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Abstract 
 
Paediatric systemic lupus erythematosus (pSLE) is an autoimmune disease where the body's immune system attacks its own 
tissues, leading to organ damage. Advances in medical technology and the integration of artificial intelligence have 
significantly reduced the mortality rate of pSLE patients and improved their quality of life. Various studies have explored 
the link between environmental pollution and pSLE, utilizing machine learning to identify common gene expressions 
associated with the disease. However, the application of machine learning, particularly neural networks, to predict the status 
of pSLE patients over different timeframes remains underexplored. This study aims to demonstrate the effectiveness of  
support vector machines (SVMs) and neural networks in predicting the status of pSLE patients. Results show that without 
SMOTE balancing, both SVMs and neural networks achieved an accuracy of 68.09%, while neural networks achieved the 
highest accuracy of 77.78% after SMOTE balancing. Healthcare stakeholders can employ these machine learning techniques 
to provide early insights into patients' future health status based on their current condition, thereby improving patient 
outcomes. 
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1. Introduction 

Systemic lupus erythematosus (SLE) is a common type of 
lupus and autoimmune disease. In individuals diagnosed 
with SLE, the immune system mistakenly attacks their 
own tissues due to the large deposit of antinuclear auto-
antibodies (ANA). These ANA confuse normal proteins 
with foreign or harmful entities, triggering a cascade of 
inflammation and self-attack [1]. This autoimmune 
response can lead to widespread inflammation and 
potential damage to organs such as the skin, brain, joints, 
lungs, kidneys, and blood vessels. Additionally, SLE 
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patients face a higher risk of cancer, infections, bone 
tissue death and pregnancy complications [2]. 
 SLE patients can experience functional impairment in 
physical, mental, and social aspects of their lives, 
significantly impacting their quality of life, especially 
when they suffer from fatigue, one of the most common 
symptoms of SLE. Although there is currently no remedy 
for lupus, medical interventions and lifestyle changes can 
aid in managing SLE by minimizing disease activity, 
ensuring long term survival,  avoiding organ damage, 
reducing drug toxicity and improving patients’ quality of 
life. Conversely, complications may worsen, and risk of 
death may increase if patients lack access to care, 
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ineffective treatments and diagnosis, or demonstrate poor 
compliance with therapeutic regimens [2]. 
 The exact factors causing SLE are not clearly 
understood but may be linked to genetic, environmental, 
hormonal, and certain medication-related factors. Age, 
gender, and race are among the significant risk factors. 
The epidemiology of pediatric systemic lupus 
erythematosus (pSLE) indicates that the median age of 
onset is between 11 to 12 years, with cases being quite 
rare under the age of 5. Statistics show an incidence of 
0.3-0.9 per 100,000 children-years and a prevalence of 
3.3-8.8 per 100,000 children. Women appear to be more 
susceptible: approximately 80% of pSLE patients are 
female, and the condition is more frequently reported 
amongst Asians, African Americans, Hispanics and 
native Americans [3]. Additionally, it was noted that 
geographic variables could influence SLE morbidity, 
even among patients with the same sex and ethnicity [ 4 ] . 
Studies indicate different complications in SLE patients 
depending on their region, such as coastal, mountainous, 
or jungle areas, due to different exogenous factors. [ 1 ]  
 Over the previous 30 years, more than 10,000 SLE 
cases have been diagnosed in Malaysia, though this figure 
may underestimate the true prevalence. According to the 
Malaysian SLE Association, there are likely many more 
undiagnosed cases within Malaysia [5]. Given that 
childhood-onset SLE (pSLE) may be more severe than 
adult-onset SLE (aSLE) due to differences in clinical and 
biological features [6], this research aims to develop a 
predictive model using a deep learning neural network to 
identify pSLE patients early, providing them with 
comprehensive treatments to alleviate their suffering in 
Malaysia. 
 Malaysia is a racially heterogeneous country with 
Malays, Chinese and Indians comprising the largest three 
majority groups, alongside several minority Bumiputera 
races such as Iban, Kadazan and Bayau. Research 
indicates that Chinese communities are more susceptible 
to SLE in comparison with Malays and Indians [7]. 
Alhough most of the genes are not responsible for pSLE 
susceptibility in Malaysia, distinct ancestral genotypes 
affecting the development or progression of pSLE may 
contribute to genetic variability among different racial 
groups [8]. 
 Several retrospective cohort analyses in Malaysia have 
explores pSLE’s unknown disease features and outcomes. 
According to Lim, the female-to-male ratio of patients is 
7.3:1, with age specific ratios of 2.3:1, 8.3:1 and 15:1 for 
ages 0-5, 6-12 years, and 13-18 years respectively [9]. 
Fever, vasculitic rash and fatigue are among the most 
frequent clinical features, with renal and central nervous 
system (CNS) damages being major organ involvements. 
Renal disorder is most common among pSLE patients, 
followed by malar rash, oral ulcers, prolonged fever and 
arthritis [10]. 
 One study found that pSLE patients had higher 
prevalence and mortality rates than aSLE patients due to 
acute pancreatitis [11]. Systemic Lupus Erythematosus 
Disease Activity Index (SLEDAI) scores were higher in 

pSLE patients with acute pancreatitis compared with 
aSLE patients (21.77 versus 13.37), and multivariate 
logistic regression analysis proved that acute pancreatitis 
was the most significant risk factor for mortality. Besides, 
Furthermore, neuropsychiatric lupus (NPSLE) has been 
given as a marker of severe disease in pSLE patients, who 
present a myriad of clinical features, such as seizures, 
delirium, and visual complaints [12]. 
 With the emergence of machine learning and deep 
learning in medical applications, these techniques were 
widely used in aiding the diagnosis of pSLE. Researchers 
implemented these techniques to predict the presence of 
certain symptoms among pSLE patients, have attempted 
to characterize the immune cell profile of pSLE patients 
and investigate the relationship of disease trajectory with 
time [13][14]. However, predictive methodologies are yet 
to be used in predicting disease outcome and the long-
term status of patients using medical features and records 
over short periods. The study proposes using artificial 
neural networks to generate state- of-the-art predictions 
for multiclass targets in pSLE patients. 

2. Methods 

This study uses a secondary dataset obtained from the 
International Medical University (IMU), which was 
collected from existing pSLE patients. The dataset 
includes 141 medical records with 14 features describing 
patients’ medical history and symptoms. These features 
encompass demographic factor of patients such as age, 
gender and race, clinical features upon diagnosis, 
Systemic Lupus International Collaborating Clinics 
(SLICC) classification criteria for SLE, disease 
progression with SLEDAI scores over a 10-years period, 
disease damage over a 10-year period, renal disease 
treatment, non-renal flares and status of patients. The 
status is the target variable, while the other features serve 
as predictors. The status class is multiclass, including 
remission on medications, remission without 
medications, minimal disease activity, chronic active 
disease, and death. As classes in status are imbalanced, 
t h e  SMOTE resampling technique is used to generate 
synthetic samples for the underrepresented classes. This 
approach enhances the performance of the neural network 
model by providing more instances for the training set. 

2.1. Support Vector Machine (SVM) 

SVM is a supervised learning algorithm that performs 
classification tasks by identifying a hyperplane that best 
separates the two classes in n-dimensional space. For 
linear separation, this hyperplane usually acts as a linear 
decision boundary that maximizes the distance between 
the two classes of data points. Although SVM only 
supports binary classification while the dataset used 
contains 5 different classes, the algorithm can perform 
multiclass classification by breaking down the 
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multiclassification problem into multiple binary 
classification problems using the One-vs-Rest approach 
[15]. 
 SVM was selected as the benchmark model for this 
project due to its strong performance in classification 
tasks and its ability to model non-linear decision 
boundaries by changing the kernel parameter. Various 
kernels are available to enhance performance, including 
radial basis function (RBF), polynomial function and 
Gaussian function [16]. Thus, SVM is considered a 
suitable model to compare against the proposed neural 
network model. 

2.2. Neural Network 

Neural networks, a subset of machine learning and the 
core of deep learning, are designed to mimic the signal 
transmission between neurons in the human brain. The 
ability to handle unstructured data, such as texts and 
images, has enabled their widespread application in daily 
life, including chatbots, recommendation engines and 
image classification [17]. Typically, a neural network 
consists of one input layer, multiple hidden layers, and 
one output layer. The input layer receives the data, with 
the number of input nodes determined by the number of 
features. The hidden layers perform computations and 
extract features from the data, with the number of layers 
and nodes varying based on the dataset's complexity. The 
output layer processes the input from hidden layers to 
make a final prediction. After model implementation, the 
predictions on the training and test sets are evaluated by 
accuracy to assess their fit and check for overfitting or 
underfitting issues. Accuracy serves as a fundamental 
metric for performance comparison against benchmarks 
and for evaluating each experiment's outcomes. 

3. Result and Discussions 

In this section, the parameters and results of each 
experiment are further described and tabulated (Table 1). 
The architectures of the neural network for each 
experiment will also be displayed. 
 
 
Experiment I - Support Vector Machine 
Two different kernels were selected for the SVM 
experiments: the RBF (radial basis function) and 
polynomial functions. For SVM with the RBF kernel, the 
best results were obtained with a C value of 0.1 and a 
gamma value of 0.5. The hyperparameter C defines the 
error control of SVM, where a low C value indicates low 
error and vice versa. Gamma, specific to the RBF kernel, 
determines the curvature of the decision boundary, with a 
higher gamma resulting in more curvature. For SVM with 
the polynomial kernel, the default degree value of 3 was 
used, along with a C value of 0.1. 
 

Experiment II - Neural Network  
In the first neural network model trained with all features, 
the best result was obtained with one dense input layer, 
two dense hidden layers and one dense output layer. The 
input layer and two hidden layers each contained 25 
nodes, utilizing the “Relu” activation function, while the 
output layer was comprised of 5 nodes corresponding to 
the number of classes in the dataset, and employed the 
“SoftMax” activation function. To mitigate overfitting, 
dropout layers with a rate of 0.25 were alternately added 
between the input layer and the two hidden layers, which 
helped drop a fraction of input units. Given the multiclass 
nature of the target, categorical cross entropy was used 
as the loss function. For optimizers, adaptive moment 
estimation (adam) with a 0.001 learning rate was used, 
and the number of epochs was set to 20. 
 
Experiment III & IV- Neural Network  
The second and third neural network model experiments 
used a modified dataset which removed features related 
to disease activity and progression beyond the first to fifth 
years. Optimal accuracy was obtained for both 
experiments when the number of nodes in the input and 
hidden layers was reduced to 20, with dropout layers 
(rate = 0.25) inserted between the two hidden layers. The 
activation function, loss function, learning rate and type 
of optimizer remained consistent with previous 
experiments. 
 
Experiment V - Neural Network (Balanced dataset) 
To address class imbalance, a balanced dataset was 
created by using SMOTE sampling, which increased the 
number of instances in the underrepresented classes. 
Specifically, the "remission without medication" and 
"death" classes were augmented from 2 and 1 instances, 
respectively, to 20 each, while other classes remained 
unchanged. Post-balancing and data splitting, the data 
was passed to a neural network model consisting of one 
dense input layer, two dense hidden layers and one output 
layer. Optimal accuracy was achieved with 50 nodes in 
the input and hidden layers, without incorporating 
dropout layers. 

Table 1. Accuracy result to predict pSLE status. 

Experiment Accuracy (%) 

Decision Tree Classifier [18] 58.14 

Random Forest Classifier [18] 58.14 

RBF SVM 68.09 

Gaussian SVM 61.7 

Neural network (All features) 68.09 
Neural network (disease severity 
with 1st year onwards removed) 61.7 

Neural network (disease severity 
with 5th year onwards removed) 61.7 
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Neural network (balanced dataset) 77.78 
 

From Table 1, it is evident that all experiments 
outperformed the best accuracy of previous work, likely 
due to different data preprocessing techniques. Notably, 
the polynomial SVM in Experiment I performed on par 
with the neural network model in Experiment II, while the 
RBF SVM matched the accuracy of the neural network 
model in Experiment III. Despite eliminating different 
ranges of features in Experiments III and IV (one dataset 
excluded disease progression and severity from the first 
year onwards, while the other excluded from the fifth year 
onwards), both datasets yielded the same accuracy in 
neural network model. In Experiments III and IV was 
lower compared to Experiment II. 

Experiment V achieved the highest accuracy 
generated with a neural network model trained on a 
balanced dataset that has more instances of “remission 
without medication” and “death” classes. This indicates 
the neural network’s effectiveness in pSLE multiclass 
classification and its potential for early prediction for 
patients’ future status. Early prediction of pSLE status 
could serve as reference for healthcare workers to 
anticipate severe complications and provide better 
medical attention to guide patients towards a healthier 
recovery. 
 The neural network performed best on the balanced 
dataset with more observations in rare classes, such as 
“remission without medication” and “death”, 
demonstrating its ability to predict well when it can study 
ample samples from each class during model training. 
However, the SMOTE technique’s synthetic samples may 
not fully reflect patients’ conditions. Moreover, the neural 
network’s performance stagnanted or decreased with 
imbalanced datasets, despite parameter adjustments aimed 
at increasing accuracy. 
 Hence it is suggested that future research should focus 
on experiments with balanced datasets containing real 
patient samples rather than synthetic ones. While patient 
data is limited due to the rare occurrence of pSLE and 
improved medical technology improved reducing early 
stage mortality, data could be aggregated from multiple 
hospitals or countries to create a more comprehensive 
dataset. Additionally, considering features such as the 
pollution level of patients’ living environments could 
could provide insights into the impact of these factors on 
disease severity and patient status. 

4. Conclusions 

In summary, SVMs and neural networks have proven 
effective tools to predict the status of pSLE patients from 
features such as demographic factors and disease 
progression and severity. Without class balancing, SVM 
has performed on a par with the neural network 
benchmark, suggesting its suitability depending on the 
scale of a dataset. As datasets expand, neural networks 
will become a better option. The highest accuracy was 

obtained when the neural network was trained on a 
balanced dataset with increased instances of synthetic 
rare classes, underscoring the importance of retrieving 
real records of patients from multiple sources to enhance 
neural network prediction. Features such as pollution 
levels in patients’ living environments should be 
considered, as these have been proven to affect pSLE 
patient health according to previous studies. 
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