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Abstract 

The research paper aims to assess ML models for video-recorded gaits with an aim of classifying people into high or low 
risks to fall groups. Several ML algorithms were tried employing OpenPose for CV, with RF showing the best outcomes: 
93% accuracy along with F1-score as well as balanced sensitivity (93.50%) as well as specificity (92.50%). Some important 
determining factors were speed per unit distance, angle among other statistical measures. In comparison to wearables-based 
DL approaches plus traditional fall detection methods, this study’s approach showed higher accuracy and adaptability within 
health care settings. 
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1. Introduction

Particularly in old people, slips are a big problem for the 
public health with severe harm and less life quality. The 
traditional means for example questionnaires or clinical 
tests are subjective and usually wrong. Machine Learning 
(ML) infused with Computer Vision (CV) provides a more
objective way of doing this by looking at subtle gait
features to determine risk of falling thus allowing for early
intervention and better results in patients.CV is one such
technology that is facilitating these developments.
OpenPose† is a CV method used to extract useful data from
video recordings. It works by estimating body posture
accurately during different frames within a sequence hence
pin-pointing all major joints’ locations over time so as to
capture elaborate details about walking like joint angles,
movement paths as well as variations temporally. ML
algorithms are designed to recognize patterns contained in
complex datasets where most other systems fail. By

*Corresponding author. Email: officialgautamgsk.gsk@gmail.com 

† https://github.com/CMU-Perceptual-Computing-Lab/openpose 

feeding them with rich gait information obtained through 
OpenPose—they become aware of slight changes which 
usually accompany increased falling danger. For instance, 
1) Shorter strides could mean weak or unstable lower
limbs, 2) Noticeable difference in stride lengths or swing
times between left and right legs points towards
abnormality while walking which may result balance
problems, 3) Slower speeds are associated with frailty
syndrome characterised by multiple falls among aged
individuals, and 4) Minimum foot clearance during the
swing phase indicates impaired balance and higher trip
risk. Supervised ML algorithms trained on labeled gait
videos can learn the intricate connections between walking
features and fall likelihood, enabling them to assess new
gait recordings for fall risk accurately.

Because machine learning (ML) is unbiased and can handle 
large volumes of gait data, it is excellent at predicting falls 
in older persons. In contrast to subjective evaluations, 
machine learning (ML) yields objective forecasts, which 
facilitate the prompt identification of high-risk patients and 
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the implementation of customized exercises or prescription 
modifications. This can greatly lower the number of 
injuries caused by falls and enhance general health. Also, 
by examining unique gait patterns and creating focused 
interventions, machine learning (ML) enables the creation 
of customized fall prevention plans. This project intends to 
investigate important issues with fall risk prediction by 
collecting gait data using OpenPose. 

1. Researchers aim to compare the effectiveness of
different ML algorithms in classifying fall risk
based on gait features extracted from videos,
evaluating their accuracy and efficacy in
identifying individuals at risk.

2. The research seeks to identify the optimal ML
model for fall risk prediction using OpenPose data 
and pinpoint the most significant gait features
contributing to the model's effectiveness.

The work enhances trustworthy fall risk prediction models 
by tackling these issues, which would result in more potent 
preventative measures and a safer future for the elderly. 
The organization of the study is as follows: Section 2 
contains related works; Section 3 contains materials and 
methods; Section 4 contains experimental analysis; Section 
5 contains result analysis; and Section 6 contains 
conclusions and future research.  

2. Related Works

The devastation caused from mishappenings or accidents is 
commonly associated with falls that severely affect 
physical (1) and mental well-being in old-age people (2). 
Social isolation (3) and decreased physical activity (4) can 
result from fear of falling—these factors further raise the 
risk of falling—thereby—creating a vicious circle. While 
traditional clinical assessments done by healthcare 
specialists are good at identifying major risk elements—
however—they could miss subtle changes related to gait, 
balance or cognitive function which may indicate an 
increased dangerousness for dropping down early. 
Recently, technology has enabled more accurate fall risk 
predictions using wearable sensors like accelerometers or 
gyroscopes in wristbands/anklets, which record seniors' 
real-time movements and activity levels, allowing ML 
algorithms to analyze vast sensor data and identify hidden 
trends for precise fall risk predictions(5,6). ML provides 
powerful tools against falls, especially for seniors, by 
finding patterns from massive sensor data. It detects subtle 
changes in gait, like stride variability or speed, which might 
precede falls, identifying issues humans might miss. 
Moreover, ML can connect seemingly unrelated data 
streams to enhance fall risk predictions(7). To illustrate, 
ML considers various factors like activity patterns and 
medication consistency, offering a broader perspective on 
health issues and fall risks compared to traditional 
methods(8,9). ML enables more accurate fall risk detection 
by comparing extensive data from at-risk and non-at-risk 

individuals, continuously improving itself with new 
information, thereby enhancing fall prediction with each 
encounter and adapting to live situations through exposure 
to continuous data(10). Early identification of fall risks 
allows healthcare providers to intervene before falls occur, 
offering personalized workouts to enhance strength and 
balance, adjusting medications to mitigate side effects, 
improving spatial awareness through vision enhancement 
methods, and modifying home environments to eliminate 
potential hazards, thus significantly reducing the frequency 
and severity of falling accidents and their devastating 
outcomes.  

2.1. Fall Risk Prediction 

People with neurological conditions face a heightened risk 
of falls due to balance and coordination issues, which can 
lead to life-changing incidents such as hip fractures, 
resulting in limited mobility, increased dependence on 
caregivers, and overall deterioration in health status(11). 
Social isolation is promoted by fear of falling which leads 
to lower quality life (12). In order to tackle this problem, 
scientists are engaged in cutting-edge investigations into 
fall prediction through use of advanced ML particularly DL 
such as (13,14). This is an evolution from reactive 
measures taken after a fall to proactive identification of 
those at high risk even before they take place; hence the 
paradigm shift in fall prevention.  A recent trial exemplifies 
such possibilities such as (15). By using specialized sensors 
for monitoring people with neurological problems while 
they move around, (16)—were able to capture many kinds 
of information. In predicting falls, these—(17)—achieved 
an accuracy rate as high as 90% by using DL algorithms. 
This breakthrough promises next-gen wearable devices for 
fall prevention, with concealed sensors tracking movement 
patterns, enabling real-time risk assessments powered by 
Deep Learning algorithms, although challenges remain, 
highlighting the importance of translating accurate 
predictions into actionable interventions, where Machine 
Learning excels by identifying specific risk-associated 
motion patterns(16). By providing detailed insights, 
healthcare providers can design tailored interventions such 
as physical therapy programs addressing specific 
weaknesses identified by algorithms and adjusting 
medications to reduce balance-affecting side effects; 
however, limitations in current fall risk prediction methods, 
including small sample sizes and narrow focus on sensor-
captured movement patterns, overlook crucial risk factors 
like drug use and vision impairment, potentially leading to 
inaccurate predictions and missed prevention 
opportunities. Moreover, the complexity and opacity of 
certain ML models hinder physicians' understanding and 
integration into clinical workflows, posing challenges in 
patient communication and acceptance. 
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2.2. Gait Analysis 

As a result of CV—gait analysis has taken a new 
dimension. Gait analysis with video-based CV consists of 
different approaches that employ advanced image 
processing, ML, and depth-sensing technologies such as 
(18). Through these methods, which rely on key-point 
tracking to monitor joint angles, limb movements, and 
postural changes during the step cycle, gait mechanics and 
anomalies can be effectively explored, enhancing patient 
care and rehabilitation efforts(19). Incorporating depth 
sensing devices with three-dimensional reconstruction 
techniques enhances gait analysis by providing detailed 
information on joint angles, step lengths, and stride width, 
enabling a comprehensive understanding of how 
anatomical elements cooperate during walking. 
Consequently—(20)—are able to get an overall viewpoint 
of gait physiology important for correct diagnosis as well 
as effective treatment for different musculoskeletal 
pathologies. Other motion capture systems used in the 
assessment of gait are very useful such as (21,22). (23) 
deploys markers on specific anatomical areas by using 
synchronized cameras to record the movement of bodies. 
This meticulous approach results in highly accurate three-
dimensional models, facilitating precise quantification and 
comprehensive study of biomechanical phenomena, aiding 
in diagnosing and monitoring rehabilitation progress by 
differentiating between gait phases and categorizing 
walking styles using ML and pattern detection 
techniques(24) are able to identify subtle irregularities by 
training algorithms on different data sets, thus allowing for 
prompt intervention and tailored treatment strategies. Gait 
kinematics and kinetics investigate the forces applied 
during walking as well as the angles used in this process. 
Such an investigation brings out the complexities of human 
movement intricacies that may cause issues such as (25). 
Real-world gait tracking with wearable gadgets enables 
ecologically valid investigations for evaluation, forming 
the basis for therapeutic interventions. 

2.3. Research Gaps 

Current research on fall risk prediction via OpenPose using 
ML approaches requires validation and real-world 
deployment of created models. Many studies lack 
validation with an independent dataset, crucial for 
confirming the generalizability and precision of the models 
in practical settings(26). The evaluation of OpenPose-
based fall risk prediction models for practical applications 
is hampered by their limited demonstration in clinical or 
healthcare settings. Therefore, their deployment and 
enhanced validation are required before they can be 
integrated into clinical practice. The necessity for 
improvements in fall risk prediction techniques is 
highlighted by previous studies that were divided into three 
categories: wearables, ambient fusion-based methods, and 
vision-based systems. These studies use a variety of 
sensors for data collection and prediction, but they all face 

difficulties like discomfort, privacy issues, environmental 
noise, and inaccurate results. For instance, (27) have 
questioned the reliability of using fall simulation data as a 
representative of real world falls. Major shortcomings and 
limitations exist in present research on OpenPose-based 
machine learning algorithms for fall risk prediction. These 
include small sample sizes, inadequate consideration of 
pertinent variables beyond gait-related data, improper 
validation with independent datasets, disregard for the 
interpretability of ML models, and a dearth of real-world 
applications in clinical settings. By solving these problems, 
fall risk prediction models can become more reliable and 
effective. This can improve fall prevention programs and 
ensure the safety of those who are at-risk while also 
addressing ethical concerns about privacy and subject 
protection. 

3. Materials and Methods 

3.1. Data Analysis 

To anticipate fall risk using ML—experts performed a 
systematic gathering and readying of data. The main aim 
was to use gait analysis for predicting the probability of a 
person falling. The dataset used in this study was composed 
of videos showing people walking that were obtained from 
(28)—Mendeley Data—an open-access repository—and 
included patients diagnosed with knee osteoarthritis or 
Parkinson’s disease at different stages as shown in Figs. 1 
and 2. The study included 107 patients categorized into 
high and low fall risk groups, with data extracted from 
videos by analyzing each frame individually using 
OpenPose software, identifying 25 key body points per 
frame (excluding head region details) and resulting in rich 
datasets spatially representing the points across time in 
each video clip. Prior to utilization in ML models, the 
extracted data underwent preprocessing stages such as 
filtering out unnecessary information and normalizing 
values to address scale differences, followed by the design 
of feature vectors capturing movement patterns observed 
during various activities, comprising velocities, distances, 
and statistical measures to create a mathematical 
representation understood by ML models. Observing 
velocity changes across frames along limbs from the 
shoulder joint down allows for assessment of energy 
efficiency during movement, while distances between key 
points and statistical features reveal abnormal gait patterns 
potentially leading to falls; subsequently, assigning labels 
of zero for low-risk individuals and one for high-risk 
individuals based on their likelihood of falling down 
categorized the feature vectors for analysis. In supervised 
ML, labeling the dataset allows the model to learn 
associations between characteristics and outcomes, 
followed by splitting the labeled dataset into training and 
testing sets, with the training set typically comprising about 
70% of samples to build models and ensure they capture 
general patterns rather than overfitting specific cases, 
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essential for evaluating model performance on unseen data 
during the testing phase. Reassembling situations from the 
majority class until they corresponded to the total count of 
the minority class in both training and testing datasets was 
the method for balancing the classes after the initial dataset 
showed a severe imbalance, with a significantly higher 
number of records indicating higher fall probabilities, 
which can lead to overfitting issues. This ensures more 
dependable leads to for training ML models for fall 
prediction. 

 
 

Figure 1. A still image taken from a video showing a 
person with a low fall risk walking 

 

 
 

Figure 2. A still image taken from a video showing a 
person with a high fall risk walking 

3.2. Model Analysis 

To prevent overfitting and refine ML models, we employed 
the grid search cross-validation method, testing various 
parameter combinations for each model until finding the 
best configuration, such as different kernel types and 
gamma values for Support Vector Classifier (SVC), 
utilizing 10-fold cross-validation where the training data is 
divided into 10 smaller folds for evaluation. Ten iterations 
of the process guarantee that every fold is evaluated once, 
lowering the possibility of overfitting and facilitating the 
assessment of the model's performance on unobserved 
data. In KNNs, for example, the number of neighbors and 
the weighting method were changed; in RF, different 
numbers of trees and maximum depths were tested; in 
MLP, different hidden layer configurations and alpha 
values were investigated during grid search. Feature 
selection plays a crucial role in effective machine learning 
by leveraging domain knowledge about human movement 
patterns, including significant indicators like joint angles 
and velocities, and using a data-driven approach through 
empirical analysis to identify the most informative features 
for predicting fall risk across various algorithms through 
cross-validation. The best-performing model on training 

 
‡ https://numpy.org/ 

data was chosen based on metrics like accuracy, F1-score, 
specificity, and sensitivity. 

4. Experimental Analysis 

4.1. OpenPose—Extract 2D Pose from Low 
Risk Falling Group Video Gaits 

We use PowerShell to start the OpenPose library. This will 
allow us to run a demonstration that examines video 
recordings. In this demonstration, OpenPose detects 
keypoints for multiple persons in real-time. What it does is 
gather information about where people are and what they 
are doing by looking at the major joints and landmarks on 
their bodies. All this requires GPU or any other 
computational resource with high processing power as well 
as being able to identify videos tagged with 
"lowfallriskgroup" among other things; PowerShell 
command lets initiate OpenPose while specifying files 
consecutively and when executed each command begins 
analyzing immediately — generating JSON files filled with 
data about movement and posture which can be used for 
further research into human kinetics or biomechanics. 

4.2. OpenPose—Extract 2D Pose from High 
Risk Falling Group Video Gaits 

The OpenPose software framework is a Windows 
PowerShell environment instruction that uses video 
recordings marked as “highfallriskgroup” to assess 
people’s posture dynamics and walking patterns detected 
in gait videos. You can use the command line parameters 
of OpenPoseDemo.exe to identify input and output 
directories, as well as detect key points through GPU 
computing, where every command has time-based 
measurement on how long it took for analysis to finish. In 
this case, PowerShell employs systematic processes which 
automate analytical pipelines thereby enabling holistic 
video evaluation and extraction of biomechanical data 
while demonstrating potentiality of OpenPose in 
movement study and biomechanics; this is most applicable 
during fall risk assessment along with motion analysis. 

4.3. Preprocessing—Extracted 2D Pose for 
Machine Learning 

In order to measure fall risk—this method transforms 
human posture data from JSON files to NumPy‡ arrays. 
Data is arranged according to fall risk group. It initially 
configures the file directories for the NumPy and JSON 
data. Next, a JSON file is converted to a NumPy array 
using the function json_to_numpy—which only retains the 
x and y coordinates of the pose keypoints.The script iterates 
through JSON files from low and high fall risk categories, 
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converting them into NumPy arrays to prepare pose 
keypoint data for analysis, efficiently organizing them into 
appropriate folders, and categorizing them based on risk 
level for further modeling purposes. A function named 
json_to_numpy is used to transform the JSON data into a 
NumPy array that is saved as a NumPy data file (.npy) in 
corresponding directory within output folder designated by 
fall risk group. After processing all JSONs for both 
groups—it continues loading saved NumPies. Loading is 
done using a function called load_numpy_files—which 
takes folder path as input—reads all .npy files found within 
that folder and its subdirectories then returns list containing 
loaded data. This function is used to load data for each fall 
risk group before converting them into NumPy arrays.  
 
Next step entails processing combined_data from both 
groups whereby first we merge arrays 'along' specific axis 
so as to create single array with low risk followed by high 
risks contents. Following normalization using the 
MinMaxScaler function to scale keypoints between 0 and 
1, velocity is calculated by taking the difference between 
consecutive time steps along each dimension, providing 
feature vectors for analysis or input into ML algorithms for 
various tasks related to analyzing such information.Finally, 
script prints velocity data at particular moment like 10000th 
step. More actions are performed on generated labels and 
feature vectors such as reshaping, labelling, splitting and 
printing. Labelling assigns 0 value to "low fall risk" group 
and 1 to "high fall risk" group. These labels are then 
concatenated into single array. Feature vectors are 
reshaped from 2D to 1D array. Data is split into training 
and testing sets using train_test_split function—which 
allows one specify percentage of data used for testing while 
ensuring reproducibility through random seed. Afterwards, 
it displays shapes of training and testing feature vectors 
along with their corresponding labels—then—may print 
some data examples so as to give better picture about its 
structure. In order to understand how fall risks labels are 
distributed—data visualization techniques are used. The 
script generates a bar chart to show the number of times 
each label category ("Low Fall Risk" and "High Fall Risk") 
occurs.In order to address the potential negative effects of 
class imbalance on ML model performance, visualization 
combines training and testing data to analyze the 
distribution of fall risk labels across the entire dataset 
through resampling. The script finds the minority and 
majority categories within training samples, undersamples 
the majority instances to match the number of cases in the 
minority group, and uses similar techniques to equalize 
class distributions in the test dataset to enable appropriate 
model evaluation. Based on their frequency in the test 
labels, the minority and majority classes are determined in 
this step. The instances from the majority class are then 
replicated using resampling to match the minority class's 
count. Ultimately, the original minority class samples and 
the resampled majority class samples are mixed, and the 
labels are added together appropriately. In order to 
guarantee unpredictability in the sample and label order 
inside the balanced test dataset, shuffling is used. The script 

ends by verifying the attained balance in class depiction by 
publishing the dimensions of the balanced test dataset. 

5. Result Analysis 

5.1. Feature Analysis 

The study examines challenges with SVM classification 
using features derived solely from keypoint distances, 
highlighting the necessity of feature engineering and 
exploring alternative modeling techniques for successful 
classification, evaluating SVM classifier performance with 
optimized hyperparameters on a dataset where features are 
calculated from keypoint distances.Despite achieving a 
mean cross-validation score of 0.76, indicating some 
learning capability, further examination reveals significant 
underfitting in the model, with uniform predictions across 
all data folds and no true positives for class 0.0, rendering 
precision, recall, and F1-score calculations impossible, 
highlighting the need for model refinement. In other words, 
if we see someone saying “We can't believe it! We got zero 
true positives”, just know that we had used SVMs to 
separate classes purely based on keypoints’ distance and no 
wonder why everything failed including confusion matrix 
showing zero true positives for class 0.0. These findings 
suggest that using keypoints alone as features for SVM 
classification does not work well under these specific 
conditions or criteria used here—may be wrong too—
but—whichever way it clearly doesn’t give best results or 
any result at all. Sometimes—hence needs rethinking 
altogether what were we doing of making such choices 
anyway? At this point one might ask us—what should we 
consider then? Here are some possible options such as 
reassessing features—what other features can we use or 
combine in order to better represent the data and make them 
more differentiable between classes?  
 

 
 

Figure 3. Distance between important locations as 
the feature in SVM results 

 
Maybe we should stop thinking about distances only but 
also include angles, geometrical relationships among 
others. Alternative modeling strategies—if SVM is not 
working as expected—then—what other classification 
algorithms could be tried out considering this particular 
kind of data. RF, GB or even NNs may be worth giving a 
shot depending on the nature of our problem. There are 
important things that need to be considered if accuracy is 
to be improved in similar situations. The study goes ahead 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

| Volume 11 | 2025 |



 
 S. S. Kolawole et al. 

6 

by carrying out another experiment which involves using 
wider range of features consisting of angles, mean, 
standard deviation and distances between keypoints as 
shown in Fig. 4. Even though the model gets cross-
validation score (0.56)—it still has issues with balanced 
classification across all the classes. There exists significant 
imbalance both in terms of accuracy as well as individual 
class metrics such as precision, recall and F1-score too—
all show great imbalance indeed. Suppose there was a 
confusion matrix for this experiment—its likely going to 
indicate high misclassification rate for class 0.0 meaning 
that no matter how we try to add onto existing feature set it 
will never be enough for good separation between these 
two groups. Therefore, this study brings out the necessity 
of being careful when selecting and designing features 
while using SVMs in keypoint distance classification tasks. 
These findings suggest trying different feature engineering 
techniques and investigating alternative models so as to 
overcome limitations encountered during both experiments 
by making accurate classifications within such scenarios 
through careful crafting of feature space coupled with more 
robust modeling techniques that can greatly enhance the 
ability. 
 

 
 

Figure 4. Angles, mean, standard deviation, and the 
separation between important points are combined 

to form the features in SVM findings 

5.1. Machine Learning Analysis 

The SVM, DT, RF, KNN and MLP classifiers that have 
been implemented are evaluated in this section. These 
classifiers were tested using 10-fold cross validation, the 
accuracy on the test set, F1 score, sensitivity and 
specificity. Also, the hyperparameters were optimized 
through grid search and then selecting best model with it. 
Finally predictions were made on a test set by using best 
model. The features used to build these ML classifiers are 
key point’s velocity. The Fig. 5 shows enhanced 
performance of DT with best hyperparameters. The 
optimal parameter for DT is {'max_depth': None}—which 
allows growing tree without setting any maximum depth 
beforehand. The model showed good data classifying 
ability with 83.90% mean accuracy from cross-validation. 
Its classification performance was indicated by its F1 score 
of 0.819—which balances precision and recall. According 
to confusion matrix—this model’s performance is 
represented by having 2161 true negatives, 2087 true 
positives, 424 false positives and 498 false negatives. Test 
set accuracy remained at around 82%. Additionally, both 

classes (positive/negative) had high specificity/sensitivity 
scores—84% and 81% respectively.  
 

 
 

Figure. 5. Results of a DT 
 

Optimized hyperparameter KNN classification model is 
shown in Fig. 6. Optimal configuration for the KNNs 
classifier is—{'n_neighbors': 3, 'weights': 'distance'}. 
Cross-validation mean accuracy of 84.65% showed 
remarkable results. A harmonious balance between 
precision and recall was achieved by getting F1 score 
equalling to 0.842 which confirms success in classification 
of data. The confusion matrix indicates how well our model 
performed where we have 2089 true negatives, 2238 true 
positives, 496 false positives and 347 false negatives. The 
test set accuracy was high at about 83.69%. Model also had 
specificity ratings of 81% for both classes showing that it 
could classify positive and negative cases.  
 

 
 

Figure 6. Results of a KNNs 
 

The best hyperparameters for SVM were found to be {'C': 
10, 'gamma': 10, 'kernel': 'rbf'} as shown in Fig. 7. Each 
fold in cross-validation had an average accuracy rating of 
86.73%. F1-score is a notable metric for balancing 
precision against recall which was recorded as 0.8594. 
Confusion matrix—it correctly predicted class 0 in 2338 
instances and class 1 in 2134 instances. Class 0 
experienced 247 misclassifications while class 1 went 
through 451 misclassification errors. The model had 
another test set accuracy of 86.50%. Specificity measures 
reveal that when it came to telling apart two different 
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groups or types such as good from bad—then—this 
algorithm did so with a high degree of reliability—since its 
values were between 82-90%.  
 

 
 

Figure 7. Results of a SVM 
 

MLP performance is examined with adjusted 
hyperparameters as shown in Fig. 8. The optimal MLP 
configuration is {'alpha': 0.0001, 'hidden_layer_sizes': 
(100, 50)}. This choice gave the model a cross-validation 
mean accuracy of 83.25%—thus demonstrating its ability 
to classify data well enough. The classification 
performance of the model was 0.852—measured by 
precision and recall. True negatives were 2195, true 
positives were 2209, false positives were 390, and false 
negatives were 376. The test set accuracy of the model was 
also equal to 85.18%. Its capability to classify positive and 
negative cases can be seen where both classes have 
sensitivity and specificity scores of around 85%. 
 

 
 

Figure 8. Results of a MLP 
 

RF does a good job of tuning the hyperparameters as shown 
in Fig. 9. The optimal RF configuration is {‘max_depth’: 
None, ‘n_estimators’: 100}. Data classification ability of 
the model is high as indicated by its mean cross-validation 
accuracy which is 92.99%. The classifier’s F1 score was 
0.930—this shows that it can perform well in classification. 
The model is robust with 2417 true negatives, 2391 true 
positives, and 168 false positives along with 194 false 
negatives. Test set accuracy was also equal to 92.99%. 
Besides, among all other classifiers tested on our dataset 

ML algorithms—both positive predictive value and 
negative predictive value of RF were approximately equal 
at about 93%. It did exceptionally well in classifying the 
problem under consideration with given 
hyperparameters—a very large number indeed.  
 

 
 

Figure 9. Results of a RF 
 

Each classifier has been tuned using specific 
hyperparameters detailed in Tables 1 and 2—then 
performance assessed rigorously over 10-folds cross 
validation approach was used. The best hyper parameters 
for each classifier were identified from the table based on 
mean accuracy obtained through cross validation. RF had 
maximum average accuracy rate at 0.93 having no 
specified maximum depth but 100 estimators which makes 
it most suitable when dealing with large datasets like ours 
where multiple features may be available simultaneously 
or sequentially such that they require greater processing 
power than other models. 
 

Table 1. Illustration Of All Classifiers Evaluation 
Metrics Results 

 
Classifiers Accuracy 

on Test 
Set 

Sensitivity 
of Each 
Labels 

Specificity 
of All 

Labels 
SVM 0.86 [L0: 0.82, 

L1: 0.90] 
[L0: 0.90, 
L1: 0.82] 

DT 0.82 [L0: 0.81, 
L1: 0.83] 

[L0: 0.83, 
L1: 0.81] 

RF 0.93 [L0: 0.92, 
L1: 0.93] 

[L0: 0.93, 
L1: 0.92] 

KNN 0.84 [L0: 0.86, 
L1: 0.80] 

[L0: 0.80, 
L1: 0.86] 

MLP 0.85 [L0: 0.85, 
L1: 0.85] 

[L0: 0.85, 
L1: 0.85] 

 
Table 2. Illustration Of All Classifiers 

Hyperparameters And Evaluation Results 
 

Clas
sifier

s 

List of 
Hyperpara

meters 
Tuned 

Best 
Hyperpara

meter 

10 Folds 
CV 

Mean 
Accurac

F1 
Sc
ore
s 
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y of 
Best 

Hyperpa
rameter 

SVM {'C': [0.1, 1, 
10], 

'kernel': 
['linear', 

'rbf'], 
'gamma': 

[0.1, 1, 10]} 

{'C': 10, 
'kernel': 

'rbf', 
'gamma': 

10} 

0.87 0.8
6 

DT {'max_dept
h': [None, 
10, 20]} 

{'max_dept
h': None} 

0.84 0.8
2 

RF {'n_estimat
ors': [50, 

100, 200], 
'max_dept
h': [None, 
10, 20]} 

{'max_dept
h': None, 
'n_estimat
ors': 100} 

0.93 0.9
3 

KNN {'n_neighb
ors': [3, 5, 

7], 
'weights': 
['uniform', 
'distance']} 

{'n_neighb
ors': 3, 

'weights': 
'distance'} 

0.85 0.8
4 

MLP {'hidden_la
yer_sizes': 

[(100,), 
(100, 50), 
(30, 30, 

30)], 
'alpha': 
[0.0001, 
0.001, 
0.01]} 

{'alpha': 
0.0001, 

'hidden_la
yer_sizes': 
(100, 50)} 

0.85 0.8
5 

6. Conclusion and Future Works 

Preventing fall risks relies on early detection. In this study, 
the main focus was on predicting fall risks using machine 
learning (ML) and gait analysis from video recordings. The 
tool achieved a 93% accuracy rate through Random Forest 
(RF), which means it can be considered as a dependable 
system. Among the predictors, gait velocity was identified 
to be most significant. This method is non-invasive and 
more convenient than wearable sensors because it is based 
on videos. With early detection, healthcare providers can 
suggest preventive actions that enhance health outcomes 
and independence especially among the aged. Challenges 
faced were high computational requirements and dataset 
imbalances that were solved by resampling methods. For 
higher accuracy and practical applications in hospitals or 
nursing homes; deep learning models should be deployed 
alongside ensemble techniques as future directions where 
necessary by this study so far conducted in various settings 
including hospitals or nursing homes. 
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