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Abstract 

Gait analysis plays a pivotal role in diagnosing a spectrum of neurological and musculoskeletal disorders. Variations in gait 
patterns often serve as early indicators of underlying health conditions, underscoring the importance of precise and timely 
analysis for effective intervention and treatment. In recent years, computer vision techniques have emerged as robust tools 
for automated gait analysis, offering non-invasive, costeffective, and scalable solutions. However, existing approaches often 
overlook the critical aspect of privacy preservation. In this study, we propose the world’s pioneering computer vision-based 
abnormal gait detection system with a privacy-preserving mechanism. Specifically, we extract 2D skeletons from encrypted 
images using a deep neural network model, which is facilitated by an optical system incorporating a custom-made refractive 
optical element. These extracted features are then fed into machine learning models for the detection of normal versus 
abnormal gait patterns. Evaluations across various models including random forest, decision tree, K-nearest neighbor, 
support vector machine, neural network, and convolutional neural network reveal that the random forest model attains the 
highest classification performance based on 2D skeletons extracted from encrypted images. 
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1. Introduction

Gait embodies the rhythmic sequence of limb movements 
observed in animals, encompassing humans, as they 
traverse a stable surface. Human gait is intricately 
influenced by the coordinated function of the nervous, 
musculoskeletal, and cardiorespiratory systems, each 
playing a vital role in orchestrating fluid locomotion. 
Abnormal gaits serve as notable indicators of underlying 
neurological, musculoskeletal, or biomechanical 
irregularities [1]. Thus, timely identification of such 
aberrant gait patterns holds profound significance, offering 
a gateway to early diagnosis and intervention across a 
spectrum of medical conditions impacting human mobility. 

Historically, identifying gait abnormalities relied heavily 
on subjective visual observation by clinicians, a method 
known for its inherent subjectivity and limited accuracy. 
However, the landscape has evolved with the emergence of 
modern sensor technologies and artificial intelligence (AI) 
techniques. Recent advancements have seen the integration 
of various sensor modalities/systems, such as pressure 
sensors [2], wearable sensors [3], and vision sensors [4], 
aimed at capturing intricate data pertaining to human 
movement during walking cycles. These data are 
subsequently processed and analyzed using state-of-the-art 
machine learning algorithms, facilitating the detection of 
abnormal gait patterns. Among the diverse sensor 
modalities, vision sensors have garnered significant 
attention for abnormal gait detection, owing to several 
advantages. Notably, vision sensors offer a cost-effective 
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solution, are non-invasive, and possess the capability to 
capture subtle nuances in gait. This adaptability and 
precision make vision sensors a preferred choice in the 
pursuit of more accurate and accessible abnormal gait 
detection methodologies. 
However, a notable drawback of vision-sensor-based gait 
analysis is the issue of privacy. In such approaches, images 
of individuals are captured to analyze their gait patterns, 
potentially compromising their identities. Presently, to the 
best of our knowledge, there are no vision sensor-based 
solutions that adequately address the imperative of 
preserving privacy in gait analysis tasks. This underscores 
the critical need for developing innovative techniques that 
reconcile the objectives of gait analysis with safeguarding 
individuals’ privacy rights. 
In this study, we introduce a pioneering approach to 
privacy-preserving abnormal gait detection using vision 
sensors. Our developed algorithm effectively distinguishes 
between normal and abnormal gait patterns by analyzing 
’blurred’ images that safeguard individuals’ identities. 
Specifically, our methodology entails the integration of an 
additional optical element, termed an ’optical encoder,’ 
placed in front of the vision sensor lens. This encoder 
encrypts the original video frames, ensuring privacy 
protection. Subsequently, these encrypted frames are 
processed by a deep neural network to extract 2D skeletons, 
which are then inputted into machine learning models for 
gait classification. The parameters of the optical encoder 
and the deep neural network are trained collaboratively, to 
facilitate the successful extraction of 2D skeletons for gait 
analysis while simultaneously maximizing the 
differentiation between original and encrypted video 
frames, thereby ensuring robust privacy preservation. This 
innovative methodology represents a significant 
advancement in the field, offering a promising solution for 
vision privacy-conscious abnormal gait detection in real-
world scenarios. 
 
2. Related works 

2.1. Abnormal gait detection 

Privacy-preserving based motion analysis for healthcare in 
recent years, there has been significant research devoted to 
leveraging computer vision and machine learning 
methodologies for abnormal gait detection, as evidenced 
by various studies documented in the literature [4,5]. 
Specifically, in [5], researchers employed support vector 
machine (SVM) techniques to distinguish between normal 
and abnormal gait patterns based on 2D lattice features 
derived from silhouettes extracted from video sequences. 
Their experimentation on a relatively modest gait video 
dataset, comprising 5 individuals, yielded an approximate 
classification accuracy of 80%. In [6], a clinically 
interpretable approach rooted in computer vision was 
proposed. This method involved extracting 2D poses from 
recorded video sequences, from which features 
characterizing walking speed, arm swing, and postural 

control were derived. These features were then inputted 
into a random forest classifier to estimate the Unified 
Parkinson’s Disease Rating Scale (UPDRS) rating. Their 
experiments, conducted on a substantial dataset comprising 
over 600 subjects, demonstrated a notable correlation 
between clinician assessments and model predictions. In 
[7], the researchers employed an Extreme Learning 
Machine (ELM) for gait classification, particularly 
focusing on children, utilizing Salient Gait Features. Their 
experimental findings suggested that ELM offered 
improved classification accuracies along with reduced 
training time and implementation complexity compared to 
SVM. In [8], an algorithm was introduced for classifying 
gait disorders stemming from neurodegenerative diseases 
such as Parkinson’s and Hemiplegia. This method involved 
capturing the motion trajectories of body joints using a 
Kinect sensor, followed by preprocessing to ensure 
position and scale invariance. Subsequently, trajectory 
descriptors representing joints’ relative positional and 
speed characteristics were extracted from segmented 
motion sequences. Abnormal gait detection was then 
performed using a K-nearest neighbor (KNN) approach, 
which compared trajectory descriptors between testing 
sequences and a training dataset. In [9], researchers 
proposed utilizing full gait energy images (F-GEI) as 
features extracted from gait images, along with a COP-K-
means semi-supervised clustering method for 
normal/abnormal gait classification. The experimental 
results demonstrated the effectiveness and efficiency of the 
proposed approach in terms of accuracy, robustness, and 
computational efficiency when compared with other state-
of-the-art abnormality detection techniques. [10] 
introduced a novel approach that only leverages normal 
gait samples to train a one-class support vector machine 
(OCSVM) model for classifying normal versus 
Parkinsonian gait patterns utilizing Gait Energy Images 
(GEIs) extracted from the mask RCNN neural network 
model. Experimental results obtained from a gait dataset 
encompassing 30 participants, as well as online 
evaluations, showcased the potential for achieving high 
accuracy (exceeding 97%) using OCSVM trained solely on 
normal gait samples. 
Researchers have not only focused on employing specific 
machine learning models but have also conducted 
evaluations and comparisons of various models for 
abnormal and normal gait classification. In [11], the Kinect 
Motion system was utilized to capture spatiotemporal gait 
data during walking. Subsequently, different machine 
learning models, including convolutional neural networks 
(CNN), support vector machines (SVM), K-nearest 
neighbors (KNN), and long short-term memory (LSTM) 
neural networks, were applied to classify three distinct 
walking patterns: normal gait, pelvic-obliquity-gait, and 
knee hyperextension-gait, for seven subjects. The findings 
revealed that SVM achieved the highest accuracy in 
classifying gait patterns, reaching approximately 95%. In 
[12], an approximation of skeleton joints was derived from 
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silhouettes extracted from RGB side-view gait video 
sequences. Various parameters, such as heel strike, toe-off, 
stride length, and time, were then extracted and inputted 
into different classifiers, including KNN, Support Vector 
Machine (SVM), and Bayesian classifier algorithms, to 
discern normal from abnormal gaits. The experiments 
demonstrated that the most accurate results were attained 
with KNN, particularly on leg-angle variables, achieving a 
remarkable 100% accuracy rate on a relatively small 
dataset comprising only 30 samples. 
Recently there has been a surge in the application of deep 
learning methodologies for the classification of normal and 
abnormal gait, yielding promising outcomes. In [13], a 
range of machine learning and deep learning techniques, 
such as support vector machines (SVM), multilayer 
perceptron (MLP), Vanilla long short-term memory 
(LSTM), and Bidirectional LSTM, were employed to 
diagnose Cerebral Palsy (CP) gait based on the linear 
velocity of seven body joints. The findings indicated that 
LSTM achieves the best performance in detecting CP gait. 
In [14], various deep neural network models, including 
Temporal Convolutional Networks, Gated Recurrent 
Units, and Long Short-Term Memory Autoencoders, were 
applied to monitor activities of daily living (ADLs) for the 
identification of abnormal gaits, based on gait features 
extracted from 3D skeletons obtained from video 
sequences. Experimental results showcased high 
classification accuracies of more than 96% across multiple 
datasets for different deep neural network models. 
Vision data can be effectively integrated with other 
modalities for enhanced abnormal gait classification. In 
[15], a hybrid neural network model, comprising both 
recurrent neural network (RNN)-based encoding layers and 
convolutional neural network (CNN)-based encoding 
layers, was developed by incorporating both 3D skeleton 

data and pressure data aiming to classify normal and 
abnormal gait patterns. Experimental findings 
demonstrated that the proposed hybrid model yielded 
superior performance, achieving an accuracy of 95.66%. 
This outperformed models relying solely on a single sensor 
modality, highlighting the efficacy of leveraging multiple 
data sources for gait classification. 

2.2. Privacy-preserving based motion 
analysis for healthcare 

Currently, there has been some research focusing on the 
application of computer vision and deep learning 
techniques to analyze images and videos encrypted via 
software/hardware-based methods for privacy 
preservation. The related research spans various vision 
tasks such as privacy preserving-based pose estimation 
[16], action recognition [17], and image caption generation 
[18]. However, only a limited number of studies have 
delved into computer vision-based human motion analysis 
for healthcare with privacy preservation. [19] utilizes 
compressed sensing to detect falls while safeguarding 
privacy through the utilization of low-quality compressed 
data, whereas [20] proposes a hardware-based privacy-
preserving solution, which involves the application of a 
custom-designed optical element whose parameters are 
jointly trained with a deep neural network for fall detection 
from encrypted images. To the best of our knowledge, there 
has been no prior work addressing the privacy preservation 
challenge in vision-based gait analysis. 
 
 
 

Figure 1. The flowchart of the proposed methodology 
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3. Methodology 
 
The flowchart of the proposed methodology is shown in 
Fig. 1, from which we can see that the proposed 
methodology contains three main components, an optical 
system for image encryption, a deep neural network for 
skeleton features extraction, and a machine learning model 
for gait classification. Different components are introduced 
in detail in the next few sections. 

3.1. Optical System 

The optical system, which comprises an optical element 
used for image encryption to preserve privacy, a lens, 
and an image sensor as shown in Fig. 1, captures the 
encrypted images from the original scene. In specific, 
assuming that the scene is at optical infinity, then the 
light wave field arriving before the optical element can 
be represented as a planar wave field, denoted as U. The 
refractive optical element introduces phase delay of this 
incident wavefront for blurring/encrypting original 
scene, by an amount proportional to the surface profile 
ϕ of the optical element at each point (x,y), which is 
represented by: 
 
tϕ(x,y) = exp(ik (n(λ) − 1)ϕ(x,y)) (1) 

where n(λ) is the wavelength-dependent refractive index 
of the optical element material,  is the 
wavenumber, and ϕ(x,y) is represented as: 

∅ = ∑ 𝛼𝛼𝑗𝑗𝑍𝑍𝑗𝑗𝑁𝑁
𝑖𝑖=1                                             (2) 

where Zj is the j-th Zernike polynomial in Noll notation 
as in [17], and αj is the coefficient that is trainable. After 
the optical element, the light wave continues to 
propagate to the camera lens, which induces the 
following phase transformation: 

 (3) 
Considering that a lens has a finite aperture size, we use 
a binary circular mask A(x,y) with diameter D to model 
the aperture and block light in regions outside the open 
aperture. The light wave field after the lens can be 
represented as: 

     U˜(x,y) = A(x,y)tϕ(x,y)tl(x,y)U (4) 
Finally, the light wave field propagates a distance d2 to 
the sensor with the exact transfer function as in [17] 

 (5) 

where (fx′,fy′) represents spatial frequency. Based on this 
transfer function, the light wave field arriving at the 
image sensor could be represented as: 

 (6) 

where F{} and F−1{} represent the Fourier and inverse 
Fourier transforms. The magnitude of U(x′,y′), which is 
calculated as: 

H(x′,y′) = |U(x′,y′)|2 (7) 

is defined as the point spread function (PSF). The 
encrypted image acquired by the optical system can then 
be modeled by the PSF as: 

y = H ⊗ x + η (8) 

where y represents the encrypted output image generated 
by the optical system, x represents the original scene 
which is represented as a discrete color image, η 
represents the optical system noises and ⊗ represents 
the convolutional operation. 

3.2. Deep neural network for skeleton 
extraction 

The encrypted image outputs generated by the optical 
system serve as the input for a sophisticated deep neural 
network model designed for 2D pose estimation. Our 
chosen architecture for this task is the mask RCNN 
(Region-based Convolutional Neural Network), 
renowned for its capability in object detection and 
instance segmentation. This architecture unfolds in two 
distinct stages, each contributing to the accurate 
extraction of human pose information. 
In the initial stage, a Region Proposal Network (RPN) 
takes charge, leveraging convolutional neural network 
(CNN) backbones, such as Resnet-50 or Resnet101, to 
extract essential feature maps. The RPN then proceeds 
to propose regions of interest (RoIs) by enclosing 
candidate objects within bounding boxes. This step 
serves as a crucial precursor for identifying relevant 
areas that warrant further analysis in the subsequent 
stage. The second stage involves refining the identified 
RoIs using an ROIAlign layer, a pivotal component that 
ensures the preservation of spatial information without 
introducing misalignments. The ROIAlign process 
entails dividing each RoI into a fixed grid and 
subsequently sampling the feature map at regularly 
spaced points within each grid cell. The interpolation is 
achieved through bilinear methods, resulting in re-sized 
RoIs that possess a standardized and consistent format 
The processed RoIs are then directed to two distinct 
heads within the model. The first head is equipped with 
fully connected layers responsible for classifying human 
objects and regressing the human region. This 
component plays a pivotal role in determining the 
presence of human subjects within the image and 
accurately delineating their spatial boundaries. 
Simultaneously, the second head employs a series of 
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convolutional layers to extract detailed information 
regarding the human 2D skeletons. This intricate process 
enables the model to capture the poses and skeletal 
structures, contributing to the overall precision of the 2D 
pose estimation. 
In this work, we define the following loss function to 
jointly train the optical element coefficients in (2) and 
mask RCNN network: 

 

L = Lcls + Lreg + Lskeleton − λ · Ldifference (9) 

where Lcls, Lreg, and Lskeleton represent the classification, 
bounding box regression, and skeleton extraction losses 
associated with the mask RCNN, Ldifference represents the 
loss of the difference between the original scene images 
and encrypted images obtained from the optical system. 
The balance factor λ is used to adjust the relative 
importance of these components. Minimizing the above 
loss function enables the mask RCNN detector to 
effectively extract 2D skeletons while simultaneously 
encrypting the images through the optical system for 
privacy-preserving purposes. 

3.3. Machine learning models for gait 
classification 

The 2D skeletons, derived from a video sequence 
through our deep neural network model, play a pivotal 
role in the classification of gaits as normal or indicative 
of Parkinson’s disease, leveraging a specialized 

classification model. Prior to delving into the 
classification process, we initiate a series of pre-
processing steps. In the initial phase of pre-processing, 
we establish the midpoint of the shoulders as the 
reference point (origin). This serves as a fundamental 
anchor, and we subsequently adjust the position of each 
key point accordingly to obtain their relative positions. 
Following the establishment of relative key point 
positions, we further standardize these positions using 

the length of the trunk as a normalization factor. This 
normalization step is pivotal in accounting for variations 
in individual body sizes in the image planes. With the  
 
completion of these pre-processing steps, we proceed to 
transform individual key points, denoted as pi via the 
following formula: 
 

 (10) 

where pl represents the position of the shoulder and L 
represents the trunk length. By implementing the 
aforementioned pre-processing techniques, we ensure 
the stability and consistency of the extracted 2D poses, 
making them invariant with respect to both scale and 
position variations. This robustness enables our 
developed technique to effectively classify 
normal/abnormal gaits across diverse positions and 
distances from the camera when processing videos. For 
each frame, denoted as the i-th frame, we construct a 
concatenated vector, represented as ci = [pˆi,1,...,pˆi,N], by 
amalgamating the pre-processed positions of all 
keypoints. Here, ˆpi,j represents the pre-processed 
position of the j-th keypoint at the i-th frame. 

Figure 2. The original video frames, encrypted video frames and the 2D skeleton extraction results. 
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Subsequently, we compile these concatenated vectors 
for frames within a video sequence, forming an input 
array [c1,...,cN], where N denotes the sequence length. 
Concatenated vectors obtained from video sequences in 
training/testing datasets are applied to train/test machine 
learning models for normal/abnormal gait classification. 
In this study, we evaluate various machine learning 
models, including k-NN, decision tree, random forest, 
support vector machine, neural network, and 
convolutional neural network. This comprehensive 
analysis ensures the selection of an optimal model that 
can effectively discern gait abnormalities. 

4. Experimental studies 

The devised technique underwent evaluation using a 
dataset containing videos illustrating both normal and 
Parkinson’s side-walking gaits of sixteen subjects within 
the laboratory at the University of Lincoln. This video 
dataset was meticulously segmented, resulting in a total 
of 320 samples, of which 192 were designated for 
training and 128 for testing. Fig. 2, Line 1 provides a 
glimpse of samples extracted from the recorded video 
frames. Initially, the stochastic gradient descent (SGD) 
algorithm was employed to jointly train the Zernike 
polynomial coefficients within a simulated optical 
system and the Mask RCNN using a substantial COCO 
dataset [23]. The base learning rate was configured at 
0.00003, accompanied by a weight decay of 0.00001 and 
a momentum of 0.9. To facilitate stable training, a warm-
up iteration of 100 was implemented, with the overall 
training epoch set to 50. Leveraging the trained optical 
system and Mask RCNN, image encryption and 2D pose 
extraction were conducted. Notably, exemplary results 
of encryption and pose extraction are presented in lines 
2 and 3 of Fig. 2 for reference. 
Skeleton features are extracted from both the training 
and testing video sequences and subjected to 
preprocessing steps outlined in Section 3.3. 
Subsequently, the preprocessed features derived from 
the training dataset are utilized to train various machine 
learning models, which are subsequently evaluated on 
the test datasets. This study employs a diverse array of 
classifiers, encompassing traditional methods such as 
random forest (RF), K-Nearest Neighbor (KNN), 
support vector machine (SVM), and decision tree (DT), 
alongside advanced deep learning approaches including 
convolutional neural network (CNN) and artificial 
neural network (ANN) 

Machine learning classifiers evaluation: We trained 
machine learning models, including those based on the 
scikit-learn Python library [24]. For each model, we 
utilized the GridSearchCV function within scikit-learn to 
search for optimal hyperparameters, ensuring optimal 
model performance. The confusion matrices obtained for 
various models under the optimal hyperparameters are 
depicted in Fig. 3. Notably, the analysis reveals that the 

random forest approach yields the most favorable 
outcome, exhibiting the fewest misclassified samples. 

For a more comprehensive quantitative evaluations, we 
calculate different evaluation metrics including 
accuracy, precision, recall and f1-socore, whose 
definitions are shown as below: 

 (11) 

          (12) 

         (14)                        
where TP, TN, FP, and FN represent true positive 
(correctly classified normal gait sample), true negative 
(correctly classified abnormal gait sample), false 
positive (incorrectly classified normal gait sample), and 
false negative (incorrectly classified abnormal gait 
sample) respectively. The closer these values to 1, the 
better a model is. The average results are shown in Table 
1, from which we can see that the random forest based 
approach achieves the best performance with respect to 
the majority of evaluation metrices, especially with a 
much higher average accuracy than other models. 

 Table 1: Performance comparisons of different 
machine learning models 

 
 
Deep learning classifiers evaluation: We also 
experimented with two variations of deep neural 
network models for evaluation purposes. The first model 
is a standard artificial neural network, featuring four 
hidden layers with neuron counts of 128, 64, 16, and 32 

Model Accuracy Precision Recall F1 Score 
RF 0.9766 0.9841 0.9688 0.9764 
SVM 0.7656 0.7179 0.8750 0.7887 
KNN 0.8281 0.7500 0.9844 0.8514 
DT 0.8672 0.8310 0.9219 0.8741 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

| Volume 11 | 2025 |



Privacy-Preserving Abnormal Gait Detection Using Computer Vision and Machine Learning 
 
 
 

7 

respectively. Relu activation functions are applied to the 
hidden layers, while the output layer comprises a single 
neuron utilizing the sigmoid activation function, which 
outputs the probability of a normal gait. The CNN model 
comprises three convolutional layers with 128, 256, and 
256 filters respectively, each with a kernel size of 3, 
followed by fully connected layers. During the training 

of these network models, the binary cross-entropy loss 
function is employed and defined as follows: 
 
L(y,p) = −(y · log(p) + (1 − y) · log(1 − p))  (15) 

where y is the true class label and p is the predicted 
probability. The Adam algorithm is used for the network 

Figure 3. Confusion matrices for different machine learning models. 

Figure 4. Training/validating loss curves for the ANN & CNN model 
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training. The loss curves on both the training/testing 
datasets during the network training are presented in Fig. 
4. The diverse metrics obtained for both network models 
are presented in Table 2. It is evident from the results 
that the performance of the ANN model surpasses that of 
the CNN, exhibiting higher values across all metrics. 

Upon examining the experimental results, it becomes 
evident that the Random Forest model outperformed all 
other approaches across various evaluation metrics. Both 
ANN and CNN exhibited inferior performance compared 
to traditional algorithms, as indicated by lower precision, 
recall, and F1 score values relative to the Random Forest 
model. This discrepancy can be partly attributed to the size 
of the dataset. With only 192 datapoints in the training set 
and 128 in the testing set, neural networks might struggle 
to generalize effectively due to their high capacity. 

Table 2: Performance metrics of ANN and CNN 
models 

 

Model Precision Recall F1 Score 

ANN 0.9254 0.9688 0.9466 

CNN 0.8806 0.9219 0.9008 
 

Random Forest, being an ensemble method, 
demonstrates resilience in such scenarios with limited 
data, relying on decision trees that are less prone to 
overfitting. Additionally, the dataset’s features might be 
inherently more suitable for Random Forest without 
extensive feature processing. Moreover, Random Forest 
is better equipped to handle outliers and noise within the 
data. The decision trees within Random Forest are less 
influenced by outliers, as the final prediction is 
aggregated from multiple trees, diminishing the impact 
of individual outliers. Consequently, Random Forest 
exhibits superior performance in scenarios where 
outliers and noise are prevalent. 

5. Conclusion 

This study introduces a pioneering approach to computer 
vision-based normal/abnormal gait classification, 
prioritizing privacy preservation. Our methodology 
integrates the optimization of optical system parameters 
and deep neural network models, facilitating the precise 
extraction of human 2D skeletons from encrypted 
images. Subsequently, these 2D skeletons undergo 
thorough preprocessing before being input into machine 
learning models for the classification of normal and 
abnormal gaits. Our experimental findings underscore 
the efficacy of our approach, with the random forest 
model emerging as the top performer across various 
evaluation metrics, validating its suitability for our 
dataset 

However, one notable limitation of our current study lies 
in the size of the dataset utilized for training and 
evaluation. We acknowledge that the dataset employed 
in this research is relatively small. To address this, we 
plan to expand our dataset significantly in future studies, 
thereby enhancing the robustness and generalizability of 
our models. Additionally, we aim to explore the 
development of more advanced and complex machine 
learning models tailored specifically for gait 
classification. Through these efforts, we aspire to further 
advance the stateof-the-art in gait classification while 
ensuring the preservation of privacy in our 
methodologies. 
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