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ABSTRACT
In this paper we analyze the performance of pull and push
strategies in large homogeneous distributed systems where
the number of job transfers per time unit is limited. Job
transfer strategies which rely on lightly-loaded servers to
attract jobs from heavily-loaded servers are known as pull
strategies, whereas for push strategies the heavily loaded
servers initiate the job transfers to lightly loaded servers.
To this end, servers transmit probe messages to discover
other servers that are able to take part in a job transfer.

Previous work on rate-based pull and push strategies focused
on the impact of the probe rate on the mean job response
time. In this paper we also limit the overall migration rate
and show that any predefined migration rate can be matched
by both the rate-based pull and push strategies. We present
closed form formulas for the mean response time (as a func-
tion of the allowed probe and migration rate) and validate
their accuracy by simulation.

We also introduce and analyze a new pull strategy and show
that under high loads it is superior to the push strategies
considered, while the push strategies offer only a very lim-
ited gain for medium to low load scenarios.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.4.8 [Operating Systems]: Performance

Keywords
Distributed computing, performance analysis, processor schedul-
ing

1. INTRODUCTION
In order to optimally use the available resources in a dis-
tributed network it is desirable to be able to dynamically
relocate jobs among a large number of processing nodes.
Jobs may enter the network via one or multiple central

dispatchers (e.g., [4,10,12,14,15]) or via the processing nodes
themselves (e.g., [2, 3, 8, 13]). A central dispatcher will dis-
tribute the jobs among the nodes using some load balancing
algorithm. In a more distributed approach, the nodes them-
selves will arrange for jobs to relocate after they are sched-
uled. Two approaches are common: push and pull. In a
push variant (or work sharing) highly loaded nodes attempt
to find lightly loaded nodes to migrate jobs to. Pull variants
(or work stealing) reverse the roles, so that lightly loaded
nodes try to attract work from the highly loaded nodes.

Several authors studied the performance of push and pull
strategies. A comparison for a homogeneous distributed sys-
tem with Poisson arrivals and exponential job lengths was
presented in [1, 2] and extended to heterogeneous systems
in [9,11]. These studies showed that the pull strategy is su-
perior under high load conditions, while the push strategy
achieves a lower mean delay under low to moderate loads.

Nodes typically communicate by means of probe messages,
exchanging information such as queue length. For simplic-
ity we assume that sending/receiving probe messages is in-
stantaneous and does not incur an extra computational or
bandwidth cost. When a node wants to push or pull a job,
it probes a random other node to see if a transfer between
the nodes would be allowed.

Under a traditional pull or push strategy a server sends a
maximum of Lp probes the instant its last job completes or
the instant a job arrives when the server is already busy [1,2].
The fraction of queues sending probe messages is different,
and as a result pull and push strategies achieve a different
overall probe rate for the same load of the system. This
makes a performance comparison biased, as sometimes the
strategy with the higher probe rate is best [5].

In [5] rate-based pull and push variants are introduced that
can match any predetermined probe rate R, allowing the
comparison of pull and push strategies when they use the
same number of probes. In these variants, probes are no
longer sent at job arrival or completion times but at a fixed
rate r as long as the server is idle (for pull) or has jobs
waiting (for push). The main result in [5] showed that the
rate-based push strategy results in a lower mean delay if and
only if

λ <

√
(R+ 1)2 + 4(R+ 1)− (R+ 1)

2
,

under the so-called infinite system model and that a hybrid
pull/push strategy is always inferior to the pure pull or push
strategy.
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In [6] the model was extended with an extra parameter T ,
where a node is considered highly loaded if it has more than
T jobs. This allowed the construction of the max-push strat-
egy that extended the range of λ values where the push vari-
ants outperformed the pull strategy.

All prior work, including [5, 6], assumed zero cost for job
transfers, which is not always realistic. When jobs are dif-
ficult to migrate, it would be desirable to be able to limit
migrations to a predefined overall migration rate M , while
not exceeding the predefined overall probe rate R.

This paper makes the following contributions:

1. We indicate how to set the parameter r (and T ) of
the push, pull and max-push strategy to match any
predefined migration rate M .

2. We argue that setting T = 1 for the pull strategy is no
longer optimal when an overall migration limit M is
considered, as was the case in [6] and introduce a new
pull strategy, called the conditional-pull strategy.

3. We show that the conditional-pull strategy is equiva-
lent in stationary queue length distribution to the max-
push variant when the overall probe rate R tends to
infinity, i.e., when only an overall migration limit M is
considered.

4. We consider a system where both an overall probe limit
(R) and an overall migration limit (M) are imposed.
For this system we compare the performance of push
and pull strategies. We find that even for moderate
R the conditional-pull performs almost as well as the
max-push for low to moderate loads, and performs sig-
nificantly better for higher loads.

The paper is structured as follows. Section 2 summarizes
the rate-based strategies considered in this paper. In Sec-
tion 3 we briefly summarize earlier work concerning rate-
based pull and push strategies, and introduce an overall mi-
gration limit M for these strategies. Also, we derive an ex-
pression for the corresponding maximum probe rate rboth|M
for the rate-based push and pull, and rewrite the mean delay
in an equivalent form. In Section 4 we adapt the max-push
strategy to match M by finding the corresponding probe
rate rmp|M , after summarizing earlier work. Section 5 con-
siders pull strategies with T > 1, and introduces the new
conditional-pull strategy. It is shown that the conditional-
pull is equivalent to the max-push strategy in case there is
no probe limit R and only a migration limit M . In addi-
tion, the infinite system model describing the evolution of
the conditional pull strategy is numerically validated, and
argued to be the proper limiting process as the system size
tends to infinity. Finally, we compare the mean delay of
max-push and conditional-pull in Section 6.

2. RATE BASED STRATEGIES
We consider a continuous-time system of N queues, where
each queue has a single server and infinite buffer. Each queue
operates under Poisson job arrivals with rate λ < 1, and
exponential service time with mean 1. Jobs are processed in
a first-come-first-served order.

Traditional strategies send a maximum of Lp probes the
instant a server’s last job completes or the instant a job
arrives when the server is already busy. In contrast, under
rate-based strategies probes are no longer sent at job arrival
or completion times but at a fixed rate r as long as the
server is idle (pull) or has at least T jobs waiting (push).
More formally, probe messages are transmitted by a server
according to an interrupted Poisson process with rate r.

The strategies considered in this paper can be summarized
as follows:

1. Rate-based Push: As soon as the queue length exceeds
T , a server starts to generate probe messages according
to a Poisson process with rate r. Whenever the queue
length drops below T , this process is interrupted until
the queue length exceeds T again. The node that is
probed is selected at random and is only allowed to
accept a job if it is idle.

2. Rate-based Pull: Whenever a server is idle it generates
probe messages according to a Poisson process with
rate r. This process is interrupted whenever the server
is busy. The node that is probed is selected at random
and is only allowed to transfer one of its jobs if its
queue length exceeds T .

3. Max-Push: The instant a new job arrives at a queue
with length T , probes are sent at an infinite rate.
When λ < 1 this corresponds to stating that the job
is instantaneously transferred to an empty server. A
server with T jobs in its queue, generates probe mes-
sages according to a Poisson process with rate r. When-
ever the queue length drops to T − 1, this process is
interrupted as long as the queue length remains below
T . The node that is probed is selected at random and
is only allowed to accept a job if it is idle.

4. Conditional-Pull: Whenever a node is idle, the node
will generate probe messages according to a Poisson
process with rate r. This process is interrupted when-
ever the server becomes busy. The probed node is
selected at random and the probe is always success-
ful if there are at least T jobs waiting to be served,
and successful with some probability p (matching M ,
see (26)) if there are exactly T − 1 jobs waiting to be
served.

We do not consider hybrid strategies, which combine both
push and pull behavior. These were proven to be inferior to
a pure push or pull strategy when T = 1 [5, Theorem 4].

3. PULL AND PUSH STRATEGIES
Infinite system models and closed form solutions for both
pull and push strategies were introduced in [5] and [6]. Be-
fore introducing new constraints and strategies, we briefly
summarize the main findings of [5] and [6].

The evolution of both the rate-based pull and push strat-
egy under the infinite system model is described by a set
of ODEs denoted as d

dt
x(t) = F (x(t)), where x(t) = (x1(t),

x2(t), . . .) and xi(t) represents the fraction of the number of
nodes with at least i jobs at time t.



From [6, Theorem 2 and 3], it is known that d
dt
x(t) = F (x(t))

has a unique fixed point π̄ = (π̄1, π̄2, . . .) with
∑
i≥1 π̄i <∞

that is a global attractor, given by

π̄i =
λ
(
(1 + r)λi−1 − rλT

)
1 + r(1− λT )

1 ≤ i ≤ T + 1, (1)

π̄i = π̄T+1

(
λ

1 + (1− λ)r

)i−T−1

i > T + 1. (2)

This fixed point is used in conjunction with Little’s Law
in [6, Corollary 1] to formulate the mean delay Dboth of a
job under the push or pull strategy:

Dboth =
1

1− λ −
rλT

(
λ

(1−λ)(1+r) + T
)

1 + r(1− λT )
. (3)

From the relationships R = (1− π̄1)rpull|R and
R = rpush|Rπ̄T+1, we find

R = (1− λ)rpull|R, (4)

and

R =
λT+1

(1− λT ) + 1/rpush|R
. (5)

It follows that whenever R > λT+1/(1−λT ), the rate rpush|R
can be chosen arbitrarily large (i.e., rpush|R =∞).

3.1 Limiting the Overall Migration Rate
When the overall migration rate is limited, the choice of r
must satisfy this constraint. We first indicate how to set r
to match M , and rewrite the formula for the mean delay.
Then we show whether R or M is the strictest constraint
for a given load λ.

Theorem 1. Both rate-based pull and push strategies
match a predefined migration rate M by letting the probe rate
r = rboth|M , with rboth|M :

rboth|M =
M

(λ(1− λ) +M)λT −M . (6)

For this setting, both strategies achieve the same mean delay.

Proof. The relationship (6) readily follows from the for-
mulation of the overall migration rate for both rate-based
strategies:

Mboth =
r(1− λ)λT+1

r(1− λT ) + 1
. (7)

From a push perspective this equation describes the fraction
of nodes with queue length larger than or equal to T + 1
(π̄T+1 = λT+1/(1 + r(1 − λT )) from (1)) sending probes
at rate r, succeeding with probability (1 − λ). For a pull
strategy the overall migration rate is expressed as the frac-
tion of empty queues (1 − λ) sending probes at rate r and
succeeding when probing a queue of length T + 1 or longer
(π̄T+1 = λT+1/(1 + r(1− λT )) from (1)).

Theorem 2. The mean delay of rate-based pull and push
strategies can be expressed as

Dboth =
1

1− λ

(
1− Mboth

λ

(
T +

λ

(1− λ)(1 + r)

))
. (8)
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Figure 1: The probe rates r imposed by either the
probe limit R = 1 for push (dot-dashed) and pull
(dashed), or migration limit M = 1/8 (full), for T =
1, 2, 3. Note that rpull|R is independent of T .

Proof. Equation (8) follows by rewriting (7) to

rλT

1 + r(1− λT )
=

Mboth

λ(1− λ)
,

and substituting this expression in (3).

The previous theorem shows that the improvement in mean
delay compared to a standard M/M/1 queue, can be ex-
pressed as a migration frequency (M/λ) times a migration
gain (T + λ/((1− λ)(1 + r))). The migration frequency de-
notes how many migrations per job take place on average.
The migration gain quantifies the number of places in the
queue the migrating job skips. All migrating jobs skip at
least T places by construction of the strategy, and skip more
places depending on the queue length of the job sender. The
average number of places skipped above T equals the aver-
age number of customers in an M/M/1 queue with service
rate 1 + r(1− λ), which equals λ/((1− λ)(1 + r)).

Both the overall migration limit M and the overall probe
limit R impose a maximum on r. In case R ≤M , all probes
are allowed to generate a migration, so r will only be con-
strained by R. In any practical setting there will be more
probes allowed than migrations, and the probe rate will be
constrained by R or M depending on λ. An overview of
the probe rates matching R or M , for both push and pull
strategies with T = 1, 2, 3, is given in Figure 1.

To determine the range of λ in which each constraint is most
strict, we determine the intersection of rboth|M with rpush|R
and rpull|R.

Lemma 1. The probe rates rpush|R and rboth|M intersect
at λ = 0 and 1−M/R only, and both rates are positive for

λ = 1−M/R if and only if
(
1− M

R

)T
> R2

R−M+R2 .

The proof is given in Appendix A of [7].



Theorem 3. For the rate-based push strategy r should be
set as follows in order to respect both the probe rate R and
migration rate M :

1. R ≥ λT+1/(1 − λT ) and M ≥ λT+1(1 − λ)/(1 − λT ):
r can be arbitrarily large.

2. R ≥ λT+1/(1 − λT ) and M < λT+1(1 − λ)/(1 − λT ):
r can be at most rboth|M .

3. R < λT+1/(1 − λT ) and M ≥ λT+1(1 − λ)/(1 − λT ):
r can be at most rpush|R.

4. R < λT+1/(1 − λT ) and M < λT+1(1 − λ)/(1 − λT ):

Let τ =
(
1− M

R

)T
and υ = R2

R−M+R2 .

• If τ > υ, r can be at most rboth|M if λ < 1−M/R
and at most rpush|R otherwise.

• If τ ≤ υ, r can be at most rpush|R.

The proof is given in Appendix B of [7].

Lemma 2. If M < R
1+TR

, rboth|M − rpull|R has a unique

root λT in (0, 1), otherwise it has no roots in (0, 1).

The proof is given in Appendix C of [7]. For T = 1, the

unique root λT of Lemma 2 reduces to λ1 =
√
M +M/R.

However, there seems to be no closed form expression for
general T .

Theorem 4. For the rate-based pull strategy r should be
set as follows in order to respect both the probe rate R and
migration rate M :

1. M ≥ λT+1(1− λ)/(1− λT ): r can be at most rpull|R.

2. M < λT+1(1− λ)/(1− λT ):

• If the migration limit is sufficiently high (M ≥
R

1+TR
), then r can be at most rpull|R.

• If the migration limit is sufficiently low (M <
R

1+TR
), r can be at most rpull|R if λ < λT , and at

most rboth|M otherwise.

The proof is given in Appendix D of [7].

4. MAX-PUSH
The rate-based push is unable to reach an overall request
rate higher than λT+1/(1−λT ) for any T . When the overall
probe limit R exceeds this value, it is possible to use the
remaining request rate by using the max-push variant as
introduced in [6]. This strategy lets nodes with a queue
length of T send probes at a finite rate rmp|R, and migrates
all new arrivals to queues with length T by sending probes at
an infinite rate until an empty server is found. As λT+1/(1−
λT ) is an increasing function in λ and decreasing in T , the

unique solution for λ to λT+1/(1− λT ) = R is increasing in
T . Therefore, there is a unique T > 1 satisfying

λT+1/(1− λT ) ≤ R < λT /(1− λT−1). (9)

For this T , the evolution of the max-push strategy can be
described by a set of ODEs d

dt
x(t) = G(x(t)), where x(t) =

(x1(t), x2(t), . . .) and xi(t) represents the fraction of the num-
ber of nodes with at least i jobs at time t.

Theorems 7, 8 from [6] show that the set of ODEs has a
unique fixed point π̇ = (π̇1, . . . , π̇T ) that is a global attrac-
tor, and can be expressed as

π̇i = λi
1 + ( λ

1−λ + r)(1− λT−i)
1 + ( λ

1−λ + r)(1− λT−1)
, (10)

for 1 ≤ i ≤ T . The mean delay Dmp of a job under the
max-push strategy is given by [6, Corollary 3]:

Dmp =
1− λT + ( λ

1−λ + r)(1− TλT−1 + (T − 1)λT )

1 + r(1− λ)(1− λT−1)− λT .

(11)

For the max-push strategy the overall probe rate R equals

R = π̇T

(
λ

1− λ + r

)
, (12)

as the instantaneous transfer of an arrival to a queue with T
jobs requires 1/(1 − λ) probe messages on average. There-
fore, a predefined overall probe rate R can be matched by
setting

rmp|R =
R

λT−1(R+ λ)−R −
λ

1− λ , (13)

where 0 ≤ rmp|R < ∞ for λT+1/(1 − λT ) ≤ R < λT /(1 −
λT−1).

4.1 Limiting the Overall Migration Rate
As the rate-based push strategy cannot exceed the probe
rate λT+1/(1 − λT ), it is unable to exceed an overall mi-
gration rate of (1 − λ)λT+1/(1 − λT ). It follows that when
M > (1−λ)λT+1/(1−λT ), queues with a length of at least
T+1 can probe at an arbitrarily high rate without exceeding
the migration limit M , effectively reducing all queues to a
length of at most T . Queues with length T can then send
probes with a finite r to match M . In other words, in order
to match M (instead of R as in the previous section), set T
such that

(1− λ)λT+1

1− λT ≤M <
(1− λ)λT

1− λT−1
. (14)

and determine the probe rate rmp|M when the queue length
equals T by the following theorem:

Theorem 5. The max-push strategy matches a predefined
migration rate M by letting the probe rate r = rmp|M with

rmp|M = λ

(
M

((1− λ)λ+M)λT − λM − 1

1− λ

)
. (15)

When matching M this way, π̇i for i ≤ T reduces to

π̇i = λi − M(1− λi−1)

1− λ , (16)



Proof. The relationship (15) follows from the formula-
tion of the overall migration rate. The migrations of new
arrivals in queues with length T are given by π̇Tλ. The
migrations resulting from a successful probe sent by queues
with length T are given by π̇T r(1−λ). Probes are successful
if they locate an empty server, which they do with proba-
bility 1 − λ. Therefore, the overall migration rate can be
expressed as

Mmp = π̇T

(
λ

1− λ + r

)
(1− λ) (17)

=
(1− λ)((1− λ)r + 2λ)λT+1

λ(r(1− λ) + 1)− ((1− λ)r + λ)λT
.

The reduction of π̇i to (16) follows from substitution of (15)
in (10), and shows the improvement over an M/M/1 queue
directly.

Theorem 6. For the max-push strategy r and T should
be set as follows in order to respect both the probe rate R
and migration rate M :

• If λ < 1 −M/R, T must be chosen according to (14)
and r can be at most rmp|M .

• If λ > 1 −M/R, T must be chosen according to (9)
and r can be at most rmp|R.

• If λ = 1−M/R, both constraints are equivalent.

The proof is given in Appendix E of [7].

Theorem 7. The mean delay of the max-push strategy
can be expressed as

Dmp =
1

1− λ

(
1− Mmp

λ

(
α+ β

Mmp

))
, (18)

with α = π̇TλT and β = π̇T r(1 − λ)(T − 1). When r =
rmp|M , the mean delay Dmp reduces to

Dmp|M =
1

1− λ +
M
(
1− λT

)
(1− λ)2λ

− MT + λT+1

(1− λ)λ
. (19)

Proof. The improvement in mean delay compared to a
standard M/M/1 queue, can be expressed as a migration
frequency (Mmp/λ) times a migration gain. The migration
frequency denotes how many migrations per job take place
on average. The migration gain quantifies the number of
places in the queue the migrating job skips. The fraction of
migrating jobs arriving at a queue with length T (π̇Tλ/Mmp)
skip T places in the queue. The fraction of migrating jobs
from queues with length T , being πT r(1−λ)/Mmp, skip T −
1 places in the queue. Hence, the migration gain is (α +
β)/Mmp.

The reduction to Dmp|M is found by applying Little’s Law
to the expression for π̇ in (16), and shows the improvement
over an M/M/1 queue explicitly.
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Figure 2: The mean delay of the pull strategy for
T = 1, ..., 4. The probe rate r is constrained by both
R and M (full lines). The delay shown in dashed
lines is achieved when there is no migration limit,
and only the probe limit is in effect. Choosing T = 1
is no longer optimal when a maximum migration
rate is imposed.

5. CONDITIONAL PULL
When only considering a maximum allowed probe rate R,
the optimal choice for a pull strategy is to let T = 1 [6, The-
orem 5]. This is no longer the case when taking a maximum
allowed migration rate M into account, as shown in Figure 2.
Intuitively, when the migration limit is small, it is best to
pull jobs from longer queues only, resulting in a lower mean
delay.

To reduce the mean delay of the rate-based pull strategy,
we introduce the conditional pull strategy that can match
both R and M . Empty servers send probes according to an
interrupted Poisson process with rate r. Under the condi-
tional pull strategy, empty nodes always accept jobs from
queues with length of at least T + 1 and also accept jobs
from a queue with length T with some probability p. This
strategy relies on the choice of p to match the migration
rate M , and lets the probe rate r be determined by R, i.e.
r = rpull|R = R/(1− λ). Thus, both R and M are matched,
this is in contrast with the previous strategies, where r was
always chosen as large as possible without exceeding R and
M .

First we note that one can easily see that for λT , being the
unique root defined in Lemma 2, λT < λT+1 (as M/((λ(1−
λ) + M)λT − M) increases in T and R

1−λ increases in λ

independent of T ). Given λ, the conditional pull strategy
sets T such that

λT−1 ≤ λ < λT , (20)

with λ0 = 0. To analyze the response time of a job under
the conditional pull strategy we introduce a set of ODEs
d
dt
xi(t) = H(x(t)), where x(t) = (x1(t), x2(t), . . .) and xi(t)

represents the fraction of the number of nodes with at least i
jobs at time t. As explained below, the set of ODEs H(x(t))
describing the time evolution of the queue lengths under the
conditional pull strategy is defined as
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Figure 3: Showing the mean delay of the pull strat-
egy with T > 1, respecting a migration limit Ṁ . The
conditional pull variant is shown in dashed lines.

dx1(t)

dt
= −(x1(t)− x2(t))

+ (λ+ rxT+1(t) + rp(xT (t)− xT+1(t)))(1− x1(t)) (21)

dxi(t)

dt
= λ(xi−1(t) − xi(t)) − (xi(t) − xi+1(t)), (22)

for 1 < i < T , and

dxi(t)

dt
= λ(xi−1(t)− xi(t))

− (1 + rp1[i=T ](1− x1(t)))(xi(t)− xi+1(t)), (23)

for i ≥ T , where 1[A] = 1 if A is true and 1[A] = 0 other-
wise. The terms λ(xi−1(t) − xi(t)) and xi(t) − xi+1(t), for
i ≥ 1, correspond to arrival and service completions, respec-
tively. Queues of length 1 are created by job transfers at
rate (rxT+1(t) + rp(xT (t)−xT+1(t)))(1−x1(t)) as the frac-
tion of empty nodes (1−x1(t)) probe at rate r, and a probe
is successful with probability xT+1(t) + p(xT (t)− xT+1(t)).
Similarly, migrating jobs reduce the number of queues with
exactly i jobs, for i > T , at rate r(1−x1(t))(xi(t)−xi+1(t))
and at rate rp(1− x1(t))(xT (t)− xT+1(t)) for i = T .

The next theorem shows that this set of ODEs has a unique
fixed point with

∑
i≥1 π̂i < ∞. In Appendix F of [7] we

briefly argue why this fixed point can be used to approxi-
mate the queue length distribution of a node as the number
of nodes becomes large. The argument is similar to the one
used in [5]. We also validate the accuracy of this approxi-
mation by simulation in Section 5.1.

Theorem 8. The set of ODEs d
dt
x(t) = H(x(t)) has a

unique fixed point π̂ = (π̂1, π̂2, . . .) with
∑
i≥1 π̂i < ∞. The

fixed point can be expressed as:

π̂i =
λi
(

(1− λ)r
(∑T−i

j=0 λ
j + p(r + 1)

(
1− λT−i

))
+ 1
)

(1− λ)r
(∑T−1

j=0 λ
j + p(r + 1) (1− λT−1)

)
+ 1

(24)

for 1 ≤ i ≤ T , and for i > T as

π̂i = πT

(
λ

1 + r(1− λ)

)i−T
(25)

Proof. Assume π̂ is a fixed point with
∑
i≥1 π̂i < ∞,

meaningHi(π̂) = 0 for i ≥ 1, whereH(x) = (H1(x), H2(x), . . .).
When

∑
i≥1 π̂i < ∞, we can simplify

∑
i≥1Hi(π) = 0 to

λ − π̂1 = 0. Hence, π̂1 must equal λ. The expressions for
π̂i then readily follow from the conditions Hi(π̂) = 0, for
i ≥ 1.

Theorem 9. A predefined overall migration rate M can
be matched by setting p = pcp|M , with

pcp|M =
M − π̄T+1r(1− λ)

(π̄T − π̄T+1)r(1− λ)
(26)

=
λ
(
r
(
−λ2 + λ+M

)
λT −M(r + 1)

)
(1− λ)r(r + 1) (λM − (−λ2 + λ+M)λT )

.

When matching M by setting p = pcp|M , π̂i reduces to

π̂i = λi − M(1− λi−1)

1− λ , (27)

for i ≤ T .

Proof. The fraction of empty queues (1−λ) send probes
at rate r. Probes are successful with probability 1 if they
locate a queue with length at least T + 1 (π̄T+1). Probes
are successful with probability p if they locate a queue with
length equal to T (π̄T − π̄T+1). In other words:

Mcp = r(1− λ)(π̄T+1 + p(π̄T − π̄T+1), (28)

from which (26) follows by algebraic manipulation. The re-
duction of π̂i to (27) is found by substituting (26) in (24).

Theorem 10. The mean delay Dcp of a job under the
conditional pull strategy equals

Dcp =
1

1− λ

(
1− Mcp

λ
(α− β)

)
, (29)

with

α = T +
λ

(1− λ)(1 + r)
and β =

r(1− λ)pπ̄T
Mcp

.

Proof. The improvement in mean delay compared to a
standard M/M/1 queue, can be expressed as a migration
frequency (Mcp/λ) times a migration gain (α − β). The
fraction of migrating jobs where the job is pulled from a
queue with length at least T + 1, (r(1 − λ)π̄T+1/Mcp) skip
α places in the queue: The same remarks as in Theorem
2 apply. The other jobs ((r(1 − λ)p(π̄T − π̄T+1))/Mcp) are
pulled from a queue with length equal to T , thus skipping
exactly T −1 places. In other words, the migration gain can
be expressed as:

αr(1− λ)π̄T+1 + (T − 1)(r(1− λ)p(π̄T − π̄T+1))

Mcp
,

which can be rewritten as α− β.



Figure 3 shows the mean delay of the conditional pull strat-
egy. The dots represent λT , i.e., the intersection points of
rpull|R and rboth|M . The conditional pull strategy achieves a
lower mean delay compared to the rate-based pull strategies
with T > 1, as it transfers more jobs.

Theorem 11. When R = +∞ and M is finite, the max-
push and conditional pull strategies have the same stationary
queue length distribution.

Proof. When there is no probe limit R, the parameter
r is allowed to be arbitrarily large for the conditional pull
strategy. In this case the maximum queue length will be T as
limr→∞ π̂i = 0 for i > T , see (25). We therefore know from
Theorems 5 and 9 that both the max-push and conditional
pull strategy have the same queue length distribution when
only matching M , if they use the same T . What remains to
be shown is that both strategies make use of the same T .

Recall that λT was defined as the solution in (0, 1) of rpull|R−
rboth|M , that is,

R

1− λ =
M

(λ(1− λ) +M)λT −M .

The left hand side tends to infinity as R tends to infinity.
Hence, rboth|M must tend to infinity, meaning λT is the so-

lution to M = (1 − λ)λT+1/(1 − λT ). The λT ’s are thus
exactly the M values where the max-push strategy changes
its T value, see (14). Hence, both the conditional pull and
max-push strategy choose the same T .

5.1 Model Validation
We validate the infinite system model for the conditional
pull strategy by comparing the closed form results of Theo-
rem 10 with time consuming simulation results for systems
with a finite number of nodes N . The infinite and finite sys-
tem model only differ in the system size. Hence, the rate r
and probability p in the simulation experiments is indepen-
dent of N and was determined by using the expression for
p from Equation (26) and r = R/(1 − λ). Each simulated
point in the figures represents the average value of 25 simu-
lation runs. Each run has a length of 106 time units (where
the service time is exponentially distributed with a mean
of 1 time unit) and a warm-up period of length 106/3 time
units.

Load (λ)
0.5 0.65 0.7 0.75 0.8

25 1.1e-2 1.7e-2 1.9e-2 2.4e-2 2.9e-2
50 5.6e-3 8.2e-3 9.5e-3 5.7e-3 7.1e-3

System 100 2.8e-3 3.9e-3 4.6e-3 5.7e-3 7.1e-3
Size 200 1.3e-3 2.0e-3 2.3e-3 2.7e-3 3.4e-3
(N) 400 7.0e-4 1.0e-3 1.2e-3 1.3e-3 1.7e-3

800 3.5e-4 5.0e-4 5.6e-4 6.6e-4 8.1e-4
1600 1.6e-4 2.5e-4 2.6e-4 3.8e-4 4.3e-4

Table 1: Relative error of mean delay, given by
(29), for the conditional pull strategy with R = 1 and
M = 0.1 when compared to simulation results.

Table 1 compares the mean delay in a finite system with
N nodes with the mean delay in the infinite system model
under the conditional pull strategy with R = 1 and M = 0.1
for N = 25, 50, . . . , 1600 and λ = 0.5, 0.65, 0.7, 0.75 and 0.8.
For each combination of N and λ we also show the relative
error. The error clearly decreases as N grows, and is worse
for larger λ values.

The observed overall migration rate in the simulation is
strictly lower than the predefined M , meaning less jobs will
be transferred than anticipated. Hence, the mean delay in
the simulation experiments is pessimistic. This error is in
part due to the choice of p, which was determined using (26).
This choice relies on the infinite system model whereas we
are now studying a finite system. The relative error in the
observed overall migration rate is nearly load-insensitive and
decreases linearly as the system doubles in size, as shown in
Table 2.

N 25 50 100 200 400 800 1600
Rel. Err. 4% 2% 1% .5% 0.25% .13% .064%

Table 2: Relative error of the observed overall mi-
gration rate for finite system size when compared to
the targeted migration rate M .

6. PUSH VERSUS PULL STRATEGIES
We compare the performance of the max-push and the condi-
tional pull strategies with a predefined overall probe limit R
and migration limit M (using Theorems 7 and 10). The pa-
rameter T is determined by the load λ, as each strategy is
only defined for a specific T given any λ (see (9), (14) and
(20)). For the max-push, the value for T and r is chosen to
match the strictest constraint of either R or M depending
on the load (see Theorem 6). For the conditional pull all
idle servers probe with rate r = R/(1− λ), and p is chosen
to match M (see Theorem 9).

The mean delay of the max-push and conditional pull strat-
egy with M = 0.1 and R = 0.4 is shown in Figure 4.
The max-push strategy is limited by the probe limit when
λ > 1−M/R and by the migration limit when

√
M < λ <

1 −M/R. The mean delay of the push strategy is one in

case λ <
√
M , as all newly arriving jobs at a busy server

can be migrated instantaneously to an empty server without
violating the R and M constraints. For the conditional pull
strategy the limiting factor is R when λ <

√
M +M/R, and

M for λ >
√
M +M/R.

The intervals where both strategies are constrained by M
do not always overlap, i.e.

√
M +M/R can be larger than

1 −M/R, as is the case for R = 1 and M = 0.3. When√
M +M/R < 1 −M/R both strategies transfer the same

number of jobs when
√
M +M/R < λ < 1 −M/R. How-

ever, the max-push will outperform the conditional pull as
the average migration gain is larger. This is not unexpected
as the max-push strategy avoids that queues become larger
than T , whereas queues with a length exceeding T exist for
the conditional pull as it only sends random probes at a
finite rate.
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Figure 4: Mean delay of the max-push and condi-
tional pull strategies, with R = 0.4 and M = 0.1.
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Figure 5: Mean delay of the max-push and condi-
tional pull strategies, with R = 1 and M = 0.1.

As expected from Theorem 11, the difference in performance
between max-push and conditional-pull becomes smaller when
increasing R, as shown in Figure 5. As the empty queues
send probes with rate r = R/(1 − λ), they are allowed to
send more probes as R increases. This increases the odds
that a long queue is probed, thus lowering the mean delay.
This can also be observed by looking at the values for T . By
increasing R, a larger value for T can be used for the same
load. This requires that jobs are pulled from longer queues,
increasing the migration gain per transfer.

In conclusion, whenever the maximum allowed probe rate
R clearly exceeds the maximum allowed migration rate M
(which is the case that is mainly of practical interest), the
pull strategy is either clearly superior (for large λ) or has a
similar performance to the max-push strategy (for medium
to low λ).
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