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Abstract 
INTRODUCTION: Cervical cancer is the most common malignant tumor in the female reproductive system, with the 
number of deaths due to cervical cancer in developing countries accounting for 80% of the global total. In China, the 
incidence rate of cervical cancer is increasing year by year. At present, the commonly used methods for cervical cancer 
screening include TCT, HPV testing, TCT+HPV combined testing, FRD, and VIA/VILI. Among them, although 
TCT+HPV combined testing has high sensitivity and specificity, it is costly and time-consuming. VIA/VILI screening is 
cost-effective, easy to operate, and suitable for promotion in economically underdeveloped areas.However, VIA/VILI 
screening relies on the subjective judgment of doctors, so its accuracy is relatively low in rural areas of China with a large 
population and a lack of well-trained doctors. To address this issue, computer-aided diagnosis (CAD) technology is needed 
to improve the accuracy and reliability of VIA/VILI screening. 
OBJECTIVES: The implementation of artificial intelligence (AI)-based Visual Inspection with Acetic acid (VIA) 
screening and computer-aided diagnosis has the potential to significantly reduce the cost of cervical cancer screenings and 
increase the coverage rate of cervical cancer screenings, thus reducing the incidence rate of the disease. To this end, we 
have developed an AI preprocessing algorithm aimed at improving the accuracy of AI in detecting cervical cancer. 
METHODS: Initially, the algorithm maps images to the YCrCb and Lab color spaces. Unlike traditional enhancement 
methods that mainly focus on the luminance channel, our method primarily enhances the Cr channel in the YCrCb color 
space and a channel in the Lab color space. This paper innovatively proposes the LT_CLAHE algorithm to enhance the Cr 
channel, obtaining an enhanced image with a bias towards blue-green colors, and uses the WLS algorithm to enhance the a 
channel, obtaining an enhanced image with a bias towards red colors. Subsequently, the enhanced images from both color 
spaces are fused to eliminate color distortion. 
RESULTS: Experimental results show that our method significantly enhances the texture of lesions and outperforms 
traditional methods across various objective indicators. When the enhanced images from this paper are used as input for 
neural networks, there is also a significant increase in the accuracy of neural network detection. 
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1. Introduction
Cervical cancer incidence holds the top position among

malignant tumors in the female reproductive system. 

According to data from the World Health Organization 
(WHO), there are 530,000 new cases [1]. Among these, the 
number of women dying of cervical cancer in developing 
countries accounts for 80% of the global number. In China, 
cervical cancer incidence is increasing year by year [2]. 
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Currently, the prevalent methods for cervical cancer 
screening are Thin Prep Cytologic Test (TCT), human 
papillomavirus (HPV), TCT + HPV, FRD, and Acetic Acid 
and Lugol's Iodine (VIA、VILI). TCT+HPV has high 
sensitivity and specificity, but is more expensive and time-
consuming [3,4]. Folate receptor-mediated (FRD) screening 
is simple and inexpensive to perform, but it can only detect 
the presence of cervical disease and is difficult to determine 
specific kind of cervical disease. VIA/VILI has advantages 
such as being cost-effective, easy to operate, and offering 
timely diagnosis. It can be as effective as cytology for 
cervical cancer screening in economically undeveloped 
areas [5-9]. In other words, VIA/VILI screening is suitable 
for promotion in rural areas in China [10]. 

VIA/VILI screening is conducted by applying 5% white 
acetic acid solution to the surface of the patient's cervix, 
followed by observing the color of the patient's cervix under 
colposcopy [10]. Since VIA/VILI relies heavily on 
subjective experience and judgment of physician, the 
accuracy of VIA/VILI screening is relatively low in 
economically underdeveloped areas of China due to large 
population and lack of trained colposcopists [11]. 
Underwood et al. [12] reported an average positive 
colposcopy biopsy rate of 63.3%. To tackle this screening 
challenge, urgency is required for computer-aided diagnosis 
(CAD) enhancement to improve the accuracy and reliability 
of VIA/VILI screening. 

However, identifying cervical cancer using neural 
networks is challenging because cervical intraepithelial 
neoplasia grade 1 and grade 2 (CIN1/CIN2) have only faint 
pale white lesion features [10], which are subtle and difficult 
to extract. Popular networks such as U-net, resUnet, 
transformer, GCN, and DenseNet are unable to capture the 
lesion features effectively for AI recognition. It has been 
reported [13] that, neural networks have been applied to 
identify cervical intraepithelial neoplasia, but the 
recognition results have no reference value as these papers 
used fewer than 500 samples for training. 

Yuexiang Li [14] et al. proposed "Computer-Aided 
Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic 
Images," in which AI identification was achieved by 
obtaining lesion characteristics of cervical intraepithelial 
neoplasia through differences in 5 cervical images taken at 
30-second intervals after applying acetic acid. However, this
method requires a colposcope with filters, which is
expensive and not feasible for promotion in economically
undeveloped areas. Additionally, delaying the photograph 5
times drastically alters the original operating procedure and
habits of the physician. Consequently, physicians have
demonstrated significant resistance to the method, both
during the data collection phase and clinical trials.

A survey of 147 gynecologists knowledgeable about 
computer-aided diagnosis (CAD) revealed a general desire 
for an image enhancement technique that can enhance the 

textural features of CIN1 captured by colposcopy. It is 
hoped that this image enhancement technique will facilitate 
the physician's visualization and improve the accuracy of the 
neural network in identifying lesions without altering the 
original procedure. 

In Figure 1, it can be observed that, the color of lesion 
texture and background are very similar, and the boundary 
of the texture is also blurred. Therefore, the core idea of 
image enhancement is 1) to increase the color difference 
between the texture and background without obviously 
changing its color, and 2) to make the boundary of the 
texture clearer. 

(a) (b) (c) 
Figure 1. ALow grade cervical intraepithelial neoplasia 

sample,(a) CIN2, (b) CIN1,(c) CIN2. 

Current image enhancement techniques primarily involve 
a series of improved algorithms based on theories of 
histogram equalization (HE), Retinex, gamma correction 
(GC), dark channel, wavelet and transform, among others. 
Retinex can obtain a balance among dynamic range 
compression, edge enhancement, and color constancy, 
followed by development of single-scale Retinex (SSR) and 
multi-scale Retinex (MSR) algorithms [15], and multi-scale 
Retinex (MSRCR) [16] algorithm with color recovery. 
However, its poor performance in color stretching does not 
meet the requirements of this paper. Palanisamy et al. [16] 
proposed an enhancement method based on gamma 
correction and singular value decomposition, effectively 
highlighting blood vessel details in dark regions of the 
image. Zhou et al. [17] suggested a contrast enhancement 
method combining gamma correction and histogram 
equalization, which can emphasize blood vessels in fundus 
images, but has limitations in improving edge details in 
brighter image areas. Colposcopic images generally exhibit 
good illumination, and edge enhancement but this method is 
not significant. He et al. [18] proposed a dark channel prior 
algorithm for recovering high-quality fog-free images, 
which is unsuitable, as it weakens the texture features of 
pale white. However, this method is also unsuitable, as the 
detail layer decomposed by wavelet transform cannot 
effectively extract the texture of cervical precancerous 
lesions with colors close to background. Histogram 
equalization (HE) [19], which is simple and concise to 
implement, is widely used for contrast enhancement. 
However, processed images may have issues such as 
information loss, noise amplification, and excessive 
brightness enhancement. To address these problems, 
researchers have made numerous improvements based on 
HE [20], dualistic sub-image histogram equalization 
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(DSIHE) [21], and contrast-limited adaptive histogram 
equalization (CLAHE) [22]. 

Remarkable advancements in AI-driven image 
enhancement have been made recently. For instance, Li Y 
[14] introduced a deep auto-encoder to improve images
without excessively amplifying features. Retinex-Net
incorporated Retinex theory into CNN and devised a
decomposition network capable of breaking down reflection
and illumination components. These components were then
combined with a correction module to enhance low-light
images. Nonetheless, these existing algorithms remain
insufficient for enhancing low-grade cervical precancerous
lesions.

To significantly improve the textural features of CIN1 
captured by colposcopy, an AI recognition pre-processing 
algorithm for cervical cancer was proposed. This algorithm 
substantially increases the color contrast between the 
lesion's texture and background without considerably 
altering the image color, while also making the lesion's 
outline more distinct. The primary innovations of our study 
are as follows: 

(1) We propose an innovative approach to enhance lesion
texture by enhancing color channels in the color space. This 
method ensures visual comfort while making the lesion 
texture more prominent. 

(2) Enhancing color channels will inevitably cause color
distortion in images, so a single-color space is insufficient to 
meet the requirements. To solve this problem, this study 
chooses Lab and YCrCb, two color spaces that complement 
each other. The images are decomposed into Lab and YCrCb 
color spaces, and enhancement is done separately on each 
color space to increase the color difference between lesion 
texture and background, and then the color distortion is 
removed by merging the two color spaces. 

(3) This study proposes an innovative approach for
enhancing contrast-limited adaptive histogram equalization, 
which is locally truncated, and enhancing the blue and green 
components in the YCrCb color space in a directional 
manner. An innovative approach is also proposed to enhance 
the red component of the Lab color channel in a directional 
manner by enhancing the detail layer of the A channel. 

(4) The cervical intraepithelial neoplasia dataset PCC5000
was created, consisting of 5000 images of the cervix after 
acetic acid spraying, labeled by gynecologists. 

2. Materials and Methods

2.1 Data Source 
This paper involved the organization and classification of 

images on three publicly available datasets: the Microsoft 

Cervical Cancer Image Dataset [41], Google Cervical 
Cancer Segmentation[42], and Kaggle Cervical Cancer 
Image Classification[43]. From these, we acquired 2,000 
colposcopic images exhibiting acetic acid whitening 
reactions of the cervix. The collection includes 510 samples 
of non-cervical intraepithelial neoplasia, 556 samples of 
CIN1, 513 samples of CIN2, and 421 samples of CIN3.The 
curated data have been named PCC2K. 

2.2 Proposed Methods 
AWhite acetic acid solution was applied to the surface of 

patient's cervix to detect abnormalities in the cervical area 
based on color changes and the shade of these changes. Pale 
white lesions at the patient's cervical squamous epithelial 
junction or outside the junction indicate CIN1, while thick 
white lesions in the patient's cervix with one side always at 
the squamous-columnar epithelial junction and distinct 
borders indicate CIN2. A thick, white, brittle mass with an 
irregular surface at the patient's cervix indicates cervical 
carcinogenesis.  

CIN1, with its light and pale pinkish-white texture, is 
difficult to observe with naked eye and to recognize by a 
computer. Most image enhancement techniques enhance 
texture by altering the brightness and contrast of images. 
However, colposcopic images of the cervix are well-lit and 
high-resolution, meaning they cannot be enhanced by 
changing image brightness and contrast. Furthermore, since 
the texture of cervix itself is close in color to the texture of 
the lesion, enhancing the high-frequency component of the 
image is also not a viable method to improve the texture of 
the lesion.  

Traditional image enhancement algorithms enhance the 
brightness channel in various color spaces [16-18]. 
However, in medical image enhancement, enhancing the 
brightness channel is limited in order to ensure visual 
comfort. Over-enhancement of the brightness channel can 
excessively enlarge the texture and background gradient, 
causing the image to appear unnatural and accelerating 
visual fatigue. 

Color channel enhancement inevitably brings color 
distortion to the image, so a single-color space cannot meet 
the requirements. To solve this problem, this study chooses 
Lab and YCrCb color spaces，as shown in Figure 2. The 
image is decomposed into Lab and YCrCb color spaces, and 
enhancements are performed separately on these two-color 
spaces to enlarge the color difference between lesion texture 
and background. This study proposes an innovative method 
for locally truncated contrast adaptive histogram 
equalization, directional enhancement of blue and green 
components in the YCrCb color space, and directional 
enhancement of the red component in the Lab color channel 
using an innovative method of enhancing the detail layer in 
the A channel. These enhancements are then fused together 
to remove color distortion. 
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Figure 2. Algorithm flowchart, LT_CLAHE is local truncation 
limiting contrast histogram equalization 

2.3 Absorption Characteristics of 
Lesion Texture Under Different 
Wavelength Illuminations 

The surfaces of human organs such as the oral cavity, 
esophagus, stomach, vagina, and urethra consist of mucous 
tissue, which is mainly composed of an epithelial layer 
ranging from 100 μm to 500 μm and a mucous layer of 
approximately 1.5 mm [23]. Blood vessels are primarily 
distributed in the mucous and submucous layers. It is well 
known that the penetration ability of white light at each 
wavelength increases with increasing wavelength. The 
absorption properties of the epithelial layer, mucosa, and 
hemoglobin to the spectrum [23] are shown in Figure 1. 

Figure 3 illustrates that the reflection coefficient of red 
wavelengths (600-650 nm) is significantly smaller in 
comparison to those of blue and green wavelengths. The 
penetration capability of red wavelengths is superior, 
enabling them to reach the submucous layer, whereas blue 
and green wavelengths are limited to the mucous layer, as 
they can be reflected by the mucosa and blood vessels. The 
vertical coordinates of Figures 3A&B are much smaller than 
those of Figure 3C, with hemoglobin demonstrating a 
superior reflection of blue and green wavelengths compared 
to the mucous and epithelial layers. Furthermore, the 
reflection of hemoglobin reaches its peak in the blue (415 
nm) and green (540 nm) wavelengths. In summary, the 
green and blue components of colposcopic images offer 
microvascular information about the mucous layer, while the 
red component provides more extensive information 
regarding the submucous layer. 

(a) 

(b) 

(c) 

Figure 3. Absorption coefficient (μa) and reduced scattering 
coefficient (μ‘s) of (a) epithelium, (b) mucosa, and (c) 

oxygenated human blood 

Cervical intraepithelial neoplasia can be observed 
progressing from the dermis upwards, eventually covering 
the entire mucous layer. Consequently, the blue and green 
components of the image yield more textural information 
pertaining to the lesion, whereas the red component presents 
less texture information about the lesion. 

The cervical intraepithelial neoplasia develops from 
basement membrane of the mucosal layer and progresses 
upwards, covering the entire mucosal layer.  Consequently, 
the penetrating ability of white light increases with 
wavelength, with red light reaching the basement membrane 
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and blue and green light being reflected by the lesion cells. 
Hence, the blue and green color components in the image 
contain more information regarding the lesion texture, while 
the red component has less information regarding the lesion 
texture. 

The textural information in the R channel of the RGB 
color space appears very blurry in Figure 4, while the 
texture is relatively richer in the G and B channels. To 
enhance the contrast between the textural and background 
colors of the lesion, we heightened the weight of blue and 
green in the image. 

(a) (b) 

(c) (d) 

Figure 4. RGB color space:(a) original image; (b) R-channel; 
(c) G-channel;(d)B-channel;

2.4 Choosing appropriate color space 
If we simply enhance the G and B components in RGB 

color space, it will alter the color of entire image and cause 
obvious distortion. Enhancing the color channels in any 
single-color space will result in significant color distortion. 
To address this issue, the image was converted to Lab color 
space and YCrCb color space, both of which consist of one 
luminance channel and two-color channels. The luminance 
channel and two-color channels operate independently of 
each other, as do the two-color channels themselves. This 
independence allows for increased blue and green weight 
without causing excessive distortion to the image. 

In the Lab color space, L holds values ranging from 0-100 
(pure black - pure white), where a ranges values between 
+127-128 (magenta - green), and b takes on values from
+127-128 (yellow - blue).

We can easily observe that, blue and green are mainly
distributed in second and third quadrants in the YCrCb color 

space. By selectively enhancing the Cr channel, we 
enhanced the blue and green components in the image 
without affecting the distribution of other colors. Moreover, 
red is distributed in the first and second quadrants in the 
LAb color space. By selectively enhancing the A channel, 
we can enhance the red part of the image without affecting 
the distribution of other colors. 

As the lesion grows from the basal membrane of the 
cervical mucosa upwards, more blue and green lights are 
reflected from the relatively normal cervical skin. By 
selectively enhancing the Cr channel in the YCrCb color 
space, we enlarged the color gradient between the lesion 
texture and normal cervical skin. However, this 
enhancement may result in an overall cool color bias in the 
image. To address this issue, we selectively enhanced A 
channel in LAb color space to create a warm color-biased 
image. Finally, we fused the two images to remove color 
distortion. 

2.5 Enhancement of Brightness 
Channel 

Since the texture that required enhancement appeared as 
light white, and both the L components in the Lab color 
space and Y component in the YCrCb color space represent 
luminance in the image, enhancing L component and Y 
component can improve light white texture feature. The 
most commonly employed method for medical image 
enhancement is CLAHE (contrast-limited adaptive 
histogram equalization). In this study, CLAHE was adopted 
to enhance L and Y components, and after several trials, it 
was discovered that, the image did not experience 
significant distortion when the clipLimit was set to 1.5, and 
the texture of the lesion was enhanced to a certain extent. 

CLAHE can limit local contrast enhancement by 
constraining the height of the local histogram, which in turn 
restricts noise amplification and excessive local contrast 
enhancement. Initially, image was divided into sub-blocks 
and subjected to histogram "clipping" (Figure 1A, followed 
by histogram equalization for each sub-block (Figure 1B)). 
Lastly, each pixel was interpolated to obtain transformed 
gray value, thus achieving contrast-limited adaptive image 
enhancement [24]. 

2.6 Color Enhancement in YCrCb 
Color Space 

Blue and green colors in the YCrCb color space are 
primarily distributed in the second and third quadrants. By 
selectively enhancing Cr channel, the blue and green 
components in the image can be enhanced while minimizing 
the impact on other color distributions. Enhancing the blue 
and green components can make the texture of the lesion 
more prominent. To achieve directional enhancement of the 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

| Volume 10 | 2024 |



B. Feng et al.

6 

Cr channel, we innovatively propose a locally clipped 
contrast-limited adaptive histogram equalization method. 

2.7 Local Truncated Contrast-Limited 
Adaptive Histogram Equalization 
(LT_CLAHE) 

Traditional CLAHE reallocates the pixel points of each 
sub-block by evenly distributing the number of clipped 
pixels to each gray level of the histogram. Consequently, 
traditional CLAHE can enhance all colors evenly in the Lab 
and YCrCb color spaces. However, this enhancement effect 
is not very prominent since the lesion's texture is close to the 
background color. To address this issue, a local truncated 
contrast-limited adaptive histogram equalization is proposed 
in this study. The most innovative aspect of the method 
presented in this paper is introduction of an adaptive 
truncation value D, which determines the dynamic range of 
the final allocation, as the clipped pixels are no longer 
uniformly allocated. 

The specific steps are as follows: 
Step 1: Blocking. The input image was divided into non-

overlapping sub-blocks of equal size, with M representing 
the number of pixels in each sub-block. Larger sub-blocks 
yield more noticeable enhancement effects but result in the 
loss of more image details 

Step 2: Calculation of histogram. The histogram of sub-
blocks is represented by h(x), with x representing the gray 
level, which falls within the range of [0, L-1], and L 
denoting possible gray levels. 

Step3: Calculate the clipLimit with the formula: 
  cliplimit = M

L
+ (M−M/L)

normClipLimit    (1)

In which normClipLimit represents the contrast 
enhancement value, determining the magnitude of the 
contrast enhancement. 

Step 4: Pixel point redistribution. For each sub-block, 
h(x) is clipped using the corresponding clipLimit value. 
Traditional CLAHE uniformly redistributes the clipped 
pixels to each gray level in the histogram. However, from 
Figure 4B, it can be observed that blue and green colors are 
mainly distributed in the lower part of the Cr channel. 
Therefore, the clipped pixels are redistributed between 0 and 
D as follows; 

  totalE = ∑ (max(h(x) − clipLimit, 0))L−1
x=0          (2) 

   avgBIncr =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸
𝐷𝐷

         (3) 

In the equation, totalE refers to the total number of pixel 
values exceeding clipLimit. avgBIncr refers to the average 
number of pixels increased per gray level in the histogram. 
The above allocation process is repeated until all clipped 
pixels are redistributed, If h'(x) denotes the histogram after 
pixel redistribution of h(x), where we have: 

ℎ‘(𝑥𝑥) = � ℎ(𝑥𝑥) (𝑥𝑥 > 𝐷𝐷)
ℎ(𝑥𝑥) +  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥 ≤ 𝐷𝐷)       (4)

In this formula, upperLimit = clipLimit－avgBIncr. 

Step 5: Histogram equalization. Histogram equalization 
was performed on h'(x), with f(x) expressing the 
equalization result 

Step 6: Reconstruction of pixel gray value. Based on f(x), 
the gray values for the central pixel points of each sub-block 
were obtained and used as a reference to calculate the gray 
values of each point in the output image by employing the 
bilinear interpolation technique,as shown in Figure 5. 

(a) 

(b) 
Figure 5. Local truncated contrast-limited adaptive histogram 
equalization;(a) Histogram before processing; (b) histogram 

after processing; 

The precise truncation value D remains a topic for further 
exploration. If the value of D is too small, the blue-green 
color will be over-enhanced, causing significant color 
distortion. Conversely, if the value of D is too large, the 
enhancement will then be insufficient. A uniform D value 
for all images is also undesirable, as the color distribution of 
cervical images can vary widely depending on each 
physician's operating habits, colposcopic equipment, and the 
lesion. Furthermore, a uniform D value may cause some 
images to be over-enhanced and others to be under-
enhanced. To address this issue, the study proposes 
adaptively obtaining the D value using the 3σ criterion. 

D = {x|∑ 𝑃𝑃(𝑖𝑖) = 𝑇𝑇𝑥𝑥
𝑖𝑖=0 } (5)

Set probability density function as P (x) 
P(x) = 𝑛𝑛𝑥𝑥

𝑁𝑁
(𝑥𝑥 = 0,1, … , 𝐿𝐿 − 1)    (6)

In this formula,  represents the pixel number of xth gray 
level, N represents the total number of pixels in the digital 
image.  

T = ∑ 𝑃𝑃(𝑖𝑖)𝜇𝜇−𝜎𝜎
𝑖𝑖=0          (7)
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The mathematical expectation and variance of the xth 
gray level of the probability density function P (x) was set 
as; 

E(x) = ∑ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝐿𝐿−1
𝑥𝑥=0         (8) 

D(x) = E(𝑥𝑥2) − [𝐸𝐸(𝑥𝑥)]2           (9)

In the two formulas, μ and σ represent the expectation and 
standard deviation of the probability function P (x), 
respectively. 

𝜇𝜇 = E(x) σ = �𝐷𝐷(𝑥𝑥)          (10)

2.8 Enhancement of Lab Color Space 
We enhanced the A channel to create a warm-colored 

image in the Lab color space, which helps remove the 
distortion caused by YCrCb color space enhancement in the 
later fusion process. However, in this study, we did not 
continue to use the locally truncated contrast-limited 
adaptive histogram equalization for a channel enhancement. 
From the Figur4, it can be observed that, there is very little 
texture information in the red component, and small-scale 
enhancement will not enhance the texture, while large-scale 
enhancement will cause color distortion. To solve this 
problem, we first used the minimum mean square filter to 
extract the image details and texture from the L channel, and 
then fused the extracted details and texture with the A 
channel to obtain a warm-colored image. 

2.9 Detail Extraction Based on Least 
Squares Filtering 

The basic layer is obtained by applying weighted least 
squares filtering to structural layer, and the detail layer is 
obtained by subtracting the basic layer from the structural 
layer. Based on weighted least squares method, the detailed 
layer can extract good detail information while maintaining 
the original image structure, which is more effective for 
vaginal enhancement than artifacts and complexity in guided 
filtering and bilateral filtering. 
Assuming the L channel is , and after CLAHE enhancement 
is. 
WLS Model: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∑( (𝑢𝑢𝑝𝑝 − 𝑔𝑔𝑝𝑝)2 + 𝜆𝜆(ax,p(Lcstructure)(∂Ibase
∂x

)2 + ay,p(∂Lcbase
∂y

)2))
(11)

where p represents pixel point position, and ax and ay 
control the degree of smoothing at different positions. The 
first term represents that, the input and output images are as 
similar as possible. The second term is a common term that 
smooth the output image by minimizing the partial 
derivative. λ is used as a regularization parameter to balance 
two weights.  

The detailed extraction model is as follows: 
   Lcdetai(x, y) = Lcstructur(x, y) − Lcbase(x, y)        (12)

2.10 Fusion of Detail Texture and A-
channel 

The fusion of detailed layer of L channel and A channel 
requires a suitable weighting factor α to enhance the A 
channel and highlight the lesion details. The weighted fusion 
model is given by: 

Ae(x, y) = A(x, y) + αLcdetai(x, y)         (13) 

α = 0.1 + 1+(std(A(x,y)))
1
2

(std(Lcdetai(x,y)))
1
2+(std(A(x,y)))

1
2

  (14)

Std: standard deviation and : A-channel enhancement. 

2.11 Image Fusion Algorithm 
Enhancing the Cr channel in the YCrCb color space 

results in an overall cool color tone. On the other hand, 
enhancing A channel in Lab color space creates a warm 
color tone. Therefore, to address the issue of color shift, the 
enhanced images of the two-color spaces are fused in a 1:1 
ratio. 

The image in the Lab color space enhanced by the local 
truncated contrast-limited adaptive histogram equalization in 
this study is designated as IMG_LabE (i,j), and the image in 
the YCrCb color space enhanced by the local truncated 
contrast-limited adaptive histogram equalization in this 
study is designated as IMG_YCrCbE (i,j). Additionally, the 
original cervical cancer precancerous lesion image is 
designated as IMG(i,j), and the image after fusion is 
designated as IMG fuse (i,j). 

𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 0.5 × 𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖, 𝑗𝑗) + 0.5 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖, 𝑗𝑗) (15)

The fused image no longer exhibits the defect of bluish or 
greenish color. The texture of the lesion is significantly 
enhanced, and color of the lesion area is also markedly 
different from that of the normal tissue. Transformer, 
ResUnet, and other commonly used neural networks for 
medical image recognition can effectively capture the 
features of the lesion in IMG_fuse (i,j). However, some 
doctors still consider the color of the fused image to be not 
soft enough, and a portion of the light-colored non-lesion 
tissues are over-enhanced, which is not favorable for doctors 
to observe and diagnose with naked eye. To address this 
issue, the original image IMG(i,j) is fused with IMG_fuse 
(i,j), aiming to retain the texture enhancement results for 
IMG_fuse (i,j) in the lesion area as much as possible, and 
increase the proportion of IMG(i,j) in the non-lesion area as 
much as possible. 

According to the findings presented in literature [23], it is 
understood that normal cervical skin reflects more red light, 
while the lesion part contains a higher proportion of blue 
and green light.The image enhancement performed by the 
local truncated contrast-limited adaptive histogram 
equalization proposed in this study on Lab color space and 
YCrCb has minimized the effect on red component. 
Therefore, the color of non-lesion areas should not change 
much before and after enhancement, but the color of lesion 
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areas should exhibit a substantial change before and after 
enhancement. 

In this study, 50 images of cervical precancerous lesions 
(including CIN1, CIN2, and CIN3) were randomly selected 
from the self-constructed PCC5000 dataset. Ten points 
were taken at each lesion area and non-lesion area for each 
image, and the coordinates of these points were recorded. 
Image enhancement was then performed on these 50 
images of cervical cancer precancerous lesions using the 
aforementioned method, with 10 points being taken at each 
of the same locations. All the points were projected into 
HSV color space to compare changes in H-channel before 
and after enhancement. In HSV color space, H-channel 
contains color information in image. 

The value of each point on the H-channel before 
enhancement is set as H1, and the value of each point on 
the H-channel after enhancement is set as H2, then 

D_value = |H1 − H2| (16)

The distribution of the D_ value is shown in Figure 6, 
where it can be intuitively observed that the value change 
on the H-channel before and after enhancement in the non-
focal region is very small, mostly below 10, while the value 
change on the H-channel before and after enhancement in 
the focal region is quite large. This observation provides a 
theoretical approach for fusion of IMG_fuse (i,j) and 
IMG(i,j). The smaller the change in value on the H-channel 
before and after enhancement, the higher the percentage of 
IMG(i,j). Conversely, the larger the change in value, the 
higher the percentage of IMG_fuse (i,j). 

(a) 

(b) 
Figure 6. (a)D-value of non-lesional area;(a) D-value of 

lesional area. 

Figure 6A reveals that, the number of values less than 15 
in the non-focal area accounts for 69% of the total, and 

Test1 

Original Image MSR MSRCR Zhou 

Tan W Retienx-net An Zhiheng Ours 

Test2 

Original Image MSR MSRCR Zhou 

Tan W Retienx-net An Zhiheng Ours 

Test3 

Original Image MSR MSRCR Zhou 

Tan W Retienx-net An Zhiheng Ours 

Test4 

Original Image MSR MSRCR Zhou 

Tan W Retienx-net An Zhiheng Ours 

Test5 

Original Image MSR MSRCR Zhou 

Tan W Retienx-net An Zhiheng Ours 
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values less than 30 account for 97% of the total. Based on 
the 3σ criterion, the following fusion equations can be 
derived: 

 IMGfuse2(i, j) = �
𝐴𝐴 × IMG(i, j) + B × 𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖, 𝑗𝑗) , D_value(i, j) < 30 

0.2 × IMG(i, j) + 0.8 × 𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖, 𝑗𝑗) , D_value(i, j) ≥ 30       (17)

A = [2×D_value(i,j)+20]
100

(18) 

B = 1 − A    (19)

  𝐷𝐷_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑖𝑖, 𝑗𝑗) = |H1(i, j) − H2(i, j)|      
(20)

3. Results and discussion

3.1 Comparison and Testing 
In this section, a subjective and objective analysis of 

algorithms proposed in this study is presented, along with 
six classical image enhancement methods, including a series 
of improved algorithms based on theories of Retinex, 
Gamma Correction (GC), wavelets and transforms, and 
artificial intelligence. Classical neural networks such as 
Vision Transformer [25], densent [13], and convnext_tiny 
were also used to verify recognition accuracy of above 
neural networks, which was significantly improved after 
image enhancement of PCC5000 data using algorithms in 
this study. Test1 was in the CIN3 stage, Test2 was in the 
CIN2 stage, Test3 was in the CIN1 stage, Test4 was in the 
CIN2 stage, and Test5 was in the CIN1 stage. 

As the texture of lesions in CIN1 is not very clear for 
observation with naked eye or recognition by a computer, 
the core requirement for image enhancement of this type is 
to enhance the lesion texture to facilitate naked-eye 
observation and AI recognition. Furthermore, to facilitate 
the physician's observation with naked eye, the image color 
should not be shifted too much, as it could interfere with 
physician's judgment of the disease,as shown in Figure 7. 

The Multi-Scale Retinex (MSR) algorithm [15] leads to 
considerable distortion in the color of image without 
significantly enhancing the texture of the lesion. Multi-Scale 
Retinex with Color Restore (MSRCR) [26] can effectively 
enhance the texture of the lesion but at the expense of 
largely distorting the image color, making the image 
uncomfortable to view. 

The algorithm proposed by Zhou et al. [17] effectively 
enhances the texture and blood vessels in the dark areas of 
the image. In Test1, it was observed that the brightness of 
the shadow part was significantly enhanced compared to the 
original image, and the texture of the shadow part was 

clearer. However, there was almost no enhancement of the 
lesion texture. 

An Zhiheng's algorithm merges the benefits of Retinex-
Net and wavelet transform to accomplish image 
enhancement, resulting in augmented texture of the lesion 
without significant color distortion. Nonetheless, the 
enhancement outcomes from Test 3 and Test 4 revealed that, 
the enhanced textures remained insufficiently clear. 

The method proposed in this study demonstrates a notably 
superior enhancement of lesion texture compared to the 
other six approaches, maintaining overall color accuracy and 
providing a visually comfortable experience for subjective 
observation. This makes it highly suitable for gynecologists 
to perform diagnoses using the naked eye. Moreover, the 
lesion textures in the CIN1 stage during Test 3 and Test 5 
experienced significant enhancement. However, this study’s 
algorithm does not address illumination adjustments and 
fails to improve dark regions. 

The acetic acid response map for cervical intraepithelial 
neoplasia indicates that, ample light is typically present at 
the cervix, where dark areas are virtually non-existent. 
Consequently, enhancing dark regions is deemed 
unnecessary within the context of this algorithm.  

Objective metrics effectively assess quality attributes of 
enhanced images and quantitatively differentiate between 
superior and inferior image enhancement methods. Four 
reference evaluation indicators were selected: 

The PCQI index [27] (Patch-based Contrast Quality 
Index) was devised as a flexible representation. 

The Peak Signal-to-Noise Ratio (PSNR [28]) indicator 
serves to evaluate noise performance.  

MSE = 1
𝑚𝑚𝑚𝑚

∑ ∑ [𝐼𝐼(𝑖𝑖, 𝑗𝑗) −𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0

𝐾𝐾(𝑖𝑖, 𝑗𝑗)]2(17) 

PNSR = 10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

𝑀𝑀𝑀𝑀𝑀𝑀
�(18) 

where I and K symbolize the enhanced image and original 
image, respectively, MAXI denotes the maximum pixel 
value of the image, and MSE signifies the image's mean 
square error. 

C_II [29] is a contrast assessment index tailored for 
medical images.  

𝐶𝐶_II = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 (19) 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚+𝑚𝑚𝑚𝑚𝑚𝑚

(20) 

where max and min represent maximum and minimum 
pixel intensity values in a window. Coriginal and 
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Cprocessed are the average of local contrast of image before 
and after processing, respectively.  

The conventional image window size is set to 5 × 5 
pixels. In other case, window size was set to 50 × 50 pixels 
for a more precise evaluation of endoscopic images [30]. 

The DV-BV [35] evaluation technique can segregate 
image pixels into background and foreground pixels. The 
BV value corresponds to the average of the variance of all 
background pixel neighborhoods, while the DV value 
denotes the average of the variance of all foreground pixel 
neighborhoods. 

Table 1. Indicators processed by different methods 

Method Image PCQI PSNR 𝐶𝐶𝐼𝐼𝐼𝐼 DV-BV

MSR 

Test1 0.409 14.245 0.544 2.285 

Test2 0.590 15.455 0.701 5.129 

Test3 0.567 15.840 0.754 11.161 

Test4 0.554 15.292 0.646 1.956 

Test5 0.619 14.421 0.696 2.285 

MSRCR 

Test1 0.854 20.258 1.777 158.658 

Test2 0.988 19.984 1.986 29.687 

Test3 0.868 20.100 1.633 57.335 

Test4 0.857 19.088 1.884 8.585 

Test5 0.889 20.997 1.859 8245 

Zhou 

Test1 0.554 17.471 0.674 7.400 

Test2 0.803 21.576 0.904 10.860 

Test3 0.800 21.988 0.909 24.025 

Test4 0.768 21.483 0.922 2.903 

Test5 0.785 18.692 0.830 3.459 

Tan W 

Test1 0.569 23.295 0.952 9.042 

Test2 0.853 22.939 1.475 14.102 

Test3 0.819 21.279 1.476 32.873 

Test4 0.820 22.264 1.568 4.192 

Test5 0.845 23.295 0.952 9.042 

retienx-net 

Test1 0.437 14.008 0.520 2.149 

Test2 0.585 15.417 0.711 5.102 

Test3 0.549 15.799 0.727 11.080 

Test4 0.561 15.300 0.628 1.960 

Test5 0.602 14.315 0.599 2.185 

Test1 0.402 13.688 0.456 2.015 

An Zhiheng 

Test1 0.579 23.452 1.008 9.056 

Test2 0.901 23.012 1.511 14.154 

Test3 0.839 21.199 1.502 33.463 

Test4 0.888 22.789 1.597 4.628 

Test5 0.875 23.695 0.982 9.142 

Ours 

Test1 0.951 23.243 1.876 353.716 

Test2 1.086 22.674 2.086 34.017 

Test3 1.041 22.197 1.842 68.881 

Test4 1.062 22.059 1.944 10.905 

Test5 1.066 23.992 1.971 10.159 

The algorithm presented in this study significantly 
outperforms other algorithms in terms of PCQI, C_II, and 
DV-BV，as shown in Table1. Moreover, it closely matches
the algorithms proposed by Tan W and An Ziheng with
regard to the PSNR index, surpassing other algorithms. The
PCQI index in this algorithm is higher than in other
algorithms, demonstrating improved image contrast and a
clearer lesion texture. A higher PSNR value typically
signifies better reconstructed image quality, and this study’s
algorithm also excels in the index. With a higher C_II index
than other algorithms, this paper's algorithm proves its
strength in the contrast evaluation index for medical images,
suggesting that it can more effectively enhance the details of
lesion texture. Furthermore, the algorithm surpasses other
algorithms in the DV-BV index, which reflects the
difference between background and texture. This indicates
that, the algorithm can considerably magnify the disparity
between focal and normal tissue, addressing the issue of
lesions' texture and background color being too similar in
the acetic acid staining map of cervical intraepithelial
neoplasia.

3.2 Impact of Image Enhancement on 
Neural Network Accuracy in Identifying 
Cervical Intraepithelial Neoplasia 

Experimental platform parameters were as follows: 
Windows 10 system, Intel i7-7700K, 4.02GHzx8, 32GB 
RAM, RTX3080Ti. 

Three highly representative neural networks - Vision 
Transformer [25], Densenet [13], and Convnext_tiny - were 
chosen to verify the improvement of pre-processing 
algorithm on neural network accuracy in identifying cervical 
intraepithelial neoplasia. The PCC5000_Ours dataset was 
obtained after applying the image enhancement algorithm 
proposed in this study to all images in the PCC5000 dataset. 
The image enhancement algorithms proposed by Tan W and 
An Ziheng, as described in Sections 4.1 and 4.2, also 
exhibited some impact on the textural enhancement of 
cervical intraepithelial neoplasia. Their enhancement effects 
are significantly better than those of other comparison 
algorithms. Consequently, all images in the PCC5000 
dataset were enhanced using algorithms proposed by Tan W 
and An Ziheng, resulting in the PCC5000_TanW dataset and 
PCC5000_AnZ dataset, which were used for comparative 
tests. Table 2 displays the accuracy of three neural networks 
in recognizing the four datasets. 

Table 2. the accuracy of the three neural networks in 
recognizing the four datasets. 

Dataset Name 

Vision Transformer densent convnext_tiny 

Accuracy 

(two 

categories)1 

Accuracy 

(four 

categories)2 

Accuracy 

(two 

categories)1 

Accuracy 

(four 

categories)2 

Accuracy 

(two 

categories)1 

Accuracy 

(four 

categories)2 
PCC5000 80.3% 68.2% 78.9% 60.6% 81.1% 62.8% 
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PCC5000_Ours 88.7% 79.2% 88.4% 73.8% 90.0% 71.7% 

PCC5000_TanW 84.6% 71.8% 83.2% 68.6% 84.3% 66.4% 

PCC5000_AnZ 85.9% 70.2% 81.7% 68.2% 82.9% 67.1% 

Table 2 demonstrates that, the recognition accuracy of three 
neural networks in the binary classification case (where 
samples were divided into two categories: no lesion traces 
and lesion traces) improved after pre-processing with image 
enhancement algorithm presented in this study. This 
improvement was significantly greater than that of 
algorithms proposed by Tan W and An Ziheng. Additionally, 
in the case of quadruple classification (where samples were 
divided into no lesion traces, CIN1, CIN2, and CIN3), the 
recognition accuracy of all three neural networks 
substantially improved after pre-processing with this study’s 
image enhancement algorithm. This is due to the clearer 
texture and more distinguishable features of each lesion 
cycle. However, the improvement of algorithms proposed by 
Tan W and An Ziheng in the case of quadruple classification 
was not as apparent. 

3.3 Discussion on Novelty of Our 
Proposed Methods 

The novelty of the proposed method is evident in the 
following aspects: An analysis was conducted on penetration 
ability of different wavelengths of light in the mucous layer 
and lesion development process for cervical intraepithelial 
neoplasia. This confirmed that, enhancing the blue and green 
color components can improve the texture of the lesion. 

This study proposes a method for locally truncated 
contrast adaptive histogram equalization and directional 
enhancement of blue and green components in the YCrCb 
color space. Additionally, a technique for enhancing the red 
component in the Lab color channel is presented by 
increasing the detail layer in the A channel. Furthermore, a 
fusion algorithm is developed to remove color bias. This 
method significantly enhances the texture of lesions while 
maintaining comfortable observation by the human eye. 

A local truncated contrast-limited adaptive histogram 
equalization with an adaptive truncation value D is thus 
herein innovatively proposed. Clipped pixels were no longer 
uniformly distributed, and instead, the dynamic range of 
final allocation was determined by the truncation value D, 
which was adaptively obtained with reference to the 3σ 
criterion in statistics. 

4. Conclusion
In this study, a dual color space enhancement fusion

algorithm was proposed to enhance the lesion texture by 
considering penetration ability of different wavelengths of 
light in the mucous layer and lesion development process for 
cervical intraepithelial neoplasia. Additionally, a local 

truncated contrast-limited adaptive histogram equalization 
was proposed to enhance blue and green components by 
utilizing the color distribution characteristics of Lab color 
space and YCrCb color space. Enhancement of red 
component was achieved by using a detail layer 
enhancement technique on A channel. Lastly, a custom 
image fusion algorithm was employed to remove color 
differences, providing a more comfortable visual experience 
while greatly enhancing the texture. The texture 
enhancement indicators in this algorithm outperformed 
those of other compared algorithms. As a pre-processing 
algorithm for neural networks, the algorithm proposed also 
significantly improves recognition accuracy and facilitates 
diagnosis by doctors using their naked eye. 

Naturally, the algorithm proposed in this study has some 
limitations. For instance, a dedicated neural network 
recognition algorithm for cervical intraepithelial neoplasia 
was not proposed, and only three commonly used neural 
networks were applied to verify the recognition effect. In 
future research, the neural network will be improved based 
on Vision Transformer and will achieve a higher recognition 
accuracy by combining the pre-processing algorithm 
proposed in this paper. 
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