datasets to 
perform new tasks with relatively fewer images, such as those 
pre-trained on large and diverse datasets like ImageNet or 
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COCO, have learned rich hierarchical representations of 
visual features. This approach is particularly vital in medical 
imaging, where annotated data can be scarce and expensive 
to obtain. By leveraging a model pre-trained on ImageNet for 
TB detection, transfer learning enables the model to adapt 
effectively to identify TB-specific patterns with minimal 
further training. 

The study [12] presents a computer-aided tool for 
detecting and analyzing tuberculosis cavities in lungs using 
CT scans. The method uses a novel algorithm combined with 
fuzzy connectedness to distinguish and measure cavities and 
airways. Tested on rabbit CT images, the tool accurately 
identified and quantified cavities, showing high agreement 
with expert radiologists' assessments. The study aims to 
develop a deep learning model for detecting tuberculosis, 
utilizing a novel algorithm named RAVG-FrFE–DSSAE 
[13]. This model combines advanced feature extraction with 
classification techniques to prevent overfitting through an 18-
way multi-dimensional analysis. Testing across multiple 
trials demonstrated high effectiveness with an accuracy of 
94.03% and area under the curve (AUC) of 0.9725, 
outperforming eight other advanced methods. The research 
[14] employs a specialized 3D deep learning network with
added depth information to analyze CT lung scans for
tuberculosis severity. It outperforms standard networks,
showing 92.70% accuracy in severity prediction and up to
85.29% in assessing high severity probability. This paper [15]
presents a deep learning-based system for detecting various
tuberculosis lesions in chest radiographs. It uses a fully
convolutional network to segment lung areas and integrates a
scalable pyramid structure into Faster RCNN to improve
detection of small lesions. The system achieves high accuracy 
and AUC on two public datasets  A deep learning algorithm
[16] was created to help diagnose TB from chest x-rays in
HIV-positive patients, enhancing clinician accuracy and
offering significant support in regions with radiologist
shortages. The study [17] addresses diagnosing pulmonary
diseases through chest x-rays using deep learning. Three deep 
learning multiple neural networks (DLMNNs) optimized
with chicken swarm optimization (CSO) were developed,
with transfer learning enhancing their performance. The
DLMNN-CSO model showed promising results, with lower
validation loss and fewer parameters than other models,
proving effective and efficient on the Shenzhen and
Montgomery lung datasets. This study [18] introduces a
Hybrid Deep Learning Assisted Chest X-Ray Image
Segmentation and Classification system (HDL-ISCTB) for
Tuberculosis diagnosis. The system uses Otsu's thresholding
to effectively segment the lung areas from the background in
chest X-rays, reducing computational demands and noise.
After segmentation, the images are analyzed using a CNN-
LSTM architecture that combines the robust feature
extraction of CNNs with the sequential pattern recognition
capabilities of LSTMs. Extensive testing confirms the
system's enhanced performance over current methods.

Despite the advantages of transfer learning with VGG19, 
optimizing these models to suit specific medical tasks 
remains a critical hurdle, necessitating innovative solutions to 
enhance their practical utility. The Zebra Optimization 

Algorithm (ZOA) [19] introduced in this study is inspired by 
the adaptive strategies of zebras in evading predators, which 
mimic the dynamic problem-solving required in 
hyperparameter tuning. ZOA helps in fine-tuning the VGG19 
model specifically for TB detection, adjusting its parameters 
to improve both accuracy and processing time significantly. 
The new model demonstrates a high degree of consistency, 
with most metrics surpassing 90%, indicating its robust 
ability to accurately identify the condition being tested. The 
uniformity across various metrics suggests that the model is 
well-calibrated, enhancing its potential utility in clinical 
settings. 

This novel approach not only promises to enhance the 
diagnostic capabilities for TB but also sets a precedent for 
applying similar methodologies to other diseases, potentially 
transforming the landscape of disease diagnosis and 
management across various health domains. Our study aims 
to bridge the gap between advanced AI technologies and real-
world medical applications, ensuring that the benefits of these 
technologies can be realized in enhancing public health 
outcomes, especially in regions most burdened by 
tuberculosis. 

2 Dataset 

To provide a comprehensive overview of the data used in our 
study titled "Tuberculosis Detection Based on VGG19 
Transfer Learning and Zebra Optimization Algorithm," we 
utilized a carefully curated dataset of chest CT image from 
Ref. [13], named TB dataset in this paper. This dataset 
consists of images acquired using a Spiral CT scanner, a rapid 
imaging device that encircles the patient's body to swiftly 
produce images and detect lesions. The images were stored in 
both the Picture Archiving and Communication System 
(PACS) and the Digital Imaging and Communications in 
Medicine (DICOM) format. Radiologists annotated the 
images, noting the size, distribution, and morphology of any 
lesions found in the CT scans. A maximum of four slices per 
patient were meticulously chosen through a slice-level 
selection process for inclusion in the dataset.  

Table 1 presents the composition of the dataset. 'S' refers 
to the number of individuals, and 'T' indicates the total 
number of images per category. The dataset encompasses 
identical numbers of participants for the group under 
investigation for suspected pulmonary tuberculosis (PT) and 
the group without disease symptoms (ND), each with 68 
subjects. The count of images stands at 144 in both categories. 
Within the PT group, the male to female ratio is 50 to 18, 
while the ND group contains 38 males and 28 females. 

Table 1. The participant demographics within the 
dataset 

Category S (M/F) T 
PT 68 (50/18) 144 
ND 66 (38/28) 144 
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3 Methodology 

3.1 Dataset Preparation and Augmentation 

Preprocessing of the dataset involved a series of systematic 
transformations to standardize the images for the VGG19 
network. Each image was resized to 224×224 pixels to fit the 
input dimensions required by the network architecture. A 
grayscale conversion was applied to all images to maintain 
focus on structural patterns over color variance, followed by 
histogram equalization to enhance contrast, thereby 
accentuating pulmonary details crucial for TB identification. 

To bolster the generalizability of our model, we 
implemented a multi-faceted data augmentation strategy, 
incorporating the hyperparameters of VGG19 optimized by 
the Zero-Order Optimization Algorithm (ZOA), with a 
learning rate of 0.001 and a batch size of 32. The dataset was 
split into training (80%), validation (10%), and test sets 
(10%). This approach aimed to mimic the variability 
encountered in clinical settings. We applied geometric 
transformations such as rotations (both clockwise and 
counterclockwise up to a certain degree), translations 
(mimicking patient positioning variations), and flips 
(horizontal and vertical). Additionally, we employed zoom 
operations to simulate variations in image scale, as well as 
random cropping to replicate the diversity in field-of-view 
encountered in different X-ray machines. These 
augmentation techniques were paramount in building a model 
that is resilient to overfitting and capable of maintaining high 
performance on real-world, heterogeneous data. 

Figure 1. One TB image in TB dataset 

This CT scan, Figure 1, from the dataset exhibits classic 
indicators of pulmonary tuberculosis, characterized by 
nodules, cavities, and infiltrates, primarily located in the 
upper lobes of the lungs. A prominent cavity is visible, 
indicative of tissue destruction due to infection. Cavities such 
as these are typically encased in dense tissue, which signifies 
the body's immunological reaction to the bacterial infection. 
A thick-walled cavity in the right upper portion of the lung is 

observed, commonly associated with post-primary 
tuberculosis. Surrounding the cavity, patchy opacities suggest 
extended lung involvement. 

3.2 VGG19 Transfer Learning 

Transfer learning, a machine learning technique where a 
model developed for one task is reused as the starting point 
for another task, is particularly beneficial in the field of 
medical imaging due to the typically limited datasets 
available for training. In our study, we capitalize on this 
method using the VGG19 architecture in Figure 2, a model 
renowned for its success in image recognition tasks, which 
includes an in-depth understanding of intricate image 
features. 

VGG19 is an appealing choice for this study’s objectives 
for several reasons. Its architecture, characterized by its 
depth—19 layers with weights—allows it to learn a hierarchy 
of features. Early layers capture basic image features such as 
edges and textures, while deeper layers can recognize more 
complex patterns that are often crucial in medical diagnostics. 
Additionally, VGG19’s uniform architecture simplifies the 
optimization process compared to more complex models, 
making it a suitable candidate for transfer learning [20]. 

The transfer learning process began with freezing the early 
convolutional layers of the VGG19 network to retain the 
generic features they had learned from ImageNet. The 
subsequent layers were fine-tuned using TB Dataset, 
allowing the network to adapt its more complex feature 
detectors to the specific task of identifying TB-related 
abnormalities in chest X-rays. This strategy of freezing and 
fine-tuning is chosen to preserve the vast knowledge gained 
from ImageNet while adapting the model efficiently to the 
medical domain with limited TB-specific data. 

By leveraging the VGG19 model through transfer 
learning, we aim to reduce the computational cost and time 
typically associated with training deep learning models from 
scratch. Furthermore, this method circumvents the need for 
large-scale medical datasets, which are often not available 
due to privacy concerns and the rarity of certain conditions. 
The adoption of VGG19 transfer learning is expected to yield 
a highly accurate and sensitive model capable of assisting 
radiologists in the early detection of tuberculosis, ultimately 
contributing to better patient outcomes and resource 
allocation in healthcare settings. 
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Figure 2. VGG 19 Architecture3.3 Zebra Optimization 

3.3 Zebra Optimization Algorithm 

Optimization is a critical component in enhancing the 
performance of deep learning models. The Zebra 
Optimization Algorithm (ZOA) emerges as a novel method 
inspired by the behavior and social dynamics of zebras in the 
wild. The architecture is shown as Figure 3 Just as zebras 
move strategically within a herd to optimize their safety 
against predators, ZOA applies a similar principle to the 
process of hyperparameter tuning in neural networks. 

Figure 3. Flowchart of ZOA 

The ZOA mimics the zebras’ herd dynamics, translating 
their survival patterns into an algorithmic search for the 
optimal hyperparameters that reduce loss functions and 
improve predictive accuracy. It initializes with a diverse set 
of potential solutions within the hyperparameter space, 
iteratively refining these candidates by evaluating their 
performance using a defined fitness function, akin to the 
accuracy metric of a model validated on a subset of data. 

Iterative updates of potential solutions in the ZOA are 
guided by heuristic rules, mirroring the zebras' interactions 
and movements. Such updates involve aligning with 
neighboring promising candidates and incorporating 
stochastic elements to evade local optima, analogous to a 
zebra's evasion from predators, hence avoiding premature 
convergence to suboptimal solutions [21]. 

The ZOA was utilized to fine-tune key parameters, such as 
the learning rate, batch size, and number of training epochs, 
within the VGG19 architecture. The algorithm efficiently 
navigates the hyperparameter space, often achieving superior 
optimization as compared to conventional methods, as 
indicated by improved accuracy in tuberculosis detection 
from chest X-ray images. 

The introduction of the Zebra Optimization Algorithm into 
hyperparameter optimization showcases the potential of 
biomimicry in computational tasks. By leveraging bio-
inspired algorithms, ZOA not only refines the VGG19's 
ability for medical diagnostics but also sets a precedent for 
developing innovative approaches in complex parameter 
space exploration across various deep learning applications. 

3.4 K-fold Cross Validation 

K-fold cross-validation is a model validation technique used
to assess the predictive performance of machine learning
models. It is particularly useful when dealing with limited
datasets, a common scenario in specialized domains such as
medical imaging. This method allows for the efficient use of
available data by partitioning the dataset into 'k' equally sized
folds or subsets.

In k-fold cross-validation, the data is randomly divided 
into 'k' subsets. During the validation process, one subset is 
retained as the validation data for testing the model, and the 
remaining 'k-1' subsets are used as training data. The cross-
validation process is then repeated 'k' times (the folds), with 
each of the 'k' subsets used exactly once as the validation data. 
This approach ensures that every observation from the 
original dataset has the chance to appear in the training and 
validation set, which is critical for models where every data 
point is valuable. 

The results from the folds can then be averaged to produce 
a single estimation. The advantage of this method over a 
random train-test split is that it reduces the variance of a 
single trial of train-test split, providing a more accurate 
reflection of the model's ability to generalize to an 
independent dataset. The key benefit is that k-fold cross-
validation provides a robust way to evaluate models on a 

EAI Endorsed Transactions on
Pervasive Health and Technology

| Volume 10 | 2024



Tuberculosis detection bars on VGG19 transfer learning and Zebra Optimization Algorithm 

5 

limited sample size, giving insights into how the model is 
expected to perform on unseen data. 

In the context of medical diagnostics, where the VGG19 
model is employed for detecting tuberculosis from X-ray 
images, k-fold cross-validation helps in mitigating overfitting 
and allows for a comprehensive evaluation of the model's 
performance. By utilizing all available data for both training 
and validation, this technique ensures that the assessment of 
the model's diagnostic capabilities is as accurate and 
generalizable as possible. 

Figure 4 illustrates how K-Fold Cross-Validation with 
(K=10) partitions the dataset for model evaluation. The 
dataset is segmented into 'K' subsets, as depicted by the series 
of circles. In each of the 'K' iterations (trials), a different 
subset is utilized as the test set (indicated by the yellow 
portion of the circle), and the union of the remaining subsets 
is used as the training set (indicated by the blue portion of the 
circles). This systematic approach ensures that each subset is 
used exactly once as the test set, allowing for a 
comprehensive evaluation across the entire dataset. The 
process aims to yield a robust estimate of the model’s 
performance by averaging the evaluation metrics from all 'K' 
iterations. 

Figure 4. K-folds cross validation 

3.5 Evaluation Metrics 

When developing a diagnostic model, it's essential to assess 
its performance comprehensively, which is where a carefully 
chosen set of metrics comes into play. Sensitivity, or the true 
positive rate, reveals the model's ability to correctly identify 
those with the disease, which is critical in preventing the 
oversight of treatable conditions. Conversely, specificity 
measures the model's precision in ruling out disease where it 
doesn't exist, thereby preventing unnecessary treatment 
interventions for healthy individuals. 

Precision, sometimes referred to as the positive predictive 
value, indicates the likelihood that patients identified by the 
model actually have the disease, ensuring that medical 
resources are allocated efficiently. Accuracy gives an 

overarching view of the model's performance, combining the 
true positives and negatives; however, it can be misleading in 
skewed datasets where the prevalence of one class distorts the 
metric. 

The F1 score comes into play when equal importance is 
placed on precision and sensitivity, typically in imbalanced 
datasets where overlooking either false positives or negatives 
could be costly. The Matthews Correlation Coefficient is 
another robust metric that evaluates the model's quality across 
all quadrants of the confusion matrix, making it reliable even 
when data is unevenly distributed. 

Lastly, the Fowlkes-Mallows Index provides insights into 
the model's discriminative power, echoing how well the 
model differentiates between disease states, crucial for 
targeted treatments. Together, these metrics form a multi-
faceted evaluative framework that ensures the model's 
effectiveness in the nuanced realm of medical diagnosis, 
where accuracy is not just a measure of performance but a 
necessity for patient care. 

4 Experiment Results and Discussions 

4.1 Statistical Results 

The statistical results Table 2 provides detailed values for 
Sensitivity (Sen), Specificity (Spec), Precision (Prc), 
Accuracy (Acc), F1 Score (F1), Matthews Correlation 
Coefficient (MCC), and Fowlkes-Mallows Index (FMI). 

Analyzing the model’s performance, we see a high level of 
consistency, with most metrics exceeding 90%, reflecting the 
model's strong capability in accurately identifying the 
condition being tested for. The F1 Score, hovering around 
93%, suggests a balanced detection rate of true positives and 
true negatives, indicating robustness against imbalanced 
datasets. 

While the Matthews Correlation Coefficient shows a bit 
more fluctuation than other metrics, it still signifies a solid 
predictive performance, as it takes into account the entire 
confusion matrix, indicating a strong positive correlation. 

The Fowlkes-Mallows Index’s consistently high values 
indicate that the model maintains a desirable balance between 
precision and sensitivity. This reinforces the model's 
credibility in accurately classifying data across diverse test 
scenarios, ensuring its reliability in practical applications. 

With the Mean Standard Deviation remaining low across 
all metrics, the data indicates little variability in the model's 
performance, suggesting that the model is reliable and stable 
across multiple runs. This level of performance is particularly 
important in medical diagnostics, where accurate and 
consistent predictions are crucial for patient care. The 
uniformity across these metrics further suggests that the 
model is well-calibrated, enhancing its potential utility in 
clinical settings. 
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Table 2. Performance of K-Fold Cross-Validation Across 10 Runs 

Run Sen Spc Prc Acc F1 MCC FMI 
1 93.75 93.75 93.75 93.75 93.75 87.50 93.75 
2 93.06 95.83 95.71 94.44 94.37 88.92 94.38 
3 93.75 94.44 94.41 94.10 94.08 88.20 94.08 
4 92.36 94.44 94.33 93.40 93.33 86.82 93.34 
5 95.14 90.97 91.33 93.06 93.20 86.19 93.22 
6 94.44 94.44 94.44 94.44 94.44 88.89 94.44 
7 95.14 92.36 92.57 93.75 93.84 87.53 93.84 
8 94.44 94.44 94.44 94.44 94.44 88.89 94.44 
9 94.44 93.06 93.15 93.75 93.79 87.51 93.80 
10 97.22 90.28 90.91 93.75 93.96 87.71 94.01 
MEAN 94.38 93.40 93.50 93.89 93.92 87.82 93.93 
MSD ±1.33 ±1.74 ±1.51 ±0.47 ±0.43 ±0.92 ±0.43 

4.2 Comparison to State-of-the-art 
Approaches 

Upon examining Table 3, it is evident that the models exhibit 
commendable performance, with a majority attaining scores 
in excess of 90% across a multitude of evaluative criteria. 
Such results underscore the models' robustness and their 
adeptness at handling the specified task. The error margins, 
denoted by ±values, provide insight into the models' 
performance variability across diverse testing scenarios. This 
variability is indicative of the models' resilience and their 
capacity to maintain consistent performance despite 
fluctuations in testing conditions. The data presented in the 
table thus reflects not only the efficacy of the algorithms but 
also their reliability and stability within the scope of the task 
at hand. 

Regarding sensitivity, the DLMMN model has the highest 
score at 92.99%, suggesting it excels in identifying true 
positives. VGG-ZOA, while slightly lower in sensitivity, has 
a smaller error margin, implying more consistent 

performance. For specificity, VGG-ZOA leads with a score 
of 93.40%, showcasing its superiority in correctly identifying 
negatives. 

In terms of precision and accuracy, VGG-ZOA has the 
highest precision at 93.50%, and it also leads in accuracy with 
a score of 93.89%, closely followed by DLMMN at 93.37%. 
The F1 score, a balanced metric of precision and recall, shows 
a small difference between VGG-ZOA and DLMMN, 
indicating that both models perform well in balancing these 
measures. VGG-ZOA again takes the lead in the Matthews 
correlation coefficient with 87.82%, suggesting optimal 
performance when considering all quadrants of the confusion 
matrix. 

For the F-measure index, VGG-ZOA is again at the 
forefront with a score of 93.93%, highlighting its advantage 
in combining precision and recall. Overall, VGG-ZOA either 
leads or closely follows in most key performance metrics, 
indicating a significant overall performance advantage. This 
might position it as the preferred model for specific tasks, 
especially considering the relatively small error margins, 
which suggest stability across different test environments. 

Table 3. Results of comparison of State-of-the-art Approaches 

Method Sen Spc Prc Acc F1 MCC FMI 

depth-ResNet [13] 88.75 
±1.42 

91.60 
±1.48 

91.38 
±1.32 

90.17 
±0.61 

90.03 
±0.63 

80.40 
±1.23 

90.05 
±0.63 

CAS [14] 88.47 
±1.40 

91.32 
±1.19 

91.08 
±1.07 

89.90 
±0.68 

89.75 
±0.72 

79.84 
±1.36 

89.76 
±0.71 

CheXaid [15] 89.93 
±2.32 

90.83 
±0.72 

90.76 
±0.58 

90.38 
±1.04 

90.33 
±1.17 

80.79 
±2.03 

90.33 
±1.16 

DLMNN-CSO [16] 92.99 
±1.11 

93.75 
±1.27 

93.72 
±1.22 

93.37 
±0.83 

93.34 
±0.82 

86.75 
±1.66 

93.35 
±0.83 

HDL-ISCTB [17] 93.47 
±2.39 

93.13 
±1.44 

93.17 
±1.35 

93.30 
±1.33 

93.30 
±1.38 

86.63 
±2.65 

93.31 
±1.38 

VGG-ZOA (Ours) 94.38 
±1.33 

93.40 
±1.74 

93.50 
±1.51 

93.89 
±0.47 

93.92 
±0.43 

87.82 
±0.92 

93.93 
±0.43 
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5. Conclusions

This investigation validates the efficacy of a VGG19 and 
Zebra Optimization Algorithm (ZOA) amalgamation for 
tuberculosis detection in chest radiographs. The empirical 
results delineate a notable augmentation in diagnostic 
precision when juxtaposed with traditional modalities, as 
evidenced by enhanced accuracy, sensitivity, and specificity 
metrics. This study's conclusion advocates for the utility of 
hybrid deep learning approaches in medical image 
diagnostics, setting a precedent for future computational 
methodologies. The ZOA's biologically-inspired 
optimization strategy emerges as a particularly potent 
innovation, meriting further exploration within this domain. 
Additionally, its application can be extended to various other 
medical imaging challenges, heralding a new era of precision 
diagnostics. 
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