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Abstract 
Cancer, a malignant disease, results from abnormalities in the body cells that lead to uncontrolled growth and division, 
surpassing healthy growth and stability. In the case of breast cancer, this uncontrolled growth and division occurs in breast 
cells. Early identification of breast cancer is key to lowering mortality rates. Several new developments in artificial 
intelligence predictive models show promise for assisting decision-making. The primary goal of the proposed study is to 
build an efficient Breast Cancer Intelligent System using a multimodal dataset. The aim is to to establish Computer-Aided 
Diagnosis for breast cancer by integrating various data. 
 
This study uses the TCGA "The Cancer Genome Atlas Breast Invasive Carcinoma Collection" (TCGA-BRCA) dataset, 
which is part of an ongoing effort to create a community integrating cancer phenotypic and genotypic data. The TCGA- 
BRCA dataset includes: Clinical Data, RNASeq Gene Data, Mutation Data, and Methylation Data. Both clinical and genomic 
data are used in this study for breast cancer diagnosis. Integrating multiple data modalities enhances the robustness and 
precision of diagnostic and prognostic models in comparison with conventional techniques. The approach offers several 
advantages over unimodal models due to its ability to integrate diverse data sources. Additionally, these models can be 
employed to forecast the likelihood of a patient developing breast cancer in the near future, providing a valuable tool for 
early intervention and treatment planning. 
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1. Introduction 

Cancer is one of the leading causes of death worldwide, 
primarily due to late diagnosis and inadequate treatment 
options. It is characterized by the abnormal and 
uncontrolled development of cells in the body which can 
spread from one region to another [1]. Figure 1 illustrates 
the projected number of cancer cases in India for 2015, 
2020, and 2025 by the World Health Organization. [2] 

 
*Corresponding author. Email: psvadivu67@gmail.com 
 
 

 
Figure 1. Number of estimated cancer cases in India  

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Breast cancer (BC) is the most sever and fatal ailment 

afflicting women. It has recently surpassed other cancer 
incidences as a significant cause of malignancy, 
particularly in women. Alarmingly, younger age groups are 
experiencing a higher prevalence than the worldwide 
average [3]. By 2023 it is anticipated that there will be 
55,720 new cases of ductal carcinoma in situ (DCIS), 
297,790 new instances of invasive BC, and 43,170 BC 
fatalities among women in the United States. Nearly 10% 
of BCs are hereditary or caused by inherited DNA 
mutations, with most hereditary cases linked to defective 
BRCA1 and BRCA2 genes [4,5].  

Options for BC treatment have increased in both 
complexity and effectiveness. Improvements in machine 
learning (ML) and deep learning (DL) have facilitated the 
development of automated computer-aided diagnosis 
(CAD) systems which deliver precise results, increasing 
the efficiency of malignant tumor identification and saving 
time through optimal utilization. [6,7]. 

Numerous studies have been conducted with data based 
on multimodal and unimodal sources to predict BC 
prognosis using clinical data, imaging biomarkers, and 
genetic markers. However, traditional BC prediction 
approaches primarily rely on unimodal data, which fails to 
capture the full spectrum of BC characteristics. Though 
conventional unimodal methods have proven effective in 
predicting BC, they are insufficient for accurate diagnosis. 
To minimize medical errors, developing a multimodal 
approach is essential to accurately and precisely predict BC 
using multiple imaging modalities. This approach 
facilitates a more precise and reliable diagnosis. 
Multimodal deep learning provides a comprehensive 
understanding of data, improving accuracy and efficiency 
[9]. This powerful technique allows for the extraction of 
meaningful information from large datasets by combining 
multiple modalities. 

The main focus of this study is to formulate a computer 
aided diagnosis (CAD) for BC by integrating various data 
modalities. Combining different data sources enables more 
reliable and accurate models for diagnosing and predicting 
outcomes than traditional techniques. The development of 
a highly generic and high-performing BC prediction 
system using different modalities is projected to give viable 
solutions for BC prognosis with high accuracy. The 
research aims to investigate the potential of Artificial 
Intelligence tools, increasingly achieving significant 
advancements in various research fields. The results will 
confirm that the proposed system is a feasible alternative to 
existing computational systems. 

Section 2 provides a literature review summarizing 
unimodal and multimodal dataset predictions. Section 3 
details the dataset and proposed methodology of the 
research work. Section 4 presents results and discussion 
and Section 5 concludes the paper with observations and 
future directions. 

 
 

 

2. Literature Review 

This review serves as a foundation for the study of 
existing solutions for BC prediction. Van't Veer et al. [10] 
analyzed 117 primary breast carcinomas using DNA 
microarrays and supervised classification algorithms to 
identify 70 genetic prognostic signatures. These signatures 
were used to establish prognostic markers for detecting 
carcinoma. The study found that inadequate signatures 
were linked to metastatic, invasion, and angiogenic 
pathways, resulting in improved predictive performance 
for disease outcomes. 

Yap et al. [11] explored the use of Deep Learning (DL) 
methods to detect breast lesions in ultrasound images, 
experimenting with U-Net, LeNet, and a pretrained 
AlexNet. Their experiments, conducted on two custom 
datasets with 306 and 163 images, demonstrate that pre-
trained AlexNet-based models outperformed all other 
models, achieving F-measures of 0.91 and 0.89, 
respectively. 

An integrated deep learning architecture has been 
proposed by Antari et al. [12] capable of categorizing, 
segmenting, and detecting breast tumors. The authors 
employed a Full Resolution Convolutional Network 
(FRCN) for tumor segmentation, a Deep Convolutional 
Neural Network (CNN) for classification, and a YOLO-
based system for tumor detection. The dataset size was 
increased 8-fold through application of the YOLO 
algorithm to expand the dataset size synthetically. The 
researchers tested the model against the digital database of 
digital mammograms from the INbreast dataset, which 
produced a detection accuracy of 98.96%, and a dice score 
of 92.69%. 

In Sun D et al. [13] initiated BC prediction by 
combining genome data with pathology images. A multiple 
kernel learning method was used and compared with 
various independent models that used genome data only. 
Their findings suggested that combining clinical images 
with a 10-fold cross-validation contributed to the 
robustness of the prediction. Gevaert et al. [14] integrated 
clinical and 70 gene data using three strategies: full 
integration, decision integration, and partial integration on 
Bayesian networks. The results showed that methods that 
use clinical and microarray data have better or comparable 
results to those that do not use clinical or microarray data. 

Sun D et al. [15] enhanced BC prediction prognosis 
using a multimodal deep neural network (NN). They 
combined multi-dimensional data, including gene 
expression, copy number alteration profiles, and clinical 
data, using novel deep learning techniques. This approach 
outperformed single-dimensional prediction methods. By 
combining two independent models of microarray and 
clinical data, Khademi et al. [16] developed a Probabilistic 
Graphical Model (PGM) for BC prediction and detection. 
They began by reducing the dimensionality of microarray 
data with Principal Component Analysis (PCA), and then 
built an in-depth belief network to extract data feature 
representations. The clinical data was then processed 
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through a structural learning algorithm before merging 
with SoftMax nodes to calculate BC prognosis. 

Qian et al. 2021 [17] employed comparable modalities 
for diagnosing BC, including multimodal, multiview 
ultrasound imaging. The deep-learning framework was 
employed to construct the model based on US B-mode 
multiview ultrasound images and view-level multiview US 
images as inputs for each potential clinical test lesion. The 
model then analyzed the suspected lesion from multiple 
perspectives and provided an overall likelihood of 
malignancy. The model's performance was tested with each 
bimodal and multimodal combination to predict the 
malignancy risk and establish the Breast Imaging 
Reporting and Data System (BI-RADS) category. 

In Binder et al. [18], a novel comprehensive machine-
learning approach was proposed for the identification and 
prediction of morphologic and molecular features from 
histologic BC imaging datasets. The predictions are 
derived from a morphologic feature training database, 
which contains manually annotated types of breast cells in 
a variety of data modes, as well as histological images from 
the TCGA database. Liu et al. [19] designed a deep 
learning prediction model to predict molecular subtypes of 
BC. The framework is based on gene and image data, 
employed with Image Filtration. Validation was performed 
by combining deep NN with convolutional networks to 
achieve a high level of accuracy. Arya et al. [20] proposed 
a sophisticated, multimodal-based deep learning model. 
This model is further enhanced to develop the generation 
of convoluted feature maps and the extraction of stacked 
features using Sigmoid CNN algorithm and Random Forest 
Classifier. 

In BC prediction, the focus has shifted to multimodality 
from unimodality approaches. This study assesses the 
efficacy of these two approaches and identifies areas for 
further research and its advancement. Deep Learning 
models utilizing multimodal datasets are recommended 
due to their ability to provide richer information than their 
unimodal counterparts. Additionally, multimodal models 
are capable of processing multiple data sources, which is 
an advantage over their unimodal peers. 

3. Methodology 

3.1. Dataset 

The data was collected from The Cancer Genome Atlas 
(TCGA), the world's most extensive repository of genomic 
data. The Center for Cancer Genomics of the National 
Cancer Institutes (NCI) with National Human Genome 
Research Institute initiated TCGA in 2006. From the 
TCGA repository, this research specifically used the 
TCGA Breast Invasive Carcinoma Collection (TCGA-
BRCA) dataset [21], a repository of over 10,000 patient 
profiles and related genomic data from BC patients. This 
data set contains information related to the pathological 
and molecular features of BC tumors, as well as 

information about other demographic factors such as age, 
race, and gender. 

3.2. Data Preprocessing 

Data preprocessing is an important element of machine 
learning projects, allowing the clean up and modification 
of data to enhance its usability and resolve issues. Before 
executing any algorithms, it is necessary to verify the 
representation and quality of the data. This dataset 
contained no missing values, and values with no counts 
were treated as 0. The primary objective is to preprocess 
the data into the format required by the models to ensure a 
reasonably accurate representation of the data [22]. 

Clinical Data Preprocessing 
 
The TCGA-BRCA clinical data mainly include data from 
1,097 patients, covering variables such as age at diagnosis, 
vital status, days to death, days to last follow-up, tumor 
status, pathologic stage, gender, and race. Vital status 
refers to whether the patient is alive, deceased or unknown. 
Days to last follow-up is calculated as the number of days 
between the last follow-up and the initial diagnosis. Table 
1 provides an overview of the dataset. 

Table.1 Overall Analysis of the cardiovascular 
disease dataset 

Dataset Summary Analysis 

Dataset TCGA-BRCA 

#Patients 1097 

#Alive 945 

#Deceased 152 

Median Age 59 

Age Range 26-90 

Gender (M:F) 12:1085 

 
Data imputation (DI) is the process of filling in missing 

values within a dataset. This step can improve data quality 
and accuracy by replacing missing values with estimates 
based on existing information [23]. DI can help prevent 
bias and skew when analyzing data and reduce errors due 
to incomplete datasets. It can also reduce noise in a dataset 
and make it easier to identify meaningful patterns in the 
data. The DI techniques for the various features were 
carefully chosen depending on the nature of the data and its 
value [24]. In this work, DI is applied if the attributes have 
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'not available' values based on the count and importance of 
the feature(s). 

One-hot encoding, also known as binary encoding, is 
one of the data encoding techniques during preprocessing. 
Each category is represented as a separate column with 
binary values (1 or 0). Additionally, it helps reduce 
overfitting by providing features that can be used to train 
the model [25]. In this study, one-hot encoding was 
performed on the three attributes gender, tumor status, and 
vital status. After one-hot encoding, attribute data contains 
values of mostly 0s and 1s, which may lead to inefficient 
pattern during the training phase. Other attributes such as 
race, margin status, histological type, and pathologic stage 
are converted into categorical data as per the category 
found in the dataset. Table 2 consists of the clinical 
characteristics of the TCGA-BRCA clinical Dataset. 

Table 2. Clinical characteristics of TCGA-BRCA 
clinical Dataset 

 
Datasets are typically represented by a distribution of 

values that helps in understanding the data. The data 
distribution can reveal the underlying structure, such as its 

range, outliers etc. Figure 2 illustrates the data distribution 
frequency of the TCGA BRCA dataset. Analyzing the 
frequency can provide valuable insights into the prevalence 
and characteristics among clinical parameters. 

 

 
 

Figure 2. Data distribution of TCGA BRCA clinical 
data 

 
Feature selection involves choosing the most 

significant features to enhance the performance of the 
computational models, which helps to avoid overfitting, 
which is essential when constructing a model. The dataset 
was processed using a correlation matrix and a heatmap 
feature selection approach.  
 

 
Figure 3. Correlation matrix heatmap for TCGA-
BRCA clinical data 

Attribute Description 

PID Patient ID 
Days to Birth No. of days to birth 

Gender Female 1; Male-0 

Race 
Race Category (white-0, black 
or African American-1, Asian or 
American Indian-2) 

Tumor_Status Neoplasm disease stage (tumor 
free-0; with tumor-1) 

Days_to_last_ 
followup Last contacted days 

Days_to_Death No. of days to death 

Age Patient’s age in years (26 - 90 
years) 

Margin Status Close-0; positive-1; negative-2 

Pathologic Stage Pathologic stage I to stage V 
and stage X 

Histological Type 

Infiltrating Ductal Carcinoma-1; 
Infiltrating Lobular Carcinoma-
2;  Metaplastic Carcinoma-3; 
Mucinous Carcinoma-4; Mixed 
and Others-5 

lymph_node_ 
examined_count 

Count of Lymph node 
examination 

Initial_Diagnosis_
Year 

Initial diagnostic year (range 
from 1988 – 2013) 

Vital Status 
Predictor class  
(0- Alive; 1- Deceased) 
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A correlation matrix can be used to evaluate the degree 
of similarity between independent and dependent 
properties. [26]. The heatmap provides a visual summary 
of the correlation matrix, making it easier to identify 
patterns and relationships between features. This heatmap 
is used to depict an associated feature on the resulting 
correlation matrix, as shown in Figure 3. 

 
This correlation matrix was used to determine which 

traits were most closely related: gender, age, pathologic 
stage, and histological type. Table 3 represents the clinical 
data after the application of preprocessing methods. 

Table 3. TCGA-BRCA clinical data after 
preprocessing 

Dataset Summary Analysis 

Dataset TCGA-BRCA 

#Patients 1058 

#Alive 876 

#Deceased 182 

Median Age 58 

Age Range 26-90 

Gender (M:F) 12: 1046 

 
Feature scaling is a data preprocessing step that helps 

ensure all the features are on the same scale. This step is 
essential to guarantee optimal model performance and 
avoid any potential bias. Standardization and normalization 
are two popular techniques used for feature scaling. 
Standardization changes each feature so that its mean is 0 
and standard deviation is 1, while normalization transforms 
each feature into a range between 0 and 1. For this purpose, 
standardization replaces the values by their z-scores [27] 
and is given in Eqn 1: 

 
𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  X −µ(X)

σ (X)
   (1) 

 
which indicates that the features are redistributed with µ - 
mean of 0 and σ - standard deviation of 1. 

Clinical Data Deep Neural Networks Architecture 
 
Deep Neural Networks (DNNs) are algorithms that are 
revolutionizing the healthcare industry by providing new 
techniques to analyse clinical datasets. It is increasingly 
used in clinical datasets to obtain meaningful insights and 
patterns from large amounts of data, performing complex, 
nonlinear computations which can be used to identify 
trends, correlations, and outliers in the data. DNNs are 

composed of several neuron layers, allowing the network 
to learn from data more effectively than traditional 
machine learning algorithms [28]. It can also be used for 
predictive analytics, allowing healthcare professionals to 
anticipate potential issues before they occur. 

Initially, the proposed Optimized DNN Multimodal 
analytics (ODNN-MA) architecture is created using the 
sequential model. In DNN, data is entered into the input 
layer, them forwarded to the several hidden layers. Finally, 
the result is passed to the output layer [29]. The TCGA-
BRCA has 12 input parameters. The dataset was then taken 
for splitting into training and testing sets with a ratio of 
70:30, respectively. Subsequently, 10 hidden layers were 
used with ReLu as the activation function. This study 
examined the binary classification problem, and hence, the 
Sigmoid activation function was applied at the output node. 
Once the layers are developed, NN architecture is 
constructed to determine the difference of real and 
expected outputs. Adam is the optimizer and accuracy is 
the metric used to evaluate model performance. The 
training data was fit to the model using batch size 32, and 
the model went through 30 iterations to train across the 
entire dataset. The regularization is employed to resolve 
issues of overfitting or underfitting. This method inhibits 
learning a more sophisticated or flexible model while 
reducing the risk of overfit [30]. To train the suggested 
model, two regularizers were used. Figure 4 depicts the 
ODNN-MA architecture of the proposed clinical work. 

 

 
 

Figure 4. ODNN-MA architecture for TCGA-BRCA 
clinical data 

 
L2 Parameter Regularization technique improves the 

accuracy of models by reducing overfitting. It is an 
optimization strategy that alters the loss function during 
training by adding a penalty term. Then, model weights are 
penalized, to ensure they are modest and close to their 
original values. This reduces the risk of overfitting, as large 
model weights can result in overly complex models that 
learn from noise instead of true underlying patterns [31].  

The dropout process involves randomly eliminating a 
subset of neurons from a NN during training to induce the 
model to generate more accurate representations of the data 
[32]. The dropout pattern may differ depending on the 
layers used. Each iteration of the dropout process involves 
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the random deletion of nodes and its connections. Thus, 
each iteration has its own set of nodes with its own set of 
outputs. The summary of a sequential DNN model can be 
seen in Figure 5. 

 

 
 

Figure 5. Summary of the Sequential DNN model 
 

RNA Seq Data  
 
RNA sequencing (RNA-seq) is pivotal in cancer research 
for helping researchers understand tumor classification and 
progression by tracking changes in gene expression and the 
transcriptom. Preprocessing RNA sequencing data is 
critical to gaining meaningful insights from raw 
sequencing data. This process involves several steps, such 
as filtering, normalization, and mapping sequencing reads 
onto the reference genome or transcriptome [33]. 
Preprocessing helps to identify relevant gene expression 
levels, splicing variants, and alternative transcripts. In 
addition, it facilitates subsequent analysis, including gene 
set enrichment and differential expression profiling. 

In this study, genomic data primarily focus on RNASeq 
data from TCGA-BRCA. Genomic data are typically 
supplemented with clinical outcomes, including general 
clinical information and cancer status [34]. The dataset 
comprises 60, 660 gene data points across tumor and 
normal cases. Both normalized fragments per kilobase per 
million (FPKM) and raw data count were utilized. Raw 
count data helped select genes that exhibited significant 
differential expression, while normalized FPKM data were 

employed in classification and ensemble procedures [35]. 
Table 4 provides an overview of the number of tumor 
samples for BRCA subtypes. 

Table 4. Number of tumor samples for BRCA 
subtypes 

Subtypes Basal 
Like Her2 LumA LumB Normal 

Like 

Values 192 82 564 207 40 

 
The BRCA data has the following phases: 

• Obtain the gene data with its subtypes.  
• Split up the data as training and testing sets 
• Train data with ODNN-MA architecture with 

regularization parameters. 
• Evaluate the classification result on testing data. 

To filter out genes with a mean value below 0.2 and a 
variance value below 2 across tumor samples, 1,085 genes 
were selected for BRCA data upon receipt of the tumor 
data. Subsequently, the tumor samples were divided into 
five subtypes based on the clinical BRCA data: Basal_like 
tumor samples, Her_2 tumor samples, Lum_A tumor 
samples, Lum_B tumor samples, and the Normal_like 
tumor sample. Table 4 illustrates the specific size of the 
tumor sample for each subtype. The selected genes were 
divided into training and testing sets in a 75:25 ratio. Then, 
ODNN-MA architecture, as depicted in Figure 4, is applied 
on the entire data. 

4. Results and Discussion 

This chapter provides an overview of the experimental 
results of two alternative dataset modalities for TCGA-
BRCA using the deep NN system for the prediction of 
breast cancer. 

4.1. Performance Metrics 

This work addresses the prediction problem, thus, the 
performance measures taken are mainly related to 
classification. For detecting Breast Cancer, the target 
variable of 1 is considered deceased, and the target variable 
of 0 is considered a negative instance. This negative 
instance indicates that the patient is free of the tumor and 
is still alive. 

The confusion matrix evaluates the model's preciseness 
and completeness and is used for the classification 
problem, with two or more classes as output. The 
arrangement of the table or matrix helps to visualize the 
performance of the algorithm [36].  
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Constraints of the Confusion matrix are: 
 

• True Positives: When the actual and projected BC 
instances are true. 

• True Negatives: When predicted instances are false, 
and actual instances are precisely false. 

• False Positives: When the actual BC instances are 
false, but the prediction is true. 

• False Negatives: When the prediction is false, but 
actual cases are true. 

 
The confusion matrix observations represent the 

classifiers' performance as precision, recall, F1-score, 
accuracy, and specificity. When the target variable classes 
in the data are approximately balanced, accuracy will be a 
good metric [37]. Table 5 provides a quick explanation of 
the performance metrics. 

 

Table 5. Performance Metrics 

Metrics Description Formula 

Precision 

The proportion of 
correctly identified 
cases among positive 
instances. 

 

Recall 

The proportion of total 
relevant results that 
were successfully 
categorized. 

 

F1-score 
The weighted average 
of the precision and 
recall.  

Accuracy 
The fraction of real 
positive or true 
negative findings.  

Specificity 
The fraction of real 
negatives forecasted 
as negatives  

 
 
 
The performance of the precision, accuracy, recall, 

specificity, and F1-score of ODNN-MA on TCGA-BRCA 
clinical dataset demonstrates the importance of the 
preprocessing technique according to the nature of its 
features, as illustrated in Table 6. The confusion matrix for 
ODNN-MA with the TCGA-BRCA clinical dataset is 
depicted in Figure 6.  

 

 
Table 6. Performance of ODNN-MA on TCGA-BRCA 

clinical data 

 Precision Recall F1-
score Support 

0 0.91 1.00 0.96 287 

1 1.00 0.57 0.73 63 

Accuracy   0.92 350 

MacroAvg 0.96 0.79 0.84 350 

WeightedAvg 0.93 0.92 0.91 350 

 

 
 

Figure 6. Confusion Matrix for ODNN-MA on TCGA-
BRCA clinical dataset 

 
 

It is evident from the above figure that the confusion 
matrix is representative of the ODNN-MA testing set 
classification report for the proposed clinical dataset on 
TCGA- BRCA. The above matrix indicates that out of the 
350 testing cases studied, 287 were examined and predicted 
as alive cases (True Positive (TP)), 36 were observed and 
predicted to be deceased (True Negative (TN)), no cases 
were predicted to be False Negative (FN), and 27 were 
observed as deceased but projected to be alive (False 
Positive (FP)). 

Table 7 illustrates the performance of RNASeq-based 
BRCA classification. RNASeq-based BRCA subtypes 
classification is based on the proposed ODNN-MA 
architecture. From the table, it is evident that the vascal-
like subtype produces a higher accuracy score than the 
other types. 
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Table 7. Performance of ODNN-MA on TCGA-BRCA 
RNASeq subtypes 

BRCA 
subtypes Sensitivity Specificity Accuracy 

Basal_Like 0.96 0.95 0.96 

Her_2 0.78 0.88 0.88 

Lum_A 0.86 0.81 0.86 

Lum_B 0.81 0.83 0.84 

Normal_Like 0.75 0.85 0.85 

 
The Stratified K-fold Cross-Validation method 

enhances the classification accuracy of the dataset by 
partitioning it randomly in equal ratios for each fold. This 
approach assesses the quality of the classifier output on the 
Area Under the Receiver Operating Characteristic (ROC) 
curve. The ROC curve visually represents the diagnostic 
capacity of a binary classifier, plotting the true positive rate 
(TPR) against the false positive rate (FPR). Values close to 
one on the ROC curve indicate superior performance of the 
machine learning model [38].  

 The ROC curve illustrates the correlation between the 
TPR and the FPR as a function of the changing 
discriminating threshold. AUC (Area Under the ROC 
Curve) provides an aggregated performance measure 
across all potential classification thresholds. AUC values 
range from 0 to 1, with  higher values indicating better 
classification performance [39]. 

Figures 7 and 8 illustrate the ROC and AUC of the 
proposed ODNN-MA applied to the clinical dataset of 
TCGA- BRCA, illustrating the comparison of TPR against 
FPR. 

 
 

 
 

Figure 7. Receiver Operating Characteristics (ROC) 
Curve for ODNN-MA  

 

 
 

Figure 8. AUC for ODNN-MA 
 

The above curve summarizes the results of the 
proposed ODNN-MA based on clinical data for TCGA- 
BRCA, which demonstrate a statistically significant AUC 
value of 0,93 ± 0,02. This indicates that the model can 
accurately distinguish between live and deceased cases 
with a probability of 93%. 

5. Conclusion 

Breast cancer is one of the most prevalent cancers 
among women, accounting for 69% of cancer-related 
deaths in this demographic. Early detection of breast cancer 
is crucial as it remains a significant health challenge today. 
Detecting it early can substantially improve survival rates 
by enabling timely treatment. Though traditional deep 
learning models used within detection excel with specific 
data types, multimodal deep learning models are even more 
effective due to their ability to integrate richer, more 
comprehensive data from multiple sources compared to 
traditional unimodal models. In this study, the performance 
model achieved 92% accuracy on clinical data, an AUC 
ROC score of 0.93 ± 0.0, and 96% accuracy on RNASeq 
data. This capability enables the model to leverage diverse 
data sources, offering significant advantages over 
unimodal approaches. The evidence of this study suggests 
that integration of these models would be certain to 
improve the estimation of the likelihood of patients’ risk of 
developing breast cancer in future. 
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