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Abstract 

Infectious diseases can seriously threaten people's life safety and have a serious impact on social stability. Therefore, it 
should improve society’s stability under infectious diseases and ensure the safety of people's lives. A personnel flow 
feature extraction model based on Multi-Feature Convolutional Long Short-Term Memory (MF-Conv LSTM) is designed 
based on the characteristics of human daily activity behavior. This can optimize the accuracy of transmission simulation 
prediction for infectious disease vaccination. When using multi-feature ensemble analysis to extract human daily activity 
features as input for infectious disease simulation and prediction models, the learner's prediction score for the recurrent 
infectious diseases reached 0.8705. When using multi-feature ensemble analysis, the predicted scores did not exceed 0.85. 
The designed infectious disease vaccine transmission prediction model can accurately simulate the infectious behavior of 
infectious diseases. This provides direction for developing strategies to disrupt the infectious diseases’ spread. This 
reduces the infectious diseases’ harm to people's personal safety and improves social stability during the spread of large-
scale infectious diseases. 
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Introduction 
Infectious diseases are caused by pathogens and can be 

transmitted between humans or animals. The main 
transmission routes include direct contact, airborne 
transmission, food and water transmission, as well as 
through vector organisms such as mosquito bites [1-2]. 
Once pathogens enter the host's body, they can rapidly 
reproduce and trigger an immune response, leading to 
varying clinical symptoms, ranging from mild discomfort to 
severe illness and even death. The harm of infectious 
diseases is widespread and far-reaching, not only 
threatening individual health, but also potentially causing 

social panic, economic fluctuations, and even affecting 
national security [3-4]. Large scale infectious diseases, such 
as the COVID-19 pandemic that once broke out all over the 
world, pose enormous pressure on the global health system, 
leading to a shortage of medical resources. Meanwhile, this 
causes a significant blow to economic activities, affecting 
industries such as international trade and tourism [5]. In 
addition, infectious diseases may exacerbate social 
inequality and cause greater harm to vulnerable groups. 
Timely and effective prevention and control measures such 
as vaccination, public health education, disease monitoring, 
and rapid response systems can reduce the infectious 
diseases’ spread. This will reduce the infectious diseases’ 
harm, protect the health of the population, and maintain 
social stability and economic development [6]. Therefore, 
to reduce the infectious diseases’ harm to human society, a 
predictive model for infectious disease transmission based ∗Corresponding author. Email:  15086969412@163.com 
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on Multi-Feature Convolutional Long Short-Term Memory 
(MF-Conv LSTM) is established. 

The research innovation lies in fusing multi-scale features 
through the Bagging method when simulating and 
predicting the spread of infectious diseases. The experiment 
covers the mobility patterns of individuals in different 
regions and considers various information such as socio-
economic factors, population structure, and behavioral 
habits. The main research contribution is to simulate and 
predict the transmission behavior of infectious diseases 
through multi-angle and multi-dimensional analysis. This 
can more comprehensively capture and simulate the 
dynamic process of infectious disease transmission. This 
can enhance the infectious disease simulation and prediction 
accuracy. 

The main research framework is as follows. Firstly, an 
investigation is conducted on the research status of 
infectious disease transmission models and prediction 
models such as Long Short-Term Memory (LSTM). 
Secondly, research is conducted on establishing personnel 
flow characteristic models and infectious disease 
transmission prediction models. Thirdly, experimental 
verification is conducted on the personnel flow 
characteristic model and the propagation prediction model. 
Finally, a research summary is provided. 

1. Literature Review
The spread of large-scale infectious diseases mostly relies

on air transmission. Buckee C et al. proposed the viewpoint 
that social and cultural forces influence the spread and 
response of infectious diseases to understand their 
transmission and response capabilities. They believed that 
social, economic, and cultural forces shaped the dynamics 
of infectious disease outbreaks. The new data source 
provided possibilities for studying disease transmission 
behavior [7]. In response to the COVID-19, mathematical 
modeling is widely used to track and predict the disease 
spread. James L. P et al. proposed the differences and 
limitations in predicting these models. Enhancing the model 
inference effectiveness was crucial for current and future 
epidemic decision-making [8]. Ghanbari B utilized 
fractional derivatives using the Mita Leffler kernel to study 
the internal steady-state stability of susceptible and infected 
prey and predator disease models. The existence and 
uniqueness of solutions for fractional-order models was 
proposed. The new operator captured the model’s 
theoretical characteristics, which was more suitable for 
describing real-world phenomena than integer order 
equations [9]. Zhu Y et al. proposed a statistical 
transmission model based on case data and analyzed the 
sensitivity of different assumptions to estimate the early 
transmission of COVID-19 in China. When the parameter 
values were between 2.7 and 4.2, the propagation model’s 
simulation effect was the best [10]. Bedson J et al. reviewed 

infectious disease modeling methods to address the spread 
of diseases and proposed challenges and opportunities for 
integration with social science research and RCCE 
practices. Interdisciplinary collaboration and comprehensive 
disease models were crucial for reducing disease 
transmission [11]. 

LSTM is a common prediction model. Bi J et al. 
proposed an LSTM hybrid prediction method based on 
Savitzky Golay (SG) and time convolutional networks to 
accurately predict network traffic. This method combined 
the advantages of SG filter, TCN, and LSTM, which 
outperformed state-of-the-art algorithms in prediction 
accuracy, making it suitable for multiple fields [12]. Saeedi 
A et al. proposed a deep learning framework using 
electroencephalography for early diagnosis and prevention 
of severe depression. This framework combined brain 
connectivity analysis and deep learning architecture. Using 
one-dimensional Convolutional Neural Network (CNN), a 
high accuracy of 99.24% was achieved in the diagnosis of 
severe depression [13]. Huang F et al. proposed an 
improved LSTM to improve the deep learning model for 
text sentiment analysis, ignoring the sentiment modulation 
and lower level abstraction. This model integrated 
emotional intelligence and attention mechanisms, designed 
an emotion enhanced LSTM, and introduced topic level 
attention mechanisms. This method obviously improved 
sentiment classification performance on real datasets [14]. 
Ramaraj P proposed a CNN-based LSTM face detection 
technique to solve face recognition under unconstrained 
conditions, using self-channel and self-spatial attention 
blocks for feature extraction. This method outperformed 
existing methods on difficult datasets such as Kanpur [15]. 
Chen et al. proposed using LSTM to predict monthly 
rainfall and compared it with random forests to address the 
uncertainty in rainfall prediction. LSTM performed better 
than random forests on both sites, improving prediction 
accuracy and making it suitable for monthly rainfall 
forecasting under global climate conditions [16]. 

In summary, infectious diseases’ spread predicting can 
effectively reduce the transmission rate and improve 
people's ability to prevent infectious diseases. However, the 
current simulation schemes for infectious disease 
transmission have poor simulation effects on a wide range 
of infectious diseases, leading to poor prevention effects for 
such infectious diseases. LSTM is a common data 
prediction model. Multi-feature fusion CNN is adopted to 
improve LSTM. The improved model is adopted to analyze 
the personnel flow’s characteristics. Personnel flow 
characteristics and infectious disease compartment models 
are utilized to simulate and predict the spread of infectious 
diseases. 
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2. Theoretical Framework

2.1 Establishment of a personnel flow 
characteristic model based on MF-
Conv LSTM 

The movement of personnel within a fixed area is usually 
related to their life and work. Based on people's general life 
and work behaviors and habits, the general categories of 
personnel's actions can be divided into retail and 
entertainment, supermarkets and pharmacies, parks, public 
transportation, workplaces, and residences [17]. Before 
establishing a personnel mobility characteristic model, it 
should collect data on people's mobility. The collected raw 
data cannot be directly utilized. Therefore, it should 
standardize the raw data according to equation (1). 

𝑥𝑥′ = 𝑥𝑥−�̅�𝑥
𝜎𝜎

             (1) 

In equation (1), 𝑥𝑥′  refers to the standardized data. 𝑥𝑥 
refers to the specific eigenvalue of a certain type of 
behavior. �̅�𝑥  refers to the mean eigenvalue. σ refers to the 
standard deviation. After completing data standardization, 
these data still need to be partitioned. When dividing the 
data, the sliding window method was used, which can 
maintain the temporal continuity of the data and ensure that 
the samples used for model training have temporal 
correlation. The sliding window method can flexibly control 
the granularity and quantity of sample data by setting 
different window and step sizes. When dividing data, the 
sliding step size is set to 1, samples’ overlap ratio of each 
class is 85.7%. The sliding window size is 7. When 
constructing a model of personnel mobility behavior 

characteristics, LSTM is adopted as the basis. Multi-
features are integrated to analyze the characteristics of 
personnel mobility. When analyzing the personnel flow 
characteristics, three types of features are extracted, namely 
time-domain, frequency-domain, and other features [18]. 
Time-domain features are extracted using principal 
component regression analysis, which includes maximum, 
minimum, mean, standard deviation, and median. The 
frequency domain features are extracted using discrete 
Fourier transform, which is represented by equation (2). 

𝐷𝐷𝐷𝐷𝐷𝐷�𝑥𝑥(𝑡𝑡)� = ∑ 𝑥𝑥(𝑡𝑡)𝑇𝑇−1
𝑡𝑡=0 𝑒𝑒−

𝑗𝑗2𝜋𝜋𝑘𝑘𝑘𝑘
𝑇𝑇 ,𝑘𝑘 = 0,𝐷𝐷 − 1         

(2) 
In equation (2), 𝐷𝐷  refers to the sampling period. 𝑥𝑥(𝑡𝑡) 

refers to a time-domain signal. 𝑒𝑒−
𝑗𝑗2𝜋𝜋𝑘𝑘𝑘𝑘
𝑇𝑇  refers to the 

constant multiplier of the Fourier transform. 𝑘𝑘 refers to the 
frequency domain index. When extracting other features, 
this study adopts a polynomial curve fitting method for 
extraction, which can map the data to a high-dimensional 
space and capture the complex patterns and trends of the 
data through polynomial coefficients. This method is 
suitable for capturing nonlinear relationships and can 
provide an intuitive understanding of data variation patterns. 
The feature extraction is represented by equation (3) [19]. 
𝑃𝑃𝑃𝑃𝐷𝐷(𝛼𝛼0,𝛼𝛼1,⋯ ,𝛼𝛼𝑁𝑁; 𝑥𝑥(𝑡𝑡), 𝑡𝑡) = 𝛼𝛼0,𝛼𝛼1𝑡𝑡1,⋯ ,𝛼𝛼𝑁𝑁𝑡𝑡𝑁𝑁     

(3) 
In equation (3), 𝛼𝛼𝑁𝑁  represents a polynomial coefficient. 

Due to the regional characteristics of personnel flow, local 
feature extraction is required for different regions. A 2D-
Convolutional Neural Network (2D-CNN) is constructed to 
extract local features and construct a classifier in Figure 1. 
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Figure 1 Local feature-extracted structure of the 2D-CNN 

The constructed 2D-CNN includes an input layer, four 
feature layers, a flattening layer, a fully connected layer, and 
an output layer. Based on human daily habits, the time step 
is set to 7 when extracting local features from different 
regions. To further ensure the personnel flow in time-series 

prediction accuracy, the study combines LSTM with 2D-
CNN. A Conv-Long Short-Term Memory (Conv-LSTM) 
network is constructed, which takes into account the 
temporal and spatial characteristics of personnel flow in 
Figure 2.
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Figure 2 The Conv-LSTM local feature extraction structure 

Compared to 2D-CNN, Conv-LSTM feature extraction 
removes the convolution and pooling operations of the 
second feature coating. The fully connected layer between 
the flattening and output layers is adjusted to an LSTM 
layer. In this network structure, the flattening layer 
processes the data and inputs them into the LSTM layer to 
extract temporal features of personnel flow. After extracting 
the temporal features of the data through LSTM, the data 
features are activated and outputted through a fully 

connected layer. After using this network structure to 
extract data features, integrated analysis can be performed 
on features of different data types. The common ensemble 
learning methods are Bagging and Boosting. Each learner 
of Bagging is independent and can train weak learners in 
parallel on multiple processors, resulting in high processing 
efficiency. A personnel flow behavior feature analysis 
model is constructed using the Bagging method for multi-
feature integration, combined with Conv-LSTM in Figure 3. 

Data set

Test set

Train set

Frequency domain 
characteristics

Time-domain 
characteristics

Dimensional 
features

Local features

Multiscale features

Frequency 
domain model

Dimensional 
features model

Conv LSTMTime-domain 
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Output

Feature 
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Equal rights 
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Figure 3 The MF-Conv LSTM personnel flow characteristic analysis model 
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The constructed MF-Conv LSTM personnel flow 
characteristic analysis model includes two parts overall. 
Firstly, it is the multi-feature integration training for 
personnel mobility. This requires extracting frequency 
domain features, time domain features, dimensional 
features, and local characteristics of personnel mobility 
data. Simultaneously, it should construct and train various 
feature models. The second part is to test and integrate 
various features. 

2.2 A predictive model for infectious 
disease transmission based on 
vaccination compartment transmission 
model 

After analyzing the characteristics of personnel flow 
using MF-Conv LSTM, the output result is the infectious 
disease transmission prediction model’s input data. The 
Susceptible-Infected-Recovered (SIR) compartment model 
is a classic infectious disease model utilized to describe 
infectious diseases’ transmission in populations. This model 
was proposed by Kermack and McKendrick in 1927. LSTM 
divides the total population into three parts: susceptibility, 
infection, and recovery. When establishing this model, the 
following assumptions need to be made. Firstly, the 
population remains unchanged, without considering factors 
such as birth, death, or migration. Secondly, the contact rate 
between susceptible and infected individuals is directly 

proportional to the total susceptible and infected 
individuals. The proportionality coefficient means the 
infection rate. Finally, infected individuals‘ recovery or 
removal rate is directly proportional to the total infected 
individuals. The proportional coefficient means the 
recovery rate. LSTM is represented by equation (4) [20]. 

⎩
⎪
⎨

⎪
⎧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝛽𝛽 𝑑𝑑𝑆𝑆
𝑁𝑁

𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡

= 𝛽𝛽 𝑑𝑑𝑆𝑆
𝑁𝑁
− 𝛾𝛾𝐼𝐼

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛾𝛾𝐼𝐼

     (4) 

In equation (4), 𝑁𝑁 refers to the total population. 𝛽𝛽 refers 
to the infection rate. 𝛾𝛾 refers to the response rate. 𝑆𝑆 refers to 
the susceptible groups number. 𝐼𝐼  refers to the number of 
infected individuals. 𝑅𝑅  refers to the recovered population 
number. When constructing the vaccination prediction 
model for infectious disease transmission, this study takes 
the COVID-19 as the simulation prediction target. 
According to its transmission characteristics and the 
vaccination situation of various vaccines in the later stage, 
an improved LSTM is designed. There is a kind of infected 
but asymptomatic population in the infected people of 
COVID-19, which is called Expose. Since COVID-19 can 
be killed in a short time, a death population (Death) is 
added in the study. Vaccination has obvious intervention on 
the epidemic spread. Vaccines need to be considered when 
building a new model. Figure 4 shows the new model’s 
structure.

Susceptibility Expose Mild patients Severe patients

Death 

Vaccines 1

Vaccines 2

Recovery 

Figure 4 Considering the SIR for vaccination 

The COVID-19 vaccine is divided into Class I and Class 
II according to the type of vaccination. The infected 
population is divided into mild and severe according to the 
patient's condition. Severe patients need hospitalization. 
However, severe patients may not be able to receive 
inpatient treatment due to medical resource issues. The 
parameter information of LSTM considering vaccine 
administration in Figure 4 is represented in Table 1. 
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Table 1 SIR model parameter estimates considering 
vaccination 

Name Symb
ol Value Name Symb

ol Value 

Total 
populatio

n 

584000
00 

Isolation 
effectiven

ess 
i 0.75-

1.00 

Infectious 
advantage 

a 45%-
70% 

Restrict 
flow 

intensity 
tP 40%-

80% 

The 
proportio

n of 
mutated 
viruses 

tr
0.00-
0.18 

Number 
of 

vaccinatio
ns in the 

first stage 

1tv
4680

0-
2158

00 

Number 
of 

vaccinatio
ns in the 
second 
stage 

2tv 5684-
64810 

Infection 
rate of 

exposed 
individual

s 

2β / 

Phase 1 
Effectiven

ess 
1e 0.56 

Phase 2 
Effectiven

ess 
2e 0.96 

Latent 
time 1α  5d 

Secondar
y 

infection 
rate 

1β  / 

Exposure 
healing 
cycle 

1γ  5d 
Mild 

healing 
cycle 

2γ 7d 

Mild to 
severe 
cycles 

2α 7d 
Non-

hospital 
cure cycle 

3γ 42d 

Cure 
cycle for 
elderly 
patients 

4γ 21d 

Cure 
cycle for 

non-
elderly 
patients 

5γ 14d 

Non 
hospital 

mortality 
cycle 

1d 4d 

Death 
cycle of 
elderly 

patients in 
hospitals 

2d 14d 

Hospital 
mortality 
cycle for 

non-
elderly 
patients 

3d 28 

The 
proportio

n of 
elderly 

populatio
n 

B 0.26 

Mild 
patient 

proportio
n 

m 0.84 

Proportio
n of 

severe 
patients 

c  0.16 

3. Result

3.1 Experimental environment setting
A simulation and testing experimental environment of 

MF-Conv LSTM was established to validate the constructed 
model’s feasibility and effectiveness. The device operating 
system is the Windows 11 64bit operating system. The 
programming language is Python 3.7.3. The framework is 
pytorch. When training MF-Conv LSTM, a multi-feature 
integration analysis was conducted on the characteristics of 
personnel flow in X region as an example. X region has a 
total of 42 administrative regions, each containing 3-4 
levels. The COVID-19 is an infectious disease with the 
largest scale of transmission and the deepest social impact 
in recent years. Therefore, this infectious disease is 
considered as a simulated analysis object. When 
constructing a training and testing dataset for multi-feature 
integrated analysis of personnel mobility, the study utilized 
personnel mobility data from X region in 2020 as the 
training set, with 503 pieces of data. The test set was 
constructed based on personnel mobility data from 2021, 
with 93 pieces of data. The training data set for simulation 
and prediction of infectious disease transmission was the 
real transmission data of COVID-19 from February 2020 to 
July 2021. The test set consisted of real propagation data 
from July to November 2021. Table 2 provides detailed 
information on the experimental environment and training 
test dataset. 

Table 2 Details of the experimental environment 
settings 

Item Related 
information Item Related 

information 

Operating 
system 

Windows 11 
64bit 

Multi-
feature 

ensemble 
training set 

2020.2~2021.2 

RAM 64 GB 

Multi-
feature-

integrated 
test set 

2021.2~2021.11 

CPU 

Intel(R) 
Core(TM) 
i5-10300H 

CPU @ 
2.50GHz 

Infectious 
disease 

simulation 
prediction 
training set 

2020.2~2021.6 

GPU 

NVIDIA 
GeForce 

GTX 1660 
Ti 

Infectious 
disease 

simulation 
prediction 

test set 

2021.6~2021.11 
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3.2 Integrated analysis of multiple 
characteristics of personnel mobility 

The study trained and tested the MF-Conv LSTM based 
on personnel flow characteristics data in X region from 
February 2020 to February 2021 in Figure 5.

Test

Train 

5004003002001000
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5004003002001000
0.4

0.6

0.8
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0.9

0.7
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A
cc

ur
ac

y
Training Steps/Steps

(b) Change in accuracy

Figure 5 Ablation experimental analysis of the MF-Conv LSTM multi-feature ensemble approach 

Figure 5 (a) shows MF-Conv LSTM’s loss values during 
training and testing. As iterations continued to increase, 
MF-Conv LSTM’s loss values were continuously 
decreasing. During model training, during the 10th iteration 
of training, this model completed convergence with a loss 
value of approximately 0.85 after convergence. During 
model testing, the convergence speed decreased slightly and 
was completed in the 75th iteration, resulting in a loss value 
of around 1.05 after convergence. Figure 5 (b) shows MF-
Conv LSTM’s accuracy changes during training and testing. 
As the training steps increased, the model accuracy during 
training and testing continued to improve. During training, 
the highest accuracy was 0.94. In the test, the highest 
accuracy slightly decreased but remained around 0.9. To 
validate the MF-Conv LSTM’s effectiveness, ablation 
experiments were designed. The learner's prediction scores 
of the regenerations number in infectious disease infected 
populations were compared when using different feature 
extraction methods in Table 3. 

Table 3 Ablation experimental analysis of the MF-Conv 
LSTM multi-feature ensemble approach 

Sampl
e 

LST
M 

2D-
CNN PCF PLS 

Conv 
LST
M 

MF-
Conv 
LST
M 

1 0.816
2 

0.822
6 

0.658
4 

0.789
4 

0.835
1 

0.870
5 

2 0.818
7 

0.811
2 

0.668
2 

0.791
5 

0.844
1 

0.868
9 

3 0.808
4 

0.820
5 

0.648
1 

0.796
5 

0.845
2 

0.861
9 

4 0.810
5 

0.816
7 

0.667
5 

0.784
6 

0.846
1 

0.867
9 

In Table 3, for learners using a single feature ensemble, 
the predicted score for the regenerations number in infected 
populations of infectious diseases was consistently lower 
than that using a multi-feature ensemble learner. When 
using only frequency-domain features, the learner’s highest 
prediction score for the regenerations number of infectious 
disease infected individuals was only 0.6682. When using 
only time-domain features and local flow features, the 
learner’s prediction score did not exceed 0.8. When using 
deep learning feature ensemble, the learner’s prediction 
scores all reached 0.8 or above. When using MF-Conv 
LSTM for feature integration, the learner's infection 
prediction score reached 0.8705. The other two deep 
learning ensemble methods did not exceed 0.85. 
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Analysis of prediction results for the infectious 
diseases spread 

After training and testing the MF-Conv LSTM, the study 
simulated and predicted the spread of infectious diseases 
using this model in Figure 7.
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(b) Prediction fitting results
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Figure 7 Simulation analysis of infectious disease prediction combining MF-Conv LSTM with an improved SIR 
model 

Figure 7 (a) shows the model training situation. During the 
period from February 2020 to August 2020, this model had 
a good fitting effect on the daily newly confirmed cases of 
infectious diseases, with a basically complete fit. This 
indicated that this model’s training effect was good during 
this time period. From September 2020 to October 2020, 
this model’s fitting curve had a significant error, with a 
daily confirmed cases error of around 10000 during that 
time period. The fitting effect returned to a higher level in 

the subsequent time period. Figure 7 (b) shows the 
simulation prediction results for the infectious diseases 
spread. The overall fitting effect was good. However, at the 
beginning of the simulation prediction, there was a 
significant error, which could reach around 8000 people. 
The error for the rest time did not exceed 2000 people. The 
study further analyzed the daily number of new infections 
and daily deaths under vaccine intervention in Figure 8.
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Figure 8 Simulation results of infectious disease transmission under vaccination intervention 

Figure 8 (a) shows the simulated prediction results of the 
daily number of new infections. After vaccination 
intervention, the infectious disease experienced two peaks 
of new infections during transmission. The first peak 
occurred between October 2020 and November 2023, with 
a maximum daily increase of 38000 new infections. The 
second peak occurred from December 2020 to January 
2021, with a daily increase of approximately 68000 new 
infections. Figure 8 (b) shows the simulated prediction 
results of the daily death toll. This model predicted that the 
daily cumulative death toll would reach its peak in mid 
January 2021, at around 1400 people. The actual daily 
cumulative death toll reached its peak in late January 2021, 
at around 1700 people. After February 2021, the predicted 
daily cumulative death toll could drop to below 400. 

Conclusion 
Based on the characteristics of personnel mobility, this 

study combines the characteristics of infectious diseases 
themselves and the characteristics of vaccine intervention. 
This reduces infectious diseases’ harm to society and 
reduces the probability of people being infected in large-
scale infectious diseases. A multi-feature ensemble model 
for personnel mobility is designed to simulate and analyze 
the characteristics of personnel mobility in the context of 
large-scale infectious diseases. Meanwhile, these 
characteristics were utilized as inputs for infectious disease 
transmission’s simulation model, simulating and predicting 
the spread of infectious diseases. MF-Conv LSTM 
converged during the 10th iteration of training, with a loss 
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value of approximately 0.85 after convergence. MF-Conv 
LSTM’s highest accuracy in testing was around 0.92. When 
using multi-feature ensemble simulation analysis, the 
regenerations number of infectious diseases’ highest 
prediction score by the learner was 0.8705. When using 
single feature ensemble for simulation analysis, the 
predicted scores for the regenerations number of infectious 
diseases’ highest prediction score did not exceed 0.85. 
When simulating and predicting the transmission behavior 
of infectious diseases, the highest prediction error was 8000 
people. The designed infectious disease simulation and 
prediction model that considers the characteristics of 
personnel flow can accurately simulate the transmission 
behavior of infectious diseases. This provides direction for 
social intervention in the decision-making of infectious 
disease transmission and enhances society's defense ability 
against large-scale infectious diseases. However, the 
designed model has high data dimensions and complex 
calculations when extracting personnel flow characteristics. 
Future research will further optimize the extraction and 
analysis of personnel flow characteristics to reduce the 
computational complexity. 
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