
Research Article

1

A DSPL Design Framework for SASs: A Smart Building

Example

A. Achtaich *
1,3

, N. Souissi
1,2

, R. Mazo
3,4

, O. Roudies
 1

, C. Salinesi
 3
,

1 - Univ. Mohammed V- Rabat, EMI, SIWEB Team - Rabat, Morocco.

2 - ENSMR, Département Informatique - Rabat, Morocco

3 - CRI, Université Panthéon Sorbonne, Paris, France

4 - GiDITIC, Universidad Eafit, Medellin,, Colombia
asmaaachtaich@research.emi.ac.ma, roudies@emi.ac.ma, souissi@enim.ac.ma,

{raul.mazo,camille.salinesi}@univ-paris1.fr,raulmazop@eafit.edu.co

Abstract
The Internet of Things is a land of opportunity for believers and supporters of Smart Cities. Experience already shows that

smartphones, smart appliances, wearables, sensors and actuators can be brought together to deliver advanced services like

smart markets, smart parking, smart buildings or smart energy. But in order to do so in a complex, dynamic, rapidly

changing and resource constrained environment, adapting fleets of devices to align with context fluctuations becomes a

necessity. This paper describes the framework established to tackle the problem. It represents the dimensions for building

Self-adaptive fleets for IoT applications, based on the foundations of the DSPL paradigm and the RE principles. The

paper also allocates a model for each dimension of the framework, and through a preliminary proof of concept Smart

Building example, confirms the usability of the proposal.

Keywords: IoT, smart-building, dynamic software product lines, DSPL, self-adaptation, context, environment, fleet, variability,

Received on 15 December 2017, accepted on 03 February 2018, published on 26 June 2018

Copyright © 2018 A. Achtaich et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.26-6-2018.154829

1. Introduction

The Internet of things (IoT) enables advanced services

by interconnecting fleets of connected device. These

smart devices can provide basic knowledge about an

environment, but can also support complex tasks like

business automation, real-time reporting, and optimization

operations. Smart health, smart energy or smart cities are

examples of the applications that are today possible,

thanks to the IoT.

Connected objects can monitor and track environment

indicators in real-time. This monitoring and tacking

activity helps collect information about the surrounding,

and prepare smart solutions that answer the needs of the

affected customers. Therefore, it is important to take into

consideration the mutual dependency between objects and

their surroundings (i.e., system and context): changes in

the surrounding have repercussions on the proper

functioning of devices and the reconfiguration of the fleet

can change the state and behaviour of the surrounding.

Hence, three main dimensions are important to

consider while designing an application for the IoT: The

(1) system, the (2) context and the (3) environment. (1)

The system is the fleet, it is represented by the embedded

devices and their configurations and is managed in a way

that its outcome allows the achievement of goals specified

by the domain expert. (2) The context is everything that

surrounds the systems, and has an impact on it. Context is

represented by measurements captured by devices that

surround the system. Context data can also originate from

the user, and it can be time or space bound. Finally, (3)

the environment illustrates knowledge related to a

domain. It holds universal information that might not have

a direct impact on the system at a time being. However, it

could be significant in other dispositions.

When a fleet is implemented, it bears a configuration

that is characterized by the set of corresponding devices

along with their respective configuration. However, the

EAI Endorsed Transactions
on Smart Cities

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

∗Corresponding author. Email: aachtaich@gmail.com

http://creativecommons.org/licenses/by/3.0/

A. Achtaich et al.

2

IoT systems are complex; they are rapidly changing,

highly variable, heterogeneous, prone to risks and failure,

and extremely dynamic. Self-adaptation capabilities are

thus required. In other words, from design time, the

dynamic properties of IoT systems should be considered,

specified and properly handled. Dynamic proactive

adaptation in particular is required to provide adjustments

at runtime [1].

It is important to note that the three dimensions are

dynamic as well. Devices that form the system at a

particular configuration might not be the same involved in

another instance of the same fleet. They could become

part of the context. Similarly, information that had an

impact on the system in a configuration, might become

irrelevant in another, and be part of the environment

instead. This confirms the need for variability

management.

Undoubtedly, IoT management platforms should

provide engineers and practitioners with the necessary

tools to define capture and reason about variability at

different levels of concerns. Until today, building similar

platforms has been problematic, mainly for the lack of

standards, reference architectures and design frameworks.

In this paper, we intend to fill this gap by proposing a

design framework which tackles the problem of dynamic

variability, and takes into account the specificities of a

fleet of IoT systems. The usability of our framework was

validated through a preliminary proof of concept case in

which we used a Smart Building example to illustrate the

main challenges discussed before, and how this

framework tackles these challenges.

The paper is structured as follows: Section 2 overviews

the mechanisms for self-adaptation and presents our DSPL

based Framework for Self-adaptive IoT systems. Section 3

presents a Smart Building motivational example, and

identifies the requirements for the management of fleets of

connected objects. Section 4 depicts the specificities and

steps of domain engineering, as it serves as inputs

to the activities for engineering single products, discussed

in Section 5, as the focus of Application engineering. And

finally, section 6 presents the related works before

concluding.

2. A Self-Adaptation Framework

Building self-adaptive systems is not a completely new

concern in research. In fact, several paradigms and

approaches have been developed throughout the years to

support the self-properties of complex systems. In this

section, we overview the most notable -but not all-

approaches for designing self-adaptive systems in order to

decide on the approach that best qualifies for Smart

Cities. Then, depending on the decided approach, we

propose a design Framework accordingly.

2.1. Key requirements for SASs

An IoT smart management platform is required to provide

the necessary mechanisms to monitor IoT devices, to

propose best-fit adaptions, to manage different levels of

variability and to support a large number of connected

devices. Therefore, to carry out these functions, the

following properties must be taken into account.

 Variability management: in a fleet of connected

devices, variability can be captured at different levels.

The platform should be able to manage this separately

throughout the system’s lifecycle.

 Context awareness: in order to support self-adaptation,

IoT applications should be aware of change in their

surroundings. The events and circumstances that have

repercussions on the overall performance of the

application should be known and addressed.

 Uncertainty management: It is not always possible to

predict the events that will trigger a reconfiguration.

Thus, the platform is required to evaluate the qualities

the system offers in comparison with the ones

requested by users.

 Smart proactive self-adaptation: the platform should

provide the necessary mechanisms to analyze

collected data and adapt the system in problematic

situations. In a resources constrained environment like

ours, every planned adaptation should be subject to

validation to prove its necessity.

 Physical abstraction: the platform should support

communication with heterogeneous devices and

various technologies in order to monitor and actuate.

This requirement will not be discussed in this paper.

Only preliminary concepts will be introduced.

2.2. DSPL : A Self-Adaptation
Mechanism

A Self-Adaptive Software (SAS) is a system that can

automatically modify itself in the face of a changing

context, to best answer a set of requirements. The Self-

adaption capacity can be provided by programming

languages in the form of exceptions, parameters or

conditions. However, adaptation through these

mechanisms is application specific, error prone and

poorly scalable. In contrast to these mechanisms,

numerous external approaches contribute to the

development of runtime adaptation of software, like

architecture-based techniques which formulate and

process changes in an architectural model [2] [3] [4],

agent-based approaches which model systems as a

collection of autonomous agents [5], reflective

approaches, which can observe and modify the

composition of a system at runtime [6][7], and model-

driven engineering (MDE) which shifts the focus to the

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A DSPL Design Framework for SASs: A Smart Building Example

3

Figure 1: The DSPL Process

creation and use of domain models, to automate code

generation [8][9]. Dynamic Software Product Line

Engineering (DSPLE) is under the umbrella of MDE, as it

uses models at runtime to address variability and context

changes during system execution.

DSPL uses software product lines principles to build

systems that can adapt to context fluctuation, new user

requirements and variant QoS states. These principles

include software reuse, variability modelling and

management, and automatic product derivation.

We consider the DSPL paradigm the most fitting

approach to provide autonomic scalable support for a fleet

of connected devices, from design to execution [10]. First,

DSPLs provide a systematic and non-restrictive way to

deal with SASs [11], also they successfully realize the

MAPE-K loop [12] as tested by Bencomo et al. in [13].

Besides, on the one hand, monitoring and controlling are

the main activities for the fleet management. On the other

hand, these same two activities are central tasks in

DSPLs, which makes the paradigm a good fit for the self-

adaptation of the fleet. Also, with regards to uncertainty,

the quality of a product can be measured against user

requirements by the mean of Goal-based approaches.

Goal models can represent the system requirements at the

domain level of (D)SPLs, in the form of variable reusable

components. Furthermore, variability is a key challenge in

the management of a fleet of connected things; it takes

place at different levels. Static variability is concerned

with similarities and variations between fleets, while

dynamic variability is dealing with the runtime

reconfiguration, and temporal variability, describes the

alterations of the three dimensions. Dealing with

variability is by far the greatest asset of DSPL, since it

adopts essential concepts from SPL [14].

2.3. Design principles

The first level in the process is the creation of assets.

As described in Figure 1, a meticulous study of the

domain in question helps define the qualities the system

should satisfy, while specifying the variability and the

variation points. The result of a domain study is the

specification of the fleet’s requirements (a). The second

level is the creation of the final product. The requirements

of each customer are described in formal language. The

selection of features is carried out accordingly, and then

adjusted to fit the exact needs of the customer. Features

are finally derived, linked, tested and deployed in order to

instantiate the Product—the fleet (d).

 DSPLE takes the SPL process one phase further. Each

product is thoroughly monitored (c) to determine the

structural or behavioural state that dissatisfies

requirements. When these are no longer fulfilled, a new

configuration is planned (b). This one achieves the

optimal satisfaction of primary goals. Features are then re-

selected, re-adjusted, re-derived and re-linked (re-tested

and re-deployed) to create a new product—a new

configuration for the fleet. This process is repeated

whenever the system fails to fulfil requirements, in light

of contextual change.

D
o

m
ai

n
 L

e
ve

l
A

p
p

lic
at

io
n

 L
e

ve
l

(a) Product Line models
(Fleet’s reusable assets)

(d) Product (Fleet)

(c) Device Management Platform

Requirements

(b) Configuration process n

Monitors
& Contols

Plans new

configuration

Produce

Is subject to

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

4

Figure 2: A DSPL three-dimensional Framework

From one engineering process to the other, the fleet’s

three dimensions, the system, the context and the

environment, have different designations, as described

and illustrated in Figure 2. At the domain engineering

level, each one of the concepts contributes to the creation

of assets. With regards to the system (1), a domain expert

thoroughly studies the domain in order to determine the

functionalities the system should provide and qualities to

comply with. In this sense, the system is where domains

requirements are extracted, which are then translated to

goals, features, components or assets. Context (2) is

where the events that can arise after the deployment of the

fleet are abstracted, in order to determine when a

reconfiguration is needed. Environment (3) holds more

generic information about domains and devices. It can

contribute to the evolution and extensibility of the system

by supporting an open Marketplace. This one could

supply the system with new components, device

specifications, documentation, and other related

information.

At the application engineering level, deployment,

monitoring and controlling aspects take place. In relation

to the system (4), for each set of requirements, a product

is derived. It reflects the nature of devices involved in the

configuration, and their setup. Context (5) on the other

hand deals with internal change, events and stakeholders

that surround the system, and that have an impact on it.

Devices are monitored in order to determine situations

when reconfiguration is required. Sensed or calculated

information, feedbacks, battery level, computational

performance, network and data accessibility, and other

characteristics are relevant. Devices that are not part of

the system, but contribute to its activity are part of the

context, user activity and logs also matter, the time and

space of the fleet is also responsible of how it is

configured. The environment (6), finally, is place to

generic information about the surroundings of the system,

that might, but still do not have an impact on the

fulfilment of requirements. Devices around the fleet can

be in this category, laws, rules or conditions constrained

by a time or place are too, part of the environment.

Monitoring the environment gives the platform proactive

qualities, this helps avoid waste of resources in

unnecessary adaptations.

3. A Smart Building Motivational
Example

To cope with the challenges that IoT applications face,

like heterogeneity, variability and resource constrained

environments, the system should have the ability to adapt

itself in order to continue offering the needed

performance. This is illustrated through the following

Smart Building example: The Forester’s family owns a

summerhouse, one to which they only go on vacation. The

house is equipped with devices that help secure and

maintain it in their absence, and provide comfort and

convenience in their presence. Some of the devices

involved in this process work permanently, and others

depend on the circumstances in the surroundings.

The fleet is composed of the following: To detect and

monitor events and changes within or in the surroundings,

a collection of sensors are installed around the building.

They include smoke detectors and motion sensors, which

should always stay active, and temperature sensors, fall

detectors and Light sensors which are only active when

the house is occupied. To react to changes, various

actuators were also deployed. They include sprinklers,

ACs and a noise canceling devices. Light that can be

controlled manually or automatically, or by opening or

closing curtains for natural light. The security is provided

by an exterior camera, which can work permanently, or

record when motion is detected. Water and electricity

consumption are also monitored using smart meters, and

can be controlled thanks to the switch between the Mains

provider and the rainwater or battery bank, respectively

for water and electricity consumption optimization. And,

finally, a control panel is provided to administrators, on

premise, locally in the house, or through the smartphone’s

app.

Moreover, in order to serve the different needs of its

users, under different circumstances, in a smart proactive

System Context Environnement

D
o

m
ai

n

E
n

g
in

e
e

ri
n

g

A
p

p
li

ca
ti

o
n

E
n

g
in

e
e

ri
n

g

(1) Represent domain

Requirements
(2) Update requirements (3) Support an open Marketplace

(6) Maintain related domain
information

(5) Capture context data (4) Determine fleet Devices

Monitoring, mandatory devices,
Accuracy

Brightness, Resources level, users New Camera specifications

Forecast, city laws
Inside temp, elderly Presence,

user preferences

Camera on automatic mode, AC are
disabled

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A. Achtaich et al.

5

manner, the fleet should be self-adaptive. The following

scenario can be considered:
a. The house is equipped with fall detection sensors,

noise canceling devices and in-Room Cameras. They
are not always needed, and should only be activated
when the Grandmother’s smartphone is detected in the
house, in order to monitor her activity, and guarantee
her comfort.

b. If no one is in the house after coming back from
vacation, the everyday features, responsible for adding
comfort to the family, by automating certain tasks, are
deactivated. Only maintenance and security features
should be kept active in the fleet.

c. To preserve the overall consumption in the building,
certain features can be deactivated when not needed,
to avoid an overpriced bill.

The fleet is considered as a DSPL. Each configuration

of the fleet is a product that shares common

characteristics with other configurations, but still answers

the specific needs of the customer it serves. Figure 3

highlights examples of the various products that can be

derived from the DSPL, which arise under the different

circumstances described above.

4. Domain Engineering

Domain engineering (DE) lays the groundwork for

engineering single software systems. At this level, the

requirements of the fleet are defined in terms of common

and variable features (devices and their respective

configurations). The result of this phase is the dynamic

product line, meaning all the possible configurations the

fleet can take, along with the rules to manage arising

changes in the environment. This section introduces the

DE related models, and the nature of requirements that

can be specified at this level, depending on the dimension

they relate to.

4.1. Variability model

A Variability Model [15] is responsible for

documenting and describing variability. It is an

abstraction of the system’s requirements in the form of

common and variable features. Variability Models can be

represented in different forms: Feature models, goal

models, decision models, variation points or in the form

of constraints.

Variability models are a pertinent choice in the context

of IoT applications, as they represent the (1) system

dimension in our Framework. They are responsible for

describing the various devices that compose the fleet, as

well as their configurations (the available options, the

activated modes, the embedded devices or sensors, and

the parameters and values that are important for its

functioning). For instance, the configuration of each

device in the Smart Building fleet is commanded by the

following constraints:

ID (Non) Functional Requirement

Req1

Sensors should always monitor motion and

smoke, and could monitor temperature and fall

in particular setups.

Req2
The AC can only function if the Temperature

Sensor is selected

Req3

The camera can record permanently, or it can be

on hibernate mode and only be wakened when

motion is detected. A camera installed in the

guest room can be activated under certain

circumstances.

Req4

The lightning in the house can either be

controlled manually through light switches, or

automatically. Curtains can be selected, along

with one of these modes to avoid unnecessary

usage.

Req5
Consumption Control can be activated. In might

include Water Control or Energy Control.

Req6

Controlling the water involves choosing a water

source; it can be provided from the Mains or

from the Rainwater reservoir. For a more

meticulous monitoring, the water control can

track the exact amount through a water meter.

Req7

Controlling the electricity involves choosing a

power source; it can be provided from the Mains

or from the home battery bank. For a more

meticulous monitoring, the Electricity control

can track the exact amount through an electricity

meter.

Req8

The administrators can control the fleet through

a local control panel or using their Smartphone

Apps, or both.

Req9 The fleet should be energy efficient

Req10 The fleet should be efficient with water

consumption

Req11 The fleet should provide accurate results

Table 1: Variability constraints

4.2. Context models

Context models [16] are central for building self-

adaptive systems, as they characterize the status of the

different entities that compose the PL. They are used to

model the elements of the (2) context dimension of the

Framework. Not only does a context model allow the

acquisition and abstraction of context elements, but it also

delignates the adaptation logic that links a context to its

ideal configuration. Today, thanks to the insight that

smart sensors bring about their surroundings, we can

realistically imagine scenarios like starting a car when the

conductor’s smartphone is close or preparing the

conference room for a meeting by turning on the lights,

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A DSPL Design Framework for SASs: A Smart Building Example

6

opening the curtains, and lunching the appropriate

presentation when it is in the agenda.

Context models are a combination of all context

variables, which are abstractions over a part of the

system’s context. The values of a context variable are

monitored at runtimes, by reporting on events, by sensing

change in the context, or by catching device exception.

In the case of the Smart building fleet, several context

elements have an impact on the final product. An example

of context elements is presented in the following:

ID Context Requirements

Req12 The Fall Sensor and the noise canceller are

selected when there is an elderly presence in the

house

Req13 When smoke is detected, the sprinklers become

part of the fleets

Req14 Camera N°2 is on Permanent mode when an

elderly presence is detected the house

Req15 When the water control and water Meter are

selected, and water consumption is high, the

source switches to Rainwater

Req16 When the house is empty, only mandatory

sensors and actuators are selected, Only Manual

Lightning is selected, only Smartphone Control

Panel is active, and consumption control is

deactivate

Req17 When the source of electricity is Mains, the

electricity consumption is high and the date of

the month is superior then the 20
th

, Battery Mode

is selected instead

Req18 When the battery bank level is low, the

electricity economy should be switched on

Req19 The temperature sensor, the AC, lightning

through curtains and permanent recording of the

are energy consuming

Table 2: Context Constraints

Context models that include spatial and temporal

constraints can be used to model the (3) environment

dimension of our framework. Other models like

prediction models and forecast models [17] are also

relevant. In the case of the Smart building Example,

Environment related information may include statements

like: Recording a street view is forbidden or Water

consumption should not succeed 400l per habitant in

periods of drought.

4.3. Asset Marketplace

Services provided by the fleet are portrayed in the

implementation model. They are represented as a

collection of reusable programs that provide the

functionalities described in the variability model.

Furthermore, in a fleet of connected objects, managed

devices are unknown and unanticipated. Therefore, to

allow the extensibility of the system, it should be possible

to introduce new functions by adding components from

the outside, through a secure regulated platform. Every

operationalization is implemented through a collection of

assets. They are reusable components that gather the logic

for the implementations in the connected objects.

However, in order to properly fit in the framework, this

view should provide the means to link the

operationalization to a collection of assets, in order to

guarantee the extensibility of the system. Different assets

might correspond to different implementations of an

operationalisation; different standards, different

algorithms, or different languages. A developer’s open

marketplace could host the various components

responsible for enabling various services. And interfacing

capabilities could link the modelled assets with their

respective implementations.

5. Application Engineering

Application engineering (AE) starts with the elicitation

of requirements for each customer in formal language.

Features and components are selected accordingly. The

list of components is readjusted in case it doesn’t

correspond to the exact demands of the customer. The

final components are derived, linked, tested and deployed

in the form of a product, which can change if and when

any change in the context occurs. This section introduces

the AE related activities, depending on the dimension they

relate to.

5.1. Configuration

The configuration process corresponds to the selection

of features and their corresponding components, in

accordance with the users’ requirements. The list of assets

is readjusted in case it doesn’t correspond to the exact

demands of the customer (by adding or suppressing some

of the automatically selected features), then linked. The

final components are derived; tested and deployed in the

form of a product, which corresponds to the new

configuration of the fleet.

5.2. Context Data

The context model is exploited at this level, along with

a monitoring platform, which supervises the fleet,

captures change that occurs in the surroundings of the

devices, and analyzes it. Furthermore, it keeps track of

the state and physical conditions of devices individually;

if an unusual behavior, a contradiction, or an unhealthy

pattern is observed, the context model coordinates with

the variability model, in accordance with the constraints

that bind then, to plan and execute a new set of

configurations.

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A. Achtaich et al.

7

Likewise, a user context model and a behavior monitor

could be used to observe the actions of users, and learn

their routines and patterns. This learning process could

update the requirements at the application level to propose

configurations that are more aligned with the realistic

preferences of the user.

Provided as input to the model implementation, context

data are the instances that context variables take under

certain circumstances.

5.3. Environment Data

Unlike context data, which represent information that

has a direct impact on the fulfillment of user’s

requirements, environment data refers to information and

knowledge related to the domain. It does not have a direct

impact on the system at a specific time, but might bright

insight in particular situations. It is important to grasp and

implement such information to make use of it when

necessary.

6. Model implementation

In the following section, we propose an

implementation of the models described in the previous

section, in the form of a declarative constraint program.

Each feature in the variability model is defined as a

Boolean variable [18]. When selected in the final product,

the value of the variable is 1, when it is not, the value is 0.

%---------- Defining the reusable features

LRC = [SmartBuilding, Sensor, Smoke, Temperature1,

Temperature2, Temperature3, Light, Motion1, Motion2, Fall,

Actuator, AC1, AC2, AC3, NoiseCanceling, Sprinkler1,

Sprinkler2, Sprinkler3, Lightning, Manual, Automatic,

Curtains, Camera1, Camera2, Permanent, InMotion, Off,

ControlPanel, Local, Smartphone, ConsumptionControl,

WaterControl, WaterMeter, MainsWater, RainWater,

EnergyControl, ElectricityMeter, MainsElectricity,

Battery],

fd_domain(LRC, 0, 1),

The variables are constrained with expressions [19]; they

translate the predicates expressed in Table 1. The

collection of variables form a constraint satisfaction

problem that can be solved, in order to determine the

valuable valid configurations.

%---------- Constraints on features

%The root is always selected

SmartBuilding #= 1,

%Defining the features related to the SmartBuilding

SmartBuilding * 4 #= Sensor + Actuator + Lightning +

ControlPanel,

SmartBuilding * 2 #>= Camera1 + Camera2,

SmartBuilding #=< Camera1 + Camera2,

SmartBuilding #>= ConsumptionControl, %Req5

%The subfeatures of Sensor

Sensor * 3 #= Smoke + Motion1 + Motion2, %Req1

Sensor *5 #>= Temperature1 + Temperature2 + Temperature3 +

Fall + Light ,

%The subfeatures of Actuator

Actuator * 1 #=< Sprinkler1 + Sprinkler2 + Sprinkler3,

Sprinkler1 + Sprinkler2 + Sprinkler3 #=< Actuator * 3,

Actuator * 4 #>= AC1 + AC2 + AC3 + NoiseCanceling

%The subfeatures of Lightning %Req4

Lightning #= Manual + Automatic,

Lightning #>= Curtains,

%The subfeatures of Camera1

Camera1 #= Permanent + InMotion, %Req3

%The subfeatures of Camera2

Camera2 #= Permanent + InMotion, %Req3

Camera2 #>= Off,

%The subfeatures of ControlPanel %Req8

ControlPanel *2 #>= Local + Smartphone,

ControlPanel #=< Local + Smartphone,

%The subfeatures of ConsumptionControl

ConsumptionControl * 2 #>= Local + Smartphone, %Req5

%The subfeatures of WaterControl %Req6

WaterControl #= MainsWater + Rainwater,

WaterControl #>= WaterMeter

%The subfeatures of EnergyControl %Req7

EnergyControl #= MainsElectricity + Battery,

EnergyControl #>= ElectricityMeter

%The Traversal relations

(Rainwater #= 1 -> WaterMeter #= 1),

(Battery #= 1 -> ElectricityMeter #= 1),

(AC1 #= 1 -> Temperature1 #= 1 ; AC1 #= 0),

(AC2 #= 1 -> Temperature2 #= 1 ; AC2 #= 0),

(AC3 #= 1 -> Temperature3 #= 1 ; AC3 #= 0),

Non-functional requirements (NFR) are represented as

variables that can take several values (from 0 to 4), each

value represents a satisficing level, which corresponds to

the importance of the NFR for the user.

%---------- Non-Functional Requirements %Req9, 10, 11

LNFR = [Accuracy, EnergyEfficiency, WaterEfficiency],

fd_domain(LNFR, 0, 4),

%---------- Constraints on NFR

TotNFR #= Accuracy + EnergyEfficiency + WaterEfficiency;

Context and environment models are also translated to

variables. Depending on the value they take during

application engineering, they have various repercussions.

%---------- Context Variables

LCtxt = [ElderlyPresence, SmokeDetected, OccupiedHouse,

MainsElectricity],

fd_domain(LCtxt, 0, 1),

fd_domain(ElectricityConsumption, 0, 2), % 0 = low, 1

= normal, 2 = High

fd_domain(WaterConsumption, 0, 2), % % 0 = low, 1 =

normal, 2 = High

fd_domain(BatteryLevel, 0, 1), % % 0 = low, 1 =

normal

fd_domain(DayOfteMonth, 1, 31),

On the one hand, they can condition the selection of

certain features, along with their effect on the realization

of NFR.

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A DSPL Design Framework for SASs: A Smart Building Example

8

%---------- Claims

LCl = [C1, C2, C3, C4],

fd_domain(LCl, 0, 1),

%---------- Constraints on Claims

%Effect of features and context values on EnergyEfficiency

C1 #<=> (OccupiedHouse #= 1) #/\ (Temperature1 #==>

EnergyEfficiency #=< 2) #/\ (Temperature2 #==>

EnergyEfficiency #=< 2) #/\ (Temperature3 #==>

EnergyEfficiency #=< 2) #/\ (AC1 #==> EnergyEfficiency #=<

0) #/\ (AC2 #==> EnergyEfficiency #=< 0) #/\ (AC3 #==>

EnergyEfficiency #=< 0) #/\ (Permanent #==>

EnergyEfficiency #=< 0) #/\ (Curtains #==>

EnergyEfficiency #=< 3),

C2 #<=> (ElderlyPresence #= 1) #/\ (Light #==>

EnergyEfficiency #=< 2) #/\ (NoiseCanceling #==>

EnergyEfficiency #=< 1), %Req12 , %Req14

C3 #<=> (InMotion #==> EnergyEfficiency #=< 4) #/\

(Automatic #==> EnergyEfficiency #=< 2),

C4 #<=> (ElectricityConsumption #= 2) #/\ (DayOfteMonth

#>= 19) #/\ (Battery #==> EnergyEfficiency #=< 4),

%Effect of features and context values on WaterEfficiency

C5 #<=> (RainWater #==> WaterEfficiency #=< 1) #/\

(MainsWater #==> WaterEfficiency #=< 3), %Req17

%Effect of features and context values on Accuracy

C6 #<=> (OccupiedHouse #= 1) #/\ (Temperature1 #==>

Accuracy #=< 4) #/\ (Temperature2 #==> Accuracy #=< 4) #/\

(Temperature3 #==> Accuracy #=< 4) #/\ (AC1 #==> Accuracy

#=< 4) #/\ (AC2 #==> Accuracy #=< 4) #/\ (AC3 #==>

Accuracy #=< 4) #/\ (Curtains #==> Accuracy #=< 1),

C7 #<=> (ElderlyPresence #= 1) #/\ (Light #==> Accuracy

#=< 2) #/\ (NoiseCanceling #==> Accuracy #=< 1),

C8 #<=> (InMotion #==> Accuracy #=< 1) #/\ (Permanent #==>

Accuracy #=< 4),

C9 #<=> (WaterMeter #==> Accuracy #=< 3) #/\ (MainsWater

#==> Accuracy #=< 3) #/\ (MainsElectricity #==> Accuracy

#=< 3) #/\ (ElectricityMeter #==> Accuracy #=< 3) #/\

(Curtains #==> Accuracy #=< 1) #/\ (Automatic #==>

Accuracy #=< 3),

TotC #= C1 + C2 + C3+ C4 + C5 + C6 + C7 + C8+ C9,

On the other hand, they define how the satisfaction of

NFR is bound by context and environment conditions.

%---------- SoftDependencies

LSD = [SD1, SD2, SD3],

fd_domain_bool(LSD),

%---------- Constraints on SoftDependencies

SD1 #<=> (WaterConsumption #= 2 #==> WaterEfficiency #=

4),

SD2 #<=> (ElectricityConsumption #= 2 #/\ BatteryLevel

#= 0) #==> EnergyEfficiency #= 4),

SD3 #<=> (ElectricityConsumption #= 2 #/\

WaterConsumption #= 2) #==> Accuracy #= 4),

TotSD #= SD1 + SD2 + SD3,

%Constraints on the ensemble: {Claims, NFR,

SoftDependencies}

All #= TotC + TotSD + TotNFR.

Finally, after instantiating the context variables, and

depending on the wishes of the user, which might be, for

example, (i) any valid product, (ii) the best product, (iii)

the product that satisfies most the NFR Energy Efficiency,

a configuration can be obtained by lunching a function

that solves all the constraints, and proposes (i) a random

result, (ii) the best result or (iii) the result for a
EnergyEfficiency=4.

7. Related Works

To face the growing complexity of IoT environments,

several researchers have identified the need for

Frameworks and architectures that support the

management of fleets of cooperative devices, considering

self-adaptation a core requirement. Inox [20] combines

IoT and service architectures to provide enhanced

application and service deployment capabilities. The

architecture enables the service and network infrastructure

with self-management capabilities. In [21], the authors

propose an architecture, where agents collect data about

protocol operations, measurement-based learning assess

the optimality of the control parameter and if necessary,

adaptation is realized by applying the new policies to

agents. The Focale project [22] introduces an architecture

for orchestrating the behavior of heterogeneous

distributed resources. Data models support the derivation

of different models from a core model, and ontologies

reason about the change. The ACE model, proposed in the

Cascadas Project [23], defines a agent-based architecture

that enables service components to dynamically adapt

their behavior based on their context. In [24], a cognitive

management framework finds the optimal way to deliver

an application in different contexts by enabling the reuse

of virtual objects.

With the exception of the Focale Project, none of the

above frameworks realize proactive adaptation.

Furthermore, in the discussed architectures, no

mechanism was proposed to validate the need for

intelligent adaptation. Finally, variability is not

considered a fundamental concern, thus not managed.

Several DSPL based architectures can also be found in

the literature. In [25], a DSPL based architecture,

combined with preference based reasoning, provides the

necessary mechanisms for reasoning about change; this

allows the realization of decentralized self-managed

system. Gaia-PL [26] is an extension of the Gaia platform

for the analysis and design of multi-agent systems in

active spaces. A requirement specification pattern

captures the behavior of a system in dynamic conditions,

and reuses the software assets for future similar systems.

In [27], the author proposes a multi-view blueprint

architecture, a basis for future smart city projects, based

on the SoaSPLE [28] framework for run-time variability

management of service-oriented software product lines.

Finally, authors in [29] propose a SPL based process for

the development of connected devices, defined by the

means of CVL, to provide reuse mechanisms for the

development of a family of agents.

In contrast with the aforementioned (D)SPL based

approaches, our framework introduces variability

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A. Achtaich et al.

9

management at different stages of the process, as

explained previously, including static (devices), dynamic

(configurations) and time-bound (dimensions alterations)

variability. None of the proposed SPL based approaches

introduce the environment dimension, necessary for a

smart proactive adaptation.

7.1. Conclusion and Future Work

The IoT paradigm enables advanced applications by

interconnecting multiple devices that interact with their

environment, and coordinate to provide the needed

services. The smart city is one of the major targets of the

IoT, as it gathers countless devices that constantly collect

information, and thus can provide various cutting-edge

benefits. However, the needs of end-users are divergent

and the context conditions fluctuant. Therefore, supplying

connected devices with the necessary mechanisms to

answer the complex needs of each customer, and readjust

their behaviour in the face of resource shortage, internet

interruptions or service unavailability becomes essential.

Implementing fleets of connected devices as SASs is

not completely new in research nor in industry, the design

of such platforms however, remains problematic.

This paper proposes a framework to design adaptable

applications for the IoT, in order to tackle the problem of

dynamic variability. On the one hand, it takes into account

the specificities of requirements for a fleet of IoT systems,

which can be related to the system, the context or the

environment. And, on the other hand, it follows the

fundamentals of DSPLE; domain engineering and

application engineering. A preliminary proof of concept

Smart Building example was used to illustrate the

requirements concerned by each dimension of the

framework. And finally, a constraint program implements

the example, in order to demonstrate how each model can

be analysed and resolved.

Nonetheless, some of the framework’s main concepts

are still not represented using the existing models.

Prediction, behavioural learning, model auto-update,

among other capabilities, are still not formulated.

REFAS [30], is a Goal-based modeling language

implemented in Variamos [31]. It allows modeling

requirements for self-adaptive software systems as

DSPLs, from different points of view. As it implements

most of the concepts to instantiate our framework, our

future work includes extending its notation, with the

missing concepts that allow the specification of all the

needed requirements.

Acknowledgements.
This work was supported by the Moroccan « Ministère de

l’Enseignement Supérieur, de la Recherche Scientifique et

de la Formation des Cadres », by the « French Embassy in

Morocco », and by the « Institut Français du Maroc ».

References
[1] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and

D. Diaz, “Dynamic adaptation of service compositions

with variability models,” J. Syst. Softw., vol. 91, no. 1,

pp. 24–47, 2014.

[2] M. K. Denko, L. T. Yang, and Y. Zhang, “Software

Architecture-Based Self-Adaptation,” Auton. Comput.

Netw., pp. 1–458, 2009.

[3] S. W. Cheng, D. Garlan, and B. Schmerl, “Evaluating

the effectiveness of the rainbow self-adaptive system,”

Proc. 2009 ICSE Work. Softw. Eng. Adapt. Self-

Managing Syst. SEAMS 2009, pp. 132–141, 2009.

[4] J. Kramer and J. Magee, “Self-Managed Systems : an

Architectural Challenge,” in Future of Software

Engineering, 2005.

[5] J. Filipe, A. Fred, and B. Sharp, “Toward a Self-

Adaptive Multi-Agent System to Control Dynamic

Processes,” Commun. Comput. Inf. Sci., vol. 129, 2011.

[6] E. P. S. Baumer, V. Khovanskaya, M. Matthews, L.

Reynolds, V. Schwanda Sosik, and G. Gay, “Reviewing

reflection: on the use of reflection in interactive system

design,” Proc. 2014 Conf. Des. Interact. Syst. - DIS

’14, pp. 93–102, 2014.

[7] M. Mongiello, G. Boggia, and E. Di Sciascio, “ReIOS:

Reflective Architecting in the Internet of Objects,”

Proc. 4th Int. Conf. Model. Eng. Softw. Dev., no.

February, pp. 384–389, 2016.

[8] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.

Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz,

“MUSIC: Middleware support for self-adaptation in

ubiquitous and service-oriented environments,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 5525 LNCS, pp.

164–182, 2009.

[9] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and

M. Hinchey, “An overview of Dynamic Software

Product Line architectures and techniques:

Observations from research and industry,” J. Syst.

Softw., vol. 91, no. 1, pp. 3–23, 2014.

[10] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz,

“Recommendation heuristics for improving product line

configuration processes,” Recomm. Syst. Softw. Eng.,

pp. 511–537, 2014.

[11] M. Hinchey, S. Park, and K. Schmid, “Building

Dynamic Software Product Lines,” Computer (Long.

Beach. Calif)., vol. 45, no. 10, pp. 22–26, 2012.

[12] IBM, “Autonomic Computing White Paper: An

Architectural Blueprint for Autonomic Computing,”

IBM White Pap., no. June, p. 34, 2005.

[13] N. Bencomo, J. Lee, and S. Hallsteinsen, “How

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A DSPL Design Framework for SASs: A Smart Building Example

10

dynamic is your Dynamic Software Product Line?,”

Work. Dyn. Softw. Prod. Lines, 2010.

[14] C. Dumitrescu, R. Mazo, C. Salinesi, and A. Dauron,

“Bridging the Gap Between Product Lines and Systems

Engineering : An experience in Variability

Management for Automotive ... Bridging the gap

between product lines and systems engineering . An

experience in variability management for automotive

model based,” in 17th International Software Product

Line Conference (SPLC), 2013, no. August.

[15] M. Sinnema and S. Deelstra, “Classifying variability

modeling techniques,” Inf. Softw. Technol., vol. 49, no.

7, pp. 717–739, 2007.

[16] T. Strang and C. Linnhoff-Popien, “A Context

Modeling Survey.”

[17] J. S. Armstrong, Principles of forecasting : a handbook

for researchers and practitioners. Kluwer Academic,

2001.

[18] D. Benavides, P. Trinidad, and A. R. Cortés, “Using

Constraint Programming to Reason on Feature

Models.,” Seke, pp. 677–682, 2005.

[19] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D.

Hughes, “Using Constraint Programming to Manage

Configurations in Self-Adaptive Systems,” Computer

(Long. Beach. Calif)., vol. 45, no. 10, pp. 56–63, Oct.

2012.

[20] S. Clayman and A. Galis, “INOX: A Managed Service

Platform for Inter-Connected Smart Objects Stuart,”

Proc. Work. Internet Things Serv. Platforms - IoTSP

’11, pp. 1–8, 2011.

[21] A. Athreya, B. DeBruhl, and P. Tague, “Designing for

Self-Configuration and Self-Adaptation in the Internet

of Things,” Proc. 9th IEEE Int. Conf. Collab. Comput.

Networking, Appl. Work., pp. 585–592, 2013.

[22] J. Strassner, N. Agoulmine, and E. Lehtihet,

“FOCALE: A novel autonomic networking

architecture,” Int. Trans. Syst. Sci. Appl. J., pp. 64–79,

2007.

[23] L. Baresi, A. Di Ferdinando, A. Manzalini, and F.

Zambonelli., “The CASCADAS Framework for

Autonomic Communications,” Auton. Commun., no.

February 2017, pp. 1–374, 2009.

[24] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D.

Kelaidonis, V. Foteinos, G. Poulios, P. Demestichas, A.

Somov, A. Biswas, and K. Moessner, “Enabling smart

cities through a cognitive management framework for

the internet of things,” IEEE Commun. Mag., vol. 51,

no. 6, pp. 102–111, 2013.

[25] I. Ayala, J. M. Horcas, M. Amor, and L. Fuentes,

“Using Models at Runtime to Adapt Self-managed

Agents for the IoT,” Sensors, pp. 155–173, 2015.

[26] J. Dehlinger and R. R. Lutz, “Gaia-PL: A Product Line

Engineering Approach for Efficiently Designing

Multiagent Systems,” ACM Trans. Softw. Eng.

Methodol., vol. 20, no. 4, pp. 17:1–17:27, 2011.

[27] M. Abu-Matar, “Towards a software defined reference

architecture for smart city ecosystems,” 2016 IEEE Int.

Smart Cities Conf., pp. 1–6, 2016.

[28] M. Abu-Matar and H. Gomaa, “An automated

framework for variability management of service-

oriented software product lines,” Proc. - 2013 IEEE 7th

Int. Symp. Serv. Syst. Eng. SOSE 2013, pp. 260–267,

2013.

[29] I. Ayala, M. Amor, L. Fuentes, and J. Troya, “A

Software Product Line Process to Develop Agents for

the IoT,” Sensors, vol. 15, no. 7, pp. 15640–15660, Jul.

2015.

[30] J. C. Muñoz-Fernández, G. Tamura, M. Raúl, and C.

Salinesi, “Towards a Requirements Specification Multi-

View Framework for Self-Adaptive Systems,” Comput.

Conf. (CLEI), 2014 XL Lat. Am., vol. 18, no. 2, pp. 1–

12, 2014.

[31] R. Mazo, C. Salinesi, D. Diaz, J. C. Muñoz-Fernández,

L. Rincón, C. Salinesi, and G. Tamura, “VariaMos: An

Extensible Tool for Engineering (Dynamic) Product

Lines,” in Proceedings of the 24th International

Conference on Advanced Information Systems

Engineering (CAiSE Forum’12), 2015, no. June, pp.

374–379.

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A. Achtaich et al.

11

Figure 3: Examples of the Smart building configurations

Sensor

Smart building

Fall

Temperature

Smoke

Motion
Lighning

CurtainsManual

Automatic

Actuator

NoiseCanceling

AC

Control Pannel

Local

Smartphone

WaterControl

RainwaterWaterMeter

Mains

EnergyControl

BatteryElectricityMeter

Mains

Camera

Permanent

In-motion

ConsumptionControl

Sprinkler

1..2

Off

Requies

1..2

1..* 2..2

Light
1..*

Requies

Requies

Excludes

Sensor

Smart building

Fall

Temperature

Smoke

Motion
Lighning

CurtainsManual

Automatic

Actuator

NoiseCanceling

AC

Control Pannel

Local

Smartphone

WaterControl

RainwaterWaterMeter

Mains

EnergyControl

BatteryElectricityMeter

Mains

Camera

Permanent

In-motion

ConsumptionControl

Sprinkler

1..2

Off

Requies

1..2

1..* 2..2

Light
1..*

Requies

Requies

Excludes

Sensor

Smart building

Fall

Temperature

Smoke

Motion
Lighning

CurtainsManual

Automatic

Actuator

NoiseCanceling

AC

Control Pannel

Local

Smartphone

WaterControl

RainwaterWaterMeter

Mains

EnergyControl

BatteryElectricityMeter

Mains

Camera

Permanent

In-motion

ConsumptionControl

Sprinkler

1..2

Off

Requies

1..2

1..* 2..2

Light
1..*

Requies

Requies

Excludes

(a)

(b) (c)

Optional

Alternative

Cardinality

Or-Relation

i .. j

Requires
Excludes

Mandatory

Sensor

Smart building

Fall

Temperature

Smoke

Motion
Lighning

CurtainsManual

Automatic

Actuator

NoiseCanceling

AC

Control Pannel

Local

Smartphone

WaterControl

RainwaterWaterMeter

Mains

EnergyControl

BatteryElectricityMeter

Mains

Camera

Permanent

In-motion

ConsumptionControl

Sprinkler

1..2

Off

Requies

1..2

1..* 2..2

Light
1..*

Requies

Requies

Excludes

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e1

A DSPL Design Framework for SASs: A Smart Building Example

