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Abstract 

Human Gait Analysis is crucial in healthcare applications, with numerous research works focusing on machine learning and 
deep learning approaches for tasks such as abnormal gait detection and gait quality assessment. However, developing such 
models requires collecting and sharing a significant amount of patient data, raising privacy concerns. In this study, we 
introduce the world’s first technique for constructing a deep neural network model to stratify patients’ pain levels based on 
video recordings of timed up-and-go activities, while ensuring privacy preservation through modern federated learning 
algorithms. Our experimental results demonstrate the effectiveness of this technique in accurately stratifying LBP levels 
without the need for data sharing among local clients to maintain privacy. 
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1. Introduction

Human motion is intricately influenced by the coordinated 
function of the nervous, musculoskeletal, and 
cardiorespiratory systems, each playing a vital role in 
orchestrating fluid locomotion. Abnormal motions serve as 
notable indicators of underlying neurological, 
musculoskeletal, or biomechanical irregularities [1]. 
Therefore, effective human motion analysis holds profound 
significance, to early diagnosis and intervention across a 
spectrum of medical conditions impacting human mobility. 
Among the diverse applications of human motion analysis 
in healthcare, the stratification of lower back pain (LBP) 
severity emerges as a critical pursuit. LBP profoundly 
impacts individuals’ quality of life and poses a significant 
societal burden. In the United Kingdom alone, back pain 
ranks as the largest single cause of disability, with lower 
back pain accounting for 11% of the total disability within 
the population [2]. Globally, an estimated 50– 80% of 
individuals are projected to experience challenges related 
to LBP, with a substantial 90% likely to undergo 
intermittent episodes even after initial alleviation [3].  

Traditionally, questionnaire-based methods, such as the 
STarT Back Screening Tool (SBST) [4], have been 
commonly used to stratify the level of lower back pain 
(LBP). However, these approaches are subjective and rely 
on the clinician’s expertise in assessing the severity of a 
patient’s LBP. To enhance objectivity and precision in 
categorizing LBP severity, researchers have developed 
instrumentation-based methods. Innovative artificial 
intelligence (AI) algorithms utilize motion data collected 
from sensors to improve the classification of LBP. In [5], 
inertial measurement units (IMUs) attached to patients’ 
trunks capture kinematic data related to trunk motion. This 
data is then processed to extract essential features such as 
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linear acceleration and angular velocity. Machine learning 
algorithms like Support Vector Machine (SVM) and Multi-
Layer  
Perceptron (MLP) are utilized to stratify LBP levels based 
on these features, with the SVM-based classifier 
demonstrating superior performance over MLP. The 
research work [6] involves a wireless inertial sensor 
network that collects signals from sensor units placed on 
various body regions. These signals are refined to derive 
parameters such as joint angles, providing insights into 
Lower Back Motion Assessment. In [7], researchers utilize 
IMU wearable sensors to capture motion data from a series 
of repetitive movements. Feature selection is performed to 
extract 25 variables, which are subsequently utilized to 
train multiple machine-learning models, which include 
logistic regression, decision tree, random forest, SVM, k-
nearest neighbor (KNN), MLP, and gradient boosting 
algorithms for classifying subjects based on 
normal/abnormal movements. Experimental results 
showcase that SVM, random forest, and MLP models 
achieve classification accuracies exceeding 90%. By using 
unsupervised machine learning techniques on full-body 
biomechanics, encompassing kinematics, dynamics, and 
muscle forces, captured via marker-less Kinect depth 
cameras, [8] identifies a forward-leaning sit-to-stand 
strategy (STS) as a distinctive movement biomarker for 
LBP subjects. In [9], a more intricate 3D motion capture 
system is employed to analyze differences in spinal 

kinematics and 3D kinematic patterns between healthy 
individuals and those experiencing LBP.  

To develop a sophisticated machine learning or deep 
learning model for stratifying low back pain (LBP) based 
on sensor recordings of human motions, a significant 
amount of patient motion data must be collected and shared 
from various sources. However, this raises privacy 
concerns, particularly when the motion data is captured 
using video cameras. To address this issue, we propose a 
novel technique in this study: training an attention-based 
deep neural network model [10] using a federated learning 
algorithm [11]. With this approach, the DNN model is 
trained on individual partitions of local motion data 
captured by a normal video camera, and the training results 
are then aggregated to create the final model. This method 
allows each part of the local data to remain on the local 
machines for training purposes without the need to be 
shared with other parties, thus preserving privacy. To the 
best of our knowledge, this is the first instance of federated 
learning being utilized for healthcare-related human 
motion analysis tasks.  

2. Methodology

The proposed federated learning-based LBP stratification 
technique is illustrated in Figure 1. A cost-effective RGB 
camera sensor is utilized to capture video recordings of 

Figure 1. The diagram of the proposed federated learning-based technique for LBP severity 
stratification  
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timed up-and-go (TUG) activities, which are stored on 
individual local clients. The Detectron2 library [12] is 
employed to extract 2D human poses from the recorded 
videos, which are subsequently pre-processed to ensure 
scale and position invariance as per [13]. An attention-
based model is then implemented to stratify the severity 
level of LBP based on the preprocessed 2D human pose 
data.  
  As shown in Fig. 1, each attention model contains 
multiple blocks while each block contains multi-head 
attention, additional&normalization and feed-forward 
layers, which generate the output of the LBP severity level 
classification based on input 2D skeletons. The pivotal 
element within the attention model is the multi-head 
attention layer [10], which leverages multiple 'heads' to 
generate outputs. For the i-th head, queries (𝑄𝑄𝑖𝑖), keys (𝐾𝐾𝑖𝑖) 
and values (𝑉𝑉) are computed as 𝑄𝑄𝑖𝑖 = 𝑋𝑋𝑋𝑋𝑄𝑄𝑖𝑖, 𝐾𝐾𝑖𝑖 = 𝑋𝑋𝑋𝑋𝐾𝐾𝑖𝑖 and 
𝑉𝑉𝑖𝑖 =  
𝑋𝑋𝑋𝑋𝑉𝑉𝑖𝑖 respectively, where 𝑋𝑋 represents the input of the 
multi-head attention layer while 𝑋𝑋𝑄𝑄𝑖𝑖, 𝑋𝑋𝐾𝐾𝑖𝑖 and 𝑋𝑋𝑉𝑉𝑖𝑖 denote 
the respective parameter matrices associated with the i-th 
head. Based on 𝑄𝑄𝑖𝑖, 𝐾𝐾𝑖𝑖 and 𝑉𝑉𝑖𝑖, the attention weights 𝐴𝐴𝑖𝑖 for 
the i-th head are calculated as:  

     𝐴𝐴𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝑖𝑖𝐾𝐾𝑖𝑖
𝑇𝑇

√𝐷𝐷ℎ
�     (1) 

where 𝐷𝐷ℎ is a scale factor and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∙) is an activation 
function and the output of the i-th head denoted as 𝐻𝐻𝑖𝑖 is 
calculated as:  

        𝐻𝐻𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖                  (2)  

which is the weighted summation of 𝑉𝑉𝑖𝑖 based on the 
attention weights. All head outputs are calculated in the 
same way and finally concatenated and linearly projected 
as the final output of the multi-head attention layer as:  

𝑀𝑀𝑀𝑀𝐴𝐴(𝑋𝑋) = [𝐻𝐻1;𝐻𝐻2;… ;𝐻𝐻𝑁𝑁]𝑋𝑋𝑀𝑀𝑀𝑀𝐴𝐴       (3)   

where 𝑀𝑀𝑀𝑀𝐴𝐴(𝑋𝑋) represents the multi-head attention layer 
output based on the input 𝑋𝑋, 𝑋𝑋𝑀𝑀𝑀𝑀𝐴𝐴  
is a projection matric and 𝑁𝑁 is the head number in the multi-
head attention layer. The output of a multi-head attention 
layer will then go through a series of add&norm operations 
and a small feed-forward network to generate the output of 
a block.    The attention model parameters at the global 
server are updated by aggregating the training results from 
multiple local clients. In this study, we utilize the FedAvg 
algorithm [11] to facilitate this process, as outlined in Table 
1. By leveraging the FedAvg algorithm, the model on the
global server can be trained without necessitating the
sharing or collection of data from all local clients. This
approach ensures that data can remain secure within the
local clients without the requirement to disclose it to a third
party. Only the trained network parameters, rather than the
original data, are transmitted for updating the global
network architecture. This methodology effectively
safeguards data privacy.

Table 1. The description of the FedAvg Algorithm 

Algorithm: Federated Averaging: 

Server executes:  
Initialize the network parameters w0 
for each round t=1,…, do  
for each client k:  

𝑤𝑤𝑡𝑡+1
𝑘𝑘 ←  ClientUpdate (𝑤𝑤𝑡𝑡

𝑘𝑘) 
   𝑤𝑤𝑡𝑡+1 = ∑ 𝑛𝑛𝑘𝑘

𝑛𝑛
𝐾𝐾
𝑘𝑘=1 𝑤𝑤𝑡𝑡+1

𝑘𝑘

 ClientUpdate(w):  
for each local epoch I from 1 to E do 
for batch b in batches do  
     update local network weight w 
Return w to the server  

3. Experimental studies

We evaluated the proposed technique using a dataset 
obtained through collaboration with a physiotherapy clinic 
in Lincoln, UK. The dataset consists of video recordings of 
TUG activities performed by 21 subjects, including 9 males 
and 12 females, and classified into low/medium/high LBP 
severity categories by specialized physiotherapists. The 
acquired video recordings were divided into 30-frame 
video clips using the sliding window technique with a 
sliding length of 5 frames. Each video clip was analyzed 
using the Detectron 2 library to extract 2D skeleton 
sequences from the original video frames. Figure 2 depicts 
the extracted 2D skeletons from a TUG activity in one of 
the video clips.  
We have created both training and testing datasets for our 
study. The training dataset is divided into three parts, each 
containing approximately 1,750 skeleton sequence 
samples, mirroring a scenario where data is distributed 
across three local clients. The testing dataset comprises 
2,623 samples. We trained an attention model which 
include 9 blocks and 8 heads, using the FedAvg learning 
algorithm in Table 1 on the three partitions of the training 
dataset and tested it on the testing dataset. Concerning the 
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(6) 

network training on the local client, the AdamW algorithm 
[14] with specific hyperparameters: a learning rate of
0.0005, a weight decay rate of 0.01, and a learning rate
decay of 0.99. The evaluation is conducted based on the
following metrics:

    (4) 

       (5) 

 

      (7) 

TP, TN, FP, and FN denote true positives (correctly 
classified class samples), true negatives (correctly 
classified non-class samples), false positives (incorrectly 
classified class samples), and false negatives (incorrectly 
classified non-class samples) for a given class. The closer 
these values are to 1, the more indicative they are of a 
model's effectiveness.  

Table 2. Comparison between FedAvg and training 
on local datasets 

accuracy  precision recall F1_score 

Partition one  91.92% 92.27% 91.92% 91.97% 
Partition two  68.62% 68.60% 68.62% 67.29% 
Partition three 82.81% 82.88% 82.81% 82.82% 
FedAvg 95.04% 95.25% 95.04% 95.04% 

The results are presented in Table 2. Additionally, we 
provide results obtained from training on a single partition 
of local data for comparison. The findings indicate that the 
FedAvg algorithm, which integrates multiple data 
partitions, outperforms using only one local data partition. 
Furthermore, we conducted a comparison of the attention-
based model with other traditional deep learning models 
(e.g., LSTM, CNN) and showcased the results in Table 3. 
It is evident from the comparison that the proposed 
approach demonstrates superior performance compared to 
other models.  

Table 3. Comparison between 
different models 

4. Conclusions

In this study, we introduce a novel federated learning-based 
attention model for stratifying LBP severity using video 
recordings of TUG activities. Specifically, we employ the 
FedAvg algorithm to aggregate training results from local 
datasets on multiple clients and update the attention model 
on the global server. Our experimental findings 
demonstrate that the proposed approach achieves high 
accuracy in classifying LBP severity. Additionally, privacy 
concerns are addressed through the federated learning 
algorithm, which only communicates network parameters 
for model training without the need to collect datasets from 
multiple local clients. Moving forward, we plan to explore 
various network architectures and federated learning 
algorithms to further enhance performance.  

accuracy  precision recall F1_score 

LSTM  62.26% 68.84% 62.26% 60.13% 
CNN 90.55% 91.38% 90.55% 90.33% 
Attention model 95.04% 95.25% 95.04% 95.04% 

Figure 2. Samples of video frames and corresponding 2D skeleton extractions via Detectron2 
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