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Abstract

This paper presents a new approach for effective segmentation of images that can be integrated into any
model and methodology; the paradigm that we choose is classification of medical images (3-D chest CT
scans) for Covid-19 detection. Our approach includes a combination of vision-language models that segment
the CT scans, which are then fed to a deep neural architecture, named RACNet, for Covid-19 detection. In
particular, a novel framework, named SAM2CLIP2SAM, is introduced for segmentation that leverages the
strengths of both Segment Anything Model (SAM) and Contrastive Language-Image Pre-Training (CLIP) to
accurately segment the right and left lungs in CT scans, subsequently feeding these segmented outputs into
RACNet for classification of COVID-19 and non-COVID-19 cases. At first, SAM produces multiple part-based
segmentation masks for each slice in the CT scan; then CLIP selects only the masks that are associated with
the regions of interest (ROIs), i.e., the right and left lungs; finally SAM is given these ROIs as prompts
and generates the final segmentation mask for the lungs. Experiments are presented across two Covid-19
annotated databases which illustrate the improved performance obtained when our method has been used for
segmentation of the CT scans.

Received on 28 August 2024; accepted on 01 November 2024; published on 02 April 2025

Keywords: RACNet, SAM, CLIP, segmentation, classification, Covid-19 detection, COV19-CT-DB

Copyright © 2025 D. Kollias et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eetpht.11.9010

1. Introduction
The application of Deep Learning (DL) techniques
in medical image analysis has revolutionized the
field, leading to substantial improvements in the
accuracy and reliability of diagnoses [1–8]. In pathology
and radiology, DL models have proven superior in
extracting clinically relevant information from medical
images compared to traditional manual assessments,
which are often subjective and inconsistent. However,
integrating these AI-based methods into routine
clinical workflows requires significant development
and rigorous validation.

This paper focuses on the diagnosis of COVID-19
using advanced medical image analysis techniques,
particularly utilizing three-dimensional (3-D) chest CT
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scans. Advanced approaches target the segmentation
and automatic detection of pneumonia regions in the
lungs, followed by identifying anomalies associated
with COVID-19, such as ground-glass opacities,
consolidation, and interlobular septal thickening,
which are typically found under the pleura. These
methods necessitate large, annotated datasets for
effective model training.

To meet this need, the COV19-CT-DB [9–11, 11–
16] was developed, a comprehensive database of 3-
D chest CT scans, which includes 7,756 scans (1,661
annotated as COVID-19 and 6,095 as non-COVID-19
cases) of around 2.5 million CT slices. In addition, we
introduce RACNet, an innovative deep neural network
architecture designed to address the challenges of
analyzing 3-D CT scans. RACNet is engineered to:
i) process volumetric CT scan data, ii) handle the
variability in slice numbers across scans, and iii)
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deliver high diagnostic performance for COVID-19.
This architecture incorporates dynamic routing and
feature alignment mechanisms that selectively process
relevant Recurrent Neural Network (RNN) outputs for
making diagnostic decisions.

However the performance of RACNet (and of
any classification model) depends on the input 3-D
CT scans and whether they are segmented or not.
Segmentation of chest CT scans is crucial for several
reasons in the context of classification, particularly
for diseases like COVID-19. Firstly, segmentation
isolates specific regions of interest (ROIs), such
as the lungs, which are critical for diagnosing
respiratory conditions. By focusing on these relevant
areas, the classification model can avoid distractions
from irrelevant regions, leading to more accurate
diagnoses. Secondly, segmentation allows for the
extraction of detailed and localized features from the
segmented regions. This detailed feature extraction can
significantly improve the performance of classification
models by providing more precise and relevant
information. Thirdly, medical images often contain
noise and artifacts from surrounding tissues and
organs. Segmentation helps in reducing this noise by
isolating the lung regions, thus providing cleaner input
data for the classification model. Finally, segmentation
ensures that the classification model consistently
analyzes the same anatomical regions across different
scans and patients. This consistency is vital for training
robust and generalizable models.

Many state-of-the-art approaches for COVID-19
classification either do not perform segmentation at
all or perform segmentation as a combination of
morphological transforms and a pre-trained model,
like U-Net [17–19]. More specifically, for each CT-scan,
every slice first passes through the pre-trained U-Net.
After all slices of the CT-scan are segmented by the
U-Net model, there is a checking procedure to assure
that all slices are segmented. If a slice has a mask area
less than 40 % of the largest mask area of the CT-scan,
then morphological transforms are used to segment
this slice. However, the issue with such approaches is
that the segmentation is not very accurate; for instance,
the segmentation mask includes the lungs and the
mediastinal mass between them, or a lung is segmented
along with its surrounding area and so on. To solve this
issue, in this work, we present an innovative framework
that integrates Segment Anything Model (SAM) [20]
and Contrastive Language-Image Pre-Training (CLIP)
[21] to segment only the right and left lungs in CT scans,
with these outputs subsequently being fed into RACNet
for classification to detect COVID-19 and non-COVID-
19 cases.

SAM and CLIP are two exemplary Vision Foundation
Models (VFMs) that have showcased exceptional
capabilities in segmentation and zero-shot recognition,

respectively. SAM, a prompt-driven segmentation
model, excels across diverse domains. SAM has been
trained on an extensive dataset of over one billion
masks, making it highly adaptable to a wide range
of downstream tasks through interactive prompts. It
can operate in two distinct modes: segment everything
mode and promptable segmentation mode. In our
approach, we employ both modes to achieve optimal
segmentation results. SAM has shown impressive
results in a broad range of tasks for natural images,
but its performance has not been state-of-the-art when
being directly applied to medical imaging. Conversely,
CLIP’s training with millions of text-image pairs has
endowed it with an unprecedented ability in zero-shot
visual recognition.

Despite their individual successes, their unified
potential for medical image segmentation remains
largely unexplored. Existing methods for adapting SAM
to medical imaging often rely on tuning strategies that
require extensive data or prior prompts tailored to the
specific task, posing significant challenges when data
samples are limited [22].

Medical imaging segmentation tasks exhibit inherent
variability based on the specific clinical scenario,
complicating the adaptation process. To assign semantic
labels to SAM-provided masks, our method involves
cropping the original image according to these masks.
This set of cropped regions is then processed by CLIP,
which retrieves the corresponding crop in a zero-shot
manner using visually descriptive sentences related
to the lungs [23], generated via GPT. The retrieved
region of interest (ROI) mask is subsequently used
for bounding box prompt generation, guiding SAM to
deliver the final lung segmentation.

The remainder of this paper is organized as follows:
Section 2 reviews the related work we have developed
in medical image analysis and COVID-19 diagnosis
and introduces the vision-language models. Section 3
outlines the proposed pipeline, including the vision-
language models and the RACNet architecture. Section
4 presents the experimental setup and results, whilst
Section 5 concludes the paper and suggests future
research directions.

2. Related Work
SAM is a promptable vision foundation segmentation
model designed to segment everything in an image
based on different types of prompts, such as bounding
boxes and point prompts. It comprises an image
encoder, a prompt encoder, and a lightweight mask
decoder. A pretrained Vision Transformer (ViT) [24]
is used as the image encoder, transforming the
input image into dense features. The prompt encoder
processes prompts, which can be sparse or dense,
encoding them into a format suitable for mask
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generation. SAM can operate in two modes: segment
everything mode and promptable segmentation mode.
The former segments everything in the image using a
grid of keypoints as prompts, while the latter segments
specific regions based on provided prompts. Our
framework utilizes both modes of SAM in conjunction
with CLIP.

CLIP is a pre-trained large Vision-Language Model
known for its strong generalizability and impressive
zero-shot domain adaptation capabilities. It aligns
image and text modalities within a shared embedding
space, enabling it to perform image classification
directly on the target dataset without any fine-
tuning. By employing prompt engineering, CLIP can
be adapted to various domains, incorporating relevant
semantic details related to the specific target task.
Our framework leverages CLIP’s zero-shot recognition
capabilities to identify and retrieve the ROI in CT scans,
facilitating accurate lung segmentation.

Various 3-D CNN models have been employed for
detecting COVID-19 and differentiating it from com-
mon pneumonia (CP) and normal cases using volumet-
ric 3D CT scans [18, 19]. For instance, [25] utilized a
pretrained DenseNet-201 model, which was fine-tuned
on CT scan images to classify them into COVID-19
or non-COVID-19 categories. The performance of this
model was compared against other pretrained and fine-
tuned models (VGG16, ResNet152V2, and Inception-
ResNetV2). [26] combined CNNs with RNNs to process
CT scan images, successfully distinguishing between
COVID-19 and non-COVID-19 cases. Similarly, [27]
proposed a multi-task architecture featuring a shared
encoder for 3D CT scans and three branches: a decoder
for image reconstruction, a second decoder for COVID
lesion segmentation, and a multi-layer perceptron for
classification into COVID-19 and non-COVID-19 cate-
gories.

Additionally, a weakly supervised deep learning
framework was introduced by [28] for COVID-19
classification and lesion localization using 3D CT
volumes. This framework utilized a pretrained UNet
to segment lung regions in each CT slice, which were
then fed into a 3D DNN for classification. COVID-
19 lesions were localized by combining activation
regions from the DNN with connected components
through an unsupervised method. Furthermore, [29]
established baseline performance using 3D models
such as ResNet3D101 and DenseNet3D121. They then
proposed a differentiable neural architecture search
(DNAS) framework to automatically identify optimal
3D DL models for CT scan classification. The study
also published the training, validation, and test datasets
used, providing a resource for future research.

3. The Proposed Approach
The complete framework of the proposed approach is
depicted in Figure 1. It consists of the segmentation
framework (which has the goal of segmenting only
the right and left lungs in CT scans) and the COVID-
19 classification framework (RACNet). Let us stress
that the proposed segmentation framework can be
integrated in any classification model for any similar
task (not just RACNet, or not for COVID-19 detection).
More details about each framework follow.

3.1. The SAM2CLIP2SAM Segmentation Framework
Our proposed framework leverages the combined
strengths of the Segment Anything Model (SAM)
and Contrastive Language-Image Pre-Training (CLIP)
for the task of lung segmentation in CT scans,
followed by classification using RACNet. This proposed
methodology, inspired by [30], can be delineated into
three primary components: i) part-based segmentation
using SAM; ii) region of interest (ROI) extraction using
CLIP; and iii) final segmentation using bounding box
prompts from SAM.

Part-based Segmentation using SAM. In the first phase,
SAM is employed to generate part-based segmentation
masks from the input CT scan image. SAM operates in
its segment-everything mode to produce an exhaustive
set of masks. Given an input image I ∈ ℜH×W×3 (with
H and W denoting the Height and Width of the image)
and a grid of keypoints G, SAM generates a set of part-
based masks A:

A = SAMseg−everything (I,G) (1)

where A = {a1, a2, ..., an} and each ai is a mask
corresponding to a specific region in I .

ROI Extraction using CLIP. Once the part-based masks
are generated, the next step involves extracting the
mask corresponding to the Region Of Interest (ROI)
using CLIP. The masks from A are used to crop the
input image I , resulting in a set of cropped images C:

C = {I · ai | ai ∈ A, area(ai) > τ} (2)

where · denotes element-wise multiplication and τ is
the area threshold used to filter out background masks.

Visually descriptive textual prompts for lung
anatomy are generated using GPT. These prompts are
passed through CLIP’s text encoder to obtain a textual
embeddingW :

W = CLIPtext−encoder (VDT ) (3)

where VDT represents the visually descriptive text.
Each cropped image c ∈ C is then passed through

CLIP’s vision encoder to obtain a set of vision
embeddings V :
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Figure 1. Our whole proposed pipeline that includes segmentation and classification tasks

V = {vi | vi = CLIPvision−encoder (ci), ci ∈ C} (4)

The similarity between each vision embedding vi
and the text embedding W is computed using cosine
similarity:

sim(vi ,W ) =
vi · W
||vi | · ||W||

(5)

The mask corresponding to the ROI is identified as
the mask with the highest similarity score:

aROI = aarg maxi sim(vi ,W ) (6)

Final Segmentation using Bounding Box Prompts. The final
segmentation step involves using the bounding box
of the ROI mask to generate prompts for SAM. The
bounding box B of the ROI mask aROI is calculated as:

B =
(
min(x,y)∈aROI

x, min(x,y)∈aROI
y,

max(x,y)∈aROI
x, max(x,y)∈aROI

y
)

(7)

SAM is then prompted with B to generate the final
segmentation mask for the lungs:

af inal = SAMpromptable(I,B) (8)

The segmented lung regions af inal are subsequently
used to train and classify images in RACNet for
detecting COVID-19 and non-COVID-19 cases.

3.2. The RACNet COVID-19 Classification
Framework
An overview of the RACNet COVID-19 Classification
Framework can be seen in Figure 2. Each segmented 3-
D scan, consisting of t slices, is analyzed using a CNN-
RNN based model. A routing component equipped with
alignment and masking operations effectively handles
the variability in t across different CT scans. The final
diagnosis is produced through a dense layer followed
by an output layer.

The input data is fed into the 3D Analysis component
of RACNet, which comprises a Convolutional Neural
Network (CNN) and a Recurrent Neural Network
(RNN). The CNN component performs 2-D slice
analysis, extracting lung features from each slice.
Our objective is to replicate the diagnostic process
of medical professionals by utilizing all CT slices for
COVID-19 detection. The RNN component processes
the sequential features extracted by the CNN, analyzing
the CT scan slices in sequence. The features extracted by
the RNN are subsequently fed into the RACNet Routing
Component. These features are concatenated and then
processed by the Mask Layer.

During the training of RACNet, the routing compo-
nent dynamically selects a number of RNN outputs
equal to the length l of the input, zeroing out the
remaining RNN outputs. The selected outputs are then
fed into the dense layer. This selection process can be
implemented in two ways: by either selecting the first
l RNN outputs, or through an ‘alignment’ approach,
where l RNN outputs are positioned at equidistant
intervals within the [0, t − 1] range, with the remaining
outputs placed between them.
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Figure 2. The RACNet model for COVID-19 Classification

The concatenated features are then processed by the
RACNet Classification Component, which includes a
dense layer and an output layer utilizing a softmax
activation function to predict the presence or absence
of COVID-19.

The dense layer is responsible for the final extraction
of semantic information from the RNN outputs.
During training, weight updating is guided by the
routing mechanism and the Mask Layer. Only the
weights corresponding to the selected RNN outputs
are updated, while the others remain constant until
they are selected for another scan input. We keep these
weights constant during training and ignore the links
of RNN outputs which are not selected by the routing
mechanism [31].

4. Experimental study

4.1. Databases
The COV19-CT-DB database comprises 7,756 3-D chest
CT scans collected from various medical institutions.
Each CT scan contains between 50 and 700 2-D CT
slices. The dataset includes 1,661 scans from COVID-
19 positive patients and 6,095 from non-COVID-19
cases, totaling approximately 2.5 million images. All
images have been anonymized, with 724,273 slices
labeled as COVID-19 and 1,775,727 slices labeled
as non-COVID-19. There is big variability in scan
lengths due to factors such as required resolution
and the specific features of the imaging equipment
used [32]. To extend and disseminate this research,
four COV19D Competitions have been organized in
conjunction with workshops at ICCV 2021 [33], ECCV
2022 [14], ICASSP 2023 [34] and CVPR 2024 [10].
These competitions featured challenges on COVID-19
detection, severity assessment, and domain adaptation
[35, 36], all leveraging the COV19-CT-DB database.
In the presented results thereafter, we utilized the
part of COV19-CT-DB [9, 33] used in the ECCV 2022

Competition [14, 37, 38]. This includes 1550 COVID-
19 and 5044 non-COVID-19 3-D CT scans. The training
part includes 882 COVID-19 and 1110 non-COVID-19
samples and its validation set 215 COVID-19 and 289
non-COVID-19 samples.

We also used the MosMedData database [39], which
includes 856 COVID-19 CT-scans and 254 non-COVID
samples (601 COVID-19 and 178 non-COVID-19 in the
training set; 256 COVID-19 and 76 non-COVID-19 in
the test set).

4.2. Performance Metric
The performance measure used to evaluate the models’
performance in detecting Covid-19 is the average F1
Score (i.e., macro F1 Score) across all 2 categories
(Covid-19 and non-Covid-19) :

P =
FCovid−19

1 + Fnon−Covid−19
1

2
(9)

The F1 score is a weighted average of the recall
(i.e., the ability of the classifier to find all the positive
samples) and precision (i.e., the ability of the classifier
not to label as positive a sample that is negative). The
F1 score takes values in the range [0, 1]; high values are
desired. The F1 score is defined as:

F1 =
2 × precision × recall
precision + recall

(10)

4.3. Implementation Details
We employed ViT-H, a variant of SAM, and ViT-L/14
trained in CLIP by OpenAI. The visually descriptive
textual sentences were generated using GPT-3.5. All
was implemented in PyTorch. All experiments were
conducted on Tesla V100 32GB GPU.

Regarding implementation of RACNet: i) we used
EfficientNetB0 as CNN model, stacking a global average
pooling layer on top, a batch normalization layer and
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Table 1. Performance comparison on the test set of COV19D-CT-DB (of the ECCV 2022 Competition) between RACNet and the
state-of-the-art, when images are segmented with the conventional approach and when images are segmented with our proposed
SAM2CLIP2SAM framework. F1 Score is given in %

COV19D-CT-DB (ECCV 2022) F1
Macro COVID non-COVID

MDAP [40] 87.87 78.80 96.95
MDAP with SAM2CLIP2SAM 89.87 81.50 97.25

FDVTS [41] 89.11 80.92 97.31
FDVTS with SAM2CLIP2SAM 90.61 82.22 97.51

ACVLab [42] 89.11 80.78 97.45
ACVLab with SAM2CLIP2SAM 90.61 82.08 97.65
RACNet without segmentation 93.06 92.18 93.95

RACNet with conventional segmentation 95.06 94.18 95.95
RACNet with SAM2CLIP2SAM 96.81 95.68 97.95

dropout (with keep probability 0.8) [5]; ii) we used a
single one-directional GRU layer consisting of 128 units
as RNN model; iii) the first dense layer consisted of
128 hidden units. Regarding implementation details of
RACNet training, batch size was equal to 5 (i.e, at each
iteration our model processed 5 CT scans) and the input
length ’t’ (see Figure 2) was 700 (the maximum number
of slices found across all CT scans). Our model was fed
with 3-D CT scans composed of CT slices; each slice was
resized from its original size of 512 × 512 to 256 × 256.
Loss function was cross entropy. Adam optimizer was
used with learning rate 10−4.

4.4. Experimental Results
In the following we provide an extensive experimental
study comparing various networks and segmentation
methods on the two above described databases.

Table 1 shows the performance comparison (in terms
of F1 Score) of RACNet (trained and tested on COV19D-
CT-DB of the ECCV 2022 Competition) when its input
is: i) unsegmented images; ii) segmented images with
the conventional approach [43]; iii) segmented images
with our proposed SAM2CLIP2SAM framework. It is
evident that when segmentation is performed with our
SAM2CLIP2SAM framework, RACNet achieves 3.75%
and 1.75% superior performance to the cases when
no segmentation is performed, or segmentation is
performed with the conventional approach, respec-
tively. This validates our notion that our segmentation
approach enhances the classification model’s feature
extraction and assists it into focusing on only the
important ROIs which are the left and right lungs. This
also validates our observation that conventional seg-
mentation approaches contain some noise and artifacts,
whereas our method removes them.

Figure 3 illustrates this further. It presents three
cases of unsegmented slices of a CT scan (left column),
along with their cases when they are segmented with

conventional approaches (middle column) and with our
proposed framework SAM2CLIP2SAM (right column).
It is evident that the segmentation result with our
approach is more accurate and error-prune. In the
first case (top row), the mediastinal mass between
the left and right lungs is kept when the slices are
segmented with conventional approaches, whereas it is
not kept (i.e., it is black) when the slices are segmented
with our SAM2CLIP2SAM framework. In all cases,
one can also note that a bit of the pleural space
(e.g. on the peripheral of the lungs) is also kept and
is not masked when the slices are segmented with
conventional approaches; this is not the case when
the slices are segmented with our SAM2CLIP2SAM
framework.

Additionally, Table 1 presents a comparison between
the performance of RACNet to that of the state-of-
the-art in the COV19D-CT-DB of the ECCV 2022
Competition. One can see that RACNet, especially when
trained with CT scans segmented with our proposed
SAM2CLIP2SAM framework, outperforms (in terms of
F1 Score) all state-of-the-art methods by large margins
(between 7.69% and 8.94%). Finally, Figure 1 shows
that our proposed SAM2CLIP2SAM framework can
be applied to the state-of-the-art methods as well,
enhancing their performance by between 1.5% and 2%
(most improvement in performance is seen for Covid-
19 class, which is the most important).

Table 2 shows the performance comparison (in terms
of F1 Score) of RACNet (trained and tested on MosMed-
Data) when its input is: i) unsegmented images; ii) seg-
mented images with the conventional approach [43]; iii)
segmented images with our proposed SAM2CLIP2SAM
framework. It is evident that when segmentation is per-
formed with our SAM2CLIP2SAM framework, RACNet
achieves 3.43% and 1.43% superior performance to the
cases when no segmentation is performed, or segmen-
tation is performed with the conventional approach,
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Original-Unsegmented Conventionally segmented SAM2CLIP2SAM segmented

Figure 3. Illustration of the improvement in segmentation quality when the CT scan slices are segmented with our proposed approach,
the SAM2CLIP2SAM framework (right column) vs when they are segmented with conventional approaches (middle column).

Table 2. Performance comparison on the test set of MosMedData between RACNet and the state-of-the-art, when images are
segmented with the conventional approach and when images are segmented with our proposed SAM2CLIP2SAM framework. F1 Score,
Precision and Sensitivity are given in %

MosMedData Precision Sensitivity F1
MC3_18 [44] 79.43 98.43 87.92

MC3_18 with SAM2CLIP2SAM 80.93 98.73 88.95
Densenet3D121 [45] 84.23 92.16 88.01

Densenet3D121 with SAM2CLIP2SAM 85.73 93.66 89.51
CovidNet3D [29] 79.50 98.82 88.11

CovidNet3D with SAM2CLIP2SAM 81.50 98.92 89.37
EMARS-APS [46] 93.52 90.59 92.03

EMARS-APS with SAM2CLIP2SAM 95.02 92.09 93.53
RACNet without segmentation 92.69 90.85 91.76

RACNet with conventional segmentation 94.69 92.85 93.76
RACNet with SAM2CLIP2SAM 96.12 94.86 95.49

respectively. Additionally, Figure 2 presents a com-
parison between the performance of RACNet to that
of the state-of-the-art on MosMedData. One can see
that RACNet, especially when trained with CT scans
segmented with our proposed SAM2CLIP2SAM frame-
work, outperforms (in terms of F1 Score) all state-
of-the-art methods by large margins (between 16.69%
and 2.6%). Finally, Figure 1 shows that our proposed
SAM2CLIP2SAM framework can be applied to the

state-of-the-art methods as well, enhancing their perfor-
mance by between 1.03% and 2%.

5. Conclusions and Future Work

In this paper, we introduced a novel approach for
COVID-19 diagnosis that leverages the RACNet deep
neural architecture combined with vision-language
models. Our method utilizes the SAM and CLIP models
to perform precise segmentation of the right and left
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lungs in CT scans. The segmented outputs are then fed
into RACNet, which demonstrates enhanced accuracy
in detecting COVID-19 and non-COVID-19 cases.

Our experimental results highlight the significant
benefits of integrating vision-language models with
deep learning architectures for medical image analysis.
The proposed method shows promising potential for
managing the variability of medical images collected
from different healthcare institutions. Furthermore,
this research defines a critical direction for future stud-
ies, including the exploration of uncertainty estimation
[47] to further improve diagnostic performance.

The findings of this study suggest that the combina-
tion of advanced segmentation techniques and robust
classification models can substantially enhance the
accuracy and reliability of COVID-19 detection. Future
work will focus on refining these techniques and explor-
ing their applicability to other medical imaging tasks,
with the aim of creating more efficient and scalable
diagnostic frameworks.
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