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Abstract 

Surface electromyography signals have significant value in gesture recognition due to their ability to reflect muscle 
activity in real time. However, existing gesture recognition technologies have not fully utilized surface electromyography 
signals, resulting in unsatisfactory recognition results. To this end, firstly, a Butterworth filter was adopted to remove high-
frequency noise from the signal. A combined method of moving translation threshold was introduced to extract effective 
signals. Then, a gesture recognition model based on multi-stream feature fusion network was constructed. Feature 
extraction and fusion were carried out through multiple parallel feature extraction paths, combined with convolutional 
neural networks and residual attention mechanisms. Compared to popular methods of the same type, this new recognition 
method had the highest recognition accuracy of 92.1% and the lowest recognition error of 5%. Its recognition time for a 
single-gesture image was as short as 4s, with a maximum Kappa coefficient of 0.92. Therefore, this method combining 
multi-stream feature fusion networks can effectively improve the recognition accuracy and robustness of gestures and has 
high practical value. 
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1. Introduction

Surface Electromyography Signal (sEMG) records the
electrophysiological signals caused by muscle activity. 
When muscle activity occurs, the action potential generated 
by muscle fibers is transmitted through the skin to the 
electrode, which transmits these electrical signals to 
amplifiers and recording devices [1-2]. In rehabilitation 
medicine, sEMG is utilized to evaluate and monitor muscle 
function, helping to design rehabilitation training programs. 
In sports science, sEMG is utilized to analyze the muscle 
activity of athletes in different sports, optimize training, and 

improve athletic performance. In human-machine interfaces, 
sEMG is utilized to control prosthetics, wheelchairs, and 
other assistive devices, achieving more natural and precise 
motion control [3]. In recent years, with the advancement of 
biomedical engineering and computing technology, the 
application of sEMG in Gesture Recognition (GR) has 
rapidly developed, promoting the development of health 
technology. The current GR technology utilizes machine 
learning and other methods to classify and analyze sEMGs, 
achieving high recognition accuracy and real-time 
performance [4]. Common methods include Artificial Neural 
Network (ANN) and Convolutional Neural Network (CNN) 
[5]. However, there are still some shortcomings in the 
application of sEMG in GR. Firstly, sEMG is susceptible to 
factors such as muscle fatigue, electrode displacement, and ∗Corresponding author. Email:  wangxy@uta.edu.cn 
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skin resistance changes, leading to unstable signal quality 
and thus affecting recognition accuracy. Secondly, existing 
recognition techniques only consider individual sEMG data 
features, resulting in poor performance of GR. To this end, 
innovative attempts are made to preprocess and optimize 
gesture images, enhancing the recognition of image data 
features. Meanwhile, gesture feature recognition in various 
dimensions is achieved through a multi-stream feature 
fusion network. This study aims to enhance the application 
effectiveness and recognition robustness of sEMG in GR, 
and its contribution lies in providing effective support for 
subsequent GR. 

2. Related Works

By capturing and understanding hand movements, GR
can achieve natural and efficient interaction. GR has broad 
application prospects in fields such as virtual reality, 
augmented reality, smart homes, and medical rehabilitation 
[6]. To enhance the level of existing GR technology in visual 
driving, Sahoo J P et al. combined AlexNet and VGG-16 to 
propose a novel composite convolutional GR algorithm. 
This algorithm had better recognition stability and accuracy 
than traditional methods on two conventional datasets [7]. 
Bhushan S et al. constructed a GR model combining 
Random Forest (RF) to improve the GR efficiency and 
verified its effectiveness. This new model’s highest 
recognition accuracy was 97.89%, which adapted to various 
GRs in different environments [8]. Gao R et al. found that 
previous work proposed using gesture position independent 
features to represent gestures, rather than directly matching 
signal change patterns. To this end, they constructed a new 
dynamic GR method by combining WiFi signals. This 
method significantly improved the feature strength of GR 
signals, with a maximum testing accuracy of 96.7% [9]. 
Faisal MA et al. believed that due to the availability of 
hardware and deep learning algorithms, GR research gained 
new momentum. To this end, they developed a cost-effective 
identification model using five flexible sensors, an inertial 
measurement unit, and a powerful microcontroller. After 
nearly 30 static and dynamic tests on 25 subjects, this 
model’s F1 improved by at least 10% compared to 
traditional methods [10]. 

SEMG is an electrophysiological signal caused by muscle 
activity, which is recorded from the surface of the skin 
through non-invasive electrodes. In recent years, the 
application of sEMG in GR has received widespread 
attention. Fateyer A et al. proposed a novel GR method 
using sEMG spectral signals to enhance the GR of sparse 
multi-channel sEMG controlled electromyographic 
implants. The average classification accuracy of this method 
on large public databases was 95.5% [11]. Wang H et al. 
proposed a novel GR method combining deformable 
convolutional networks to enhance the effectiveness of 
peripheral device interfaces for prosthetic hands. This 
method extracted implicit correlations between different 

channels from sparse multi-channel sEMG, demonstrating 
strong robustness and feasibility [12]. Lv X et al. proposed a 
remote GR system based on multi-attention mechanism 
CNN to enhance the signal extraction and prosthetic control 
effects of sEMG. This system significantly enhanced the 
relevant features of sEMG, with a recognition accuracy of 
up to 97.86% [13]. Jiang Y et al. found that the existing GR 
using sEMG lacked a dataset for multi-class gestures. To 
this end, they constructed a rich dataset by combining 
inertial measurement units and conducted training tests 
using recurrent neural networks. Optimizing the training 
data of GR was indeed a unique method. However, the goal 
of improving GR accuracy could still be achieved [14]. 

In summary, existing GR research mainly focuses on two 
aspects: visual driving and signal feature extraction, such as 
composite convolutional GR, RF, sEMG spectrum signal 
recognition methods, etc. Although these methods can 
achieve GR, they are susceptible to noise interference and 
affect recognition accuracy. At the same time, a single 
feature extraction path is difficult to fully capture complex 
changes in electromyographic signals. To this end, an 
innovative GR method based on multi-stream feature fusion 
networks is proposed. The effectiveness of GR is enhanced 
through preprocessing optimization of sEMG and multi-
dimensional convolutional feature extraction. 

3. Materials and Methods

The existing GR technology has drawbacks, such as poor
utilization of sEMG and slow recognition speed. Firstly, the 
preprocessing optimization of sEMG collection is studied, 
followed by the construction of a multi-stream feature 
fusion network. A GR model utilizing the flow feature 
fusion network is proposed. 

3.1 sEMG preprocessing and extraction 

SEMG is a technique that records and analyzes 
electrophysiological signals caused by muscle activity by 
placing electrodes on the skin surface. The basic principle is 
based on the transmission of action potentials emitted by 
motor neurons to muscle fibers during muscle contraction, 
leading to changes in the internal and external potentials of 
muscle fibers [15-16]. This potential change generates an 
electric current in muscle fibers, which in turn forms a 
potential signal on the surface of the skin. Figure 1 shows 
the changes in sEMG point sequence and the principle of 
signal generation. 

2 EAI Endorsed Transactions 
on Pervasive Health and Technology 

| Volume 10 | 2024 |



Human Muscle sEMG Signal and Gesture Recognition Technology Based on Multi-Stream Feature Fusion Network 

Motion unit 1

Motor nerve sEMG
Motion unit 2

Motion unit 3

Cortex

Spina 
cord

Skeletal 
muscle

Muscle fiber

Motion unit 

sEMG

(a) sEMG point sequence (b) sEMG Generation Principle

Figure 1. sEMG point sequence variations and the 
principle mode of generation 

Figure 1 (a) is a schematic diagram of the changes in 
sEMG point sequence. Figure 1 (b) shows the principle of 
sEMG generation. The motor nerve units in the spinal cord 
generate various electromyographic signals. The signal 
stimulates the presynaptic membrane through neural 
impulses to produce acetylcholine, which then binds to the 
motor endplate to generate a potential. The sEMG electrode 
can capture these potential changes, amplify weak electrical 
signals through an amplifier, and record and analyze them 
through a data acquisition system [17]. In addition, after 
being transmitted through multiple layers of muscle tissue, 
sEMG is inevitably mixed with noise and interference due to 
physiological characteristics such as arm shaking and the 
influence of the acquisition environment. This reduces the 
signal strength of sEMG and weakens the features. For this 
study, Butterworth Filter (BF) is introduced to filter the 
original sEMG. Compared to other filtering methods, BF 
has smooth frequency response characteristics and can 
effectively remove high-frequency noise in the signal. 
Meanwhile, BF can maintain the main components of the 
signal, thereby improving the quality and accuracy of the 
signal. Specifically, BF determines the filter characteristics 
through transfer functions, uses differential equations to 
achieve digital filtering of signals, and analyzes the filtering 
effect through frequency response [18]. The transfer 
function is represented by equation (1). 

H(s) = − G

�1+( s
ωc

)2n
(1) 

In equation (1), H(s) refers to a filter’s transfer function. 
G refers to the filtering gain. s refers to complex frequency 
variables. ωc refers to a filter’s cutoff frequency. n refers to 
a filter’s order. The difference equation is represented by 
equation (2). 

y(n) = 1
a0

(b0x(n) + bMx(n) − a1y(n − 1) −

aNy(n− 1)(2) 
In equation (2), (n) refers to the current sample value of 

the filtered output signal. x(n) refers to the current sample 
value of the input signal. 𝑏𝑏𝑀𝑀  refers to the molecular 
coefficient. ay refers to the denominator coefficient. M and 
N  correspond to the numerator and denominator parts’ 
orders. Figure 2 shows a comparison of time-domain 
waveforms after sEMG filtering. 
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Figure 2. Time-domain waveforms of surface EMG 
after BF filtering 

In Figure 2, after BF filtering optimization, the original 
sEMG time-domain waveform’s amplitude remained stable 
in [-150, 150]. This eliminates power frequency noise above 
150 and below -150, effectively enhancing the characteristic 
strength of sEMG time-domain signals. General gesture 
acquisition includes both stationary and motion states. When 
the arm changes from stationary to moving, sEMG also 
follows the change to active state. After considering the 
computational complexity of sEMG, a Moving Panning 
Threshold Combination Method (MPTCM) is proposed. 
This method sets an effective threshold by calculating the 
average instantaneous energy, thereby constraining and 
extracting the starting and active points. Firstly, the filtered 
sequence of sEMG is obtained by using the difference 
squared method to obtain the instantaneous energy average 
sequence. Secondly, energy extraction is performed by 
sliding through a fixed window. The energy values of each 
window are calculated sequentially. Finally, an amplitude 
threshold is set to identify and filter sEMG sequence data 
with energy values greater than the threshold. The average 
instantaneous energy is represented by equation (3). 

Eave(i) = 1
I
∑ Xk(i + 1) + X(i)2I
k=1 (3) 

In equation (3), 𝑋𝑋𝑘𝑘 represents the sEMG sequence value. 
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)  represents the average energy value of the 
electromyographic signal. I represents the total number of 
signal channels. Assuming a window length of 128 is taken 
for instantaneous energy extraction, the average energy of 
each window is calculated one by one. The relevant 
calculations are represented by equation (4). 

Emean(i) = 1
φ
∑ Eave(j)i+φ−1
j=1 (4) 

In equation (4), Emean(i) refers to the average energy of 
each window. φ refers to the number of windows. i refers to 
the sequence value of the electromyographic signal. j refers 
to the signal sampling point. Figure 3 shows the average 
energy of the sEMG active segment after MPTCM 
processing with an amplitude threshold of 120. 
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Figure 3. Representation of the mean energy of the 
sEMG active segment after MPTCM optimization 

In Figure 3, signals below the threshold are marked as 0. 
At this point, it is easier to distinguish the sEMG energy 
fluctuations under the data volume of the two related 
sampling points. Using 2000 samples as a quantity interval, 
the optimized sEMG activity segment is clearer and better 
displays sEMG sequence information under different actions 
compared to before optimization. 

3.2 Construction of gesture recognition model 
based on multi-stream feature fusion network 

After completing the preprocessing and extraction 
optimization of sEMG, the study attempts to construct a 
novel GR model. CNN is a commonly utilized data signal 
feature extraction model in deep learning methods. Firstly, 
the collected sEMG is preprocessed to remove noise and 
normalize the signal. Then, the preprocessed signals are 
converted into input formats suitable for CNN processing. 
The input data are processed through multiple layers of 
convolutional layers. Spatial features are extracted through a 
mechanism of local receptive fields and weight sharing. 
Each convolutional layer is followed by a non-linear 
activation function to enhance the network's non-linear 
ability [19-20]. Subsequently, the pooling layer 
downsamples the feature map, reducing data dimensions and 
maintaining important features. After multi-layer 
convolution and pooling operations, the high-level feature 
map obtained is integrated through fully connected layers. 
Finally, the Softmax layer is utilized for classification. The 
probability of each gesture category is output. CNN 
convolution is represented by equation (5). 

Ccn = f(X ∙ Wcn + bcn)(5) 
In equation (5), f is a convolutional activation function. X 

is the input data. 𝑊𝑊𝑐𝑐𝑐𝑐  is the convolutional kernel’s weight. 
𝑏𝑏𝑐𝑐𝑐𝑐 is the bias. The pooling layer calculation is represented 
by equation (6). 

a = �
2 4 3
4 6 5
1 0 3

�, 

amax = �4 4
6 4� , aave = �2.5 2.25

3 2 �(6) 

In equation (6), 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚  represents the maximum pooling 
value, which means dividing the listed numbers in equation 
a  into four equal parts: top, bottom, left, right, and then 
selecting the maximum value from each part in order to 
obtain equation 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 . The pooling layer only retains the 
most significant one in each output data, thereby reducing 
the difficulty of the entire filtering, represented by equation 
(7). 

y = f(W ∙ x + z)(7) 
In equation (7), W refers to the weight matrix. x refers to 

the input value. z refers to bias. y refers to output. However, 
CNN mainly relies on feature extraction and classification 
of single-stream signals. This often leads to insufficient 
feature representation and inability to fully capture complex 
changes in electromyographic signals, thereby affecting 
accurate GR. Therefore, the study attempts to use a multi-
stream feature fusion approach, which decomposes and 
processes sEMG from different muscle parts through 
multiple parallel feature extraction paths. Finally, these 
features are integrated to construct a novel GR network in 
Figure 4. 

Cone2
D8×1×

64

Cone2
D8×1×

64

Cone2
D8×1×

64

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

CBAM
2D2×1

×1

sEMG

400×8×1

400×2×1

400×2×1

Concatenate ClobalAvg
Pool2D Droupout Softmax

Figure 4. Multi-stream feature fusion network model 
structure 

In Figure 4, the entire network model can be divided into 
input module, multi-stream convolution module, and multi-
stream feature fusion module. The input module contains 
sEMG fragments from different muscle groups in the 
forearm and upper arm, with each fragment size of 
400×12×1. The multi-stream convolution module processes 
the input data through multiple parallel feature extraction 
paths. Each path extracts features through multiple 2D 
convolutional layers and residual attention mechanism 
modules. Each feature extraction path consists of a three-
layer convolutional structure. The first layer consists of 8 
1×64 convolution kernels, followed by 2 1×64 convolution 
kernels. The last layer includes 1 8×128 convolution kernel 
and 1 2×128 convolution kernel. Finally, the outputs of 
multiple feature extraction paths are fused through 
concatenation operations. The fused features are 
dimensionally reduced through a global average pooling 
layer. At this point, the convolution operation is represented 
by equation (8). 

ye,u,p = ∑ ∑ xe+t−1,u+v−1
V
v=1

T
t=1 wt,v,p + bp(8) 

In equation (8), 𝑦𝑦𝑎𝑎,𝑢𝑢,𝑝𝑝 refers to the output feature map’s 
value at position (e, u) and channel I. 𝑋𝑋𝑎𝑎+𝑡𝑡−1,𝑢𝑢+𝑎𝑎−1 refers to 
this input feature map’s position at position (e + t − 1, u +

4 EAI Endorsed Transactions 
on Pervasive Health and Technology 

| Volume 10 | 2024 |



Human Muscle sEMG Signal and Gesture Recognition Technology Based on Multi-Stream Feature Fusion Network 

v − 1). 𝑤𝑤𝑡𝑡,𝑎𝑎,𝑝𝑝 refers to the convolutional kernel’s weight at 
position 𝑤𝑤𝑡𝑡,𝑎𝑎,𝑝𝑝  and channel p . 𝑏𝑏𝑝𝑝  refers to the bias of 
channel p . The calculation of residual connections is 
represented by equation (9). 

y ∗= F(x∗, We) + x∗(9) 

In equation (9), 𝑦𝑦∗  refers to the residual block output. 
(x∗, We)  refers to the convolution operation inside the 
residual block. 𝑥𝑥∗ refers to input features. The calculation of 
attention mechanism is represented by equation (10). 

Mc(F) = σ(MLP(AvgPool(F)) 

+MLP(MaxPool(F))(10)

In equation (10), Mc refers to channel attention mapping. 
σ  refers to the activation function, such as sigmoid. MLP 
refers to multi-layer perceptrons. AvgPool(F)  and 
MaxPool(F)  correspond to global average pooling and 
global maximum pooling operations. In summary, Figure 5 
shows the GR model combined with sEMG preprocessing 
optimization and multi-stream feature fusion network. 
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Figure 5. Novel gesture recognition model 
computational flow 

In Figure 5, first, the arm muscle electrode is inserted 
using an invasive sensor to export sEMG. Secondly, the 
sEMG is transmitted to the preprocessing module and 
filtered by BF to remove high-frequency noise while 
preserving signal features. After completion, MPTCM 
extraction is performed on each signal data. Data filtering is 
performed by calculating instantaneous energy and threshold 
judgment. Then, the filtered sEMG fragments are 
constructed into a database and divided into a training set 
and a testing set. In the training section, a multi-stream 
feature fusion network model is trained multiple times to 
effectively provide a recognition model with the best 
parameter value performance. Finally, the sEMG GR is 
performed using the best performing model. 

4. Results

The CPU is Intel Core i7. The GPU is NVIDIA GeForce 
GTX 1060 with 16GB of memory. The operating system is 
Windows 10 and adopts the Python 3.8 framework. The GR 
model was trained using the Adam optimizer with a training 
period of 40 and a learning rate of 0.001. The NinaPro 
dataset was used as the experimental data source. NinaPro is 
a publicly available dataset specifically designed for GR and 

sEMG research, containing sEMG gestures and movements 
from healthy volunteers and amputees, covering a variety of 
gestures and movements. The study divided the dataset data 
into training and testing sets in an 8:2 ratio. Firstly, using 
recognition accuracy as an indicator, the proposed GR 
model was subjected to ablation testing in Figure 6. 
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Figure 6. Novel gesture recognition model ablation 
test results 

Figure 6 (a) shows the ablation test results of the new GR 
model on the training set. Figure 6 (b) shows the ablation 
test results of the new GR model under the test set. As the 
training samples increased, the recognition accuracy of each 
module generally improved. However, in the later stage, 
there was a slight decrease in CNN-BF and CNN-BF-
MPTCM. The reason is that although BF and MPTCM have 
preprocessed and optimized sEMG, the inputted single 
stream features still affect this model under complex 
samples. This proposed model greatly optimized the image 
convolution process through multi-stream feature fusion, 
reducing the dimensionality of complex data processing. Its 
recognition accuracy in the training set and testing was the 
highest at 92.1% and 90.8%, respectively. The study 
compared popular gesture detection algorithms of the same 
type, such as RF, Deep Belief Network (DBN), and Support 
Vector Machine (SVM). The above methods were tested 15 
times each based on detection error. Figure 7 is a test box 
diagram. 
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algorithms 
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Figure 7 (a) shows the GR results of 15 repetitions of RF. 
Figure 7 (b) shows the 15 repeated GR results of DBN. 
Figure 7 (c) shows the 15 repeated GR results of the SVM. 
Figure 7 (d) shows the 15 repeated GR results of the 
proposed algorithm. The testing errors of RF and DBN 
generally tended to be over 12%, demonstrating poor 
recognition performance. SVM, relying on its unique linear 
and nonlinear classification capabilities, reduced recognition 
errors by 4%. This proposed method’s recognition error 
significantly decreased after multiple repeated tests, and the 
error range gradually narrowed to 5%. The study randomly 
selected 4 types of gesture actions from NinaPro to verify 
this proposed method’s practical application effect in Figure 
8. 

(a) Gesture 1 (b) Gesture 2 (c) Gesture 3 (d) Gesture 4

Figure 8. Four types of gestural movements 

The study continued to introduce more advanced GR 
techniques for comparison, such as Deep Convolutional 
Generative Adversarial Network (DCGAN), Variational 
Autoencoder (VAE), and Spatio-Temporal Graph 
Convolutional Network (ST-GCN). Figure 9 shows the test 
results. 
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Figure 9. Gesture recognition results for four 
recognition models 

Figure 9 (a) shows the 10 recognition results of gesture 1 
by four models. Figure 9 (b) shows the 10 recognition 
results of gesture 2 by four models. Figure 9 (c) shows the 
10 recognition results of gesture 3 by four models. Figure 9 
(d) shows the 10 recognition results of gesture 4 by four
models. The GR time of DCGAN and ST-GCN was
generally greater than 6s, and the GR performance was
relatively average. Early recognition of VAE was better.

However, as this model’s fatigue level increased, its 
recognition and detection efficiency decreased. The 
proposed method had the shortest GR time, especially in 
gestures 2 and 3, with an average GR time of 4s. Therefore, 
this proposed method had significant advantages among 
many existing methods. Tests were conducted using 
Precision (P), Recall (R), F1 value, and Kappa coefficient as 
indicators. The Kappa coefficient took a value of [-1,1], and 
a large value indicates good recognition and prediction 
performance. Table 1 shows the results. 

Table 1. Indicator test results for different models 
Method P/% R/% F1/% Kappa 

RF 87.47 89.67 88.57 0.78 
DBN 89.64 90.54 90.09 0.84 
SVM 93.47 92.11 92.79 0.88 

DCGAN 90.26 91.27 90.77 0.86 
VAE 92.44 93.68 93.06 0.83 

ST-GCN 92.87 94.12 93.50 0.89 
Our model 96.73 95.43 96.08 0.92 

In Table 1, the proposed method performed the best in all 
four indicators, including P, R, F1 values, and Kappa 
coefficient. Its P was 96.73%, R was 95.43%, F1 value was 
96.08%, and Kappa coefficient was 0.92, which is 
significantly better than other models. These results 
confirmed that the method had higher accuracy and 
consistency in GR tasks. Among other models, ST-GCN and 
SVM also performed well, but the overall performance was 
not as good as the proposed method. 

Conclusion 

There are issues with singularity, real-time performance, 
and accuracy in the application of sEMG in the GR field. In 
this regard, the study conducted in-depth analysis and 
optimization of sEMG preprocessing and feature extraction 
by combining BF and MPTCM. Subsequently, based on 
CNN and residual attention mechanism, a GR model 
combining multi-stream feature fusion network was 
constructed. The proposed method achieved the highest 
recognition accuracy of 92.1% and 90.8% in the training and 
testing sets, respectively. Compared to RF, DBN, and SVM, 
the proposed method had a minimum GR error of 5% after 
15 repeated tests, which was significantly better than the 
12% error rate of RF and DBN. After conducting 
comparative tests on the recognition of four random 
gestures, this new method’s average recognition time was 
4s. Other methods’ shortest recognition time was 6s. This 
indicated that the proposed method had significant 
advantages in recognition efficiency. The new model had a P 
value of 96.73%, R value of 95.43%, F1 value of 96.08%, 
and Kappa coefficient of 0.92. In summary, the multi-stream 
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feature fusion network can significantly improve the GR 
performance of sEMG and has high practical value. 
Although the proposed method has achieved certain results, 
it has not yet taken into account the GR effects in other 
complex environments, such as light changes and noise 
interference. Therefore, subsequent research can explore 
more efficient feature extraction methods and more 
optimized network structures to further enhance the GR 
capability of sEMG. 
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