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Abstract

Effective crop production and harvesting decisions rely on proper farm monitoring and management. Each
region has distinct needs for farm oversight, but the primary focus remains on collecting and evaluating
environmental data such as temperature, soil moisture, air humidity, all of which are vital to plant growth.
Gathering this data on a large scale requires significant effort and is often based on intuition or simple
measurement tools. This paper proposes a novel solution for farming data collection using an IoT platform
integrated Long-Range Wide Area Networks (LoRaWAN) network application with Augmented Reality (AR)
technology and Machine Learning (ML) algorithms to predict key environmental daily indexes. In a pilot
study in Quang Tho, Vietnam, the system accurately predicted environmental conditions, reduced the risk of
crop failure, and improved farm management efficiency. This approach enhances real-time data interaction
and offers predictive analytics, supporting sustainable agriculture.
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1. Introduction
Vietnam, an Asian country, is currently one of the
leading exporters of agricultural products in the world.
However, the country’s farming sector continues to face
multiple barriers in terms of technology, manpower,
and agricultural land. Currently, Vietnam hasn’t had
an integrated model of smart agriculture yet which is
following the concept of Agriculture 4.0 [1]. Intensive
farming methods are still heavily influenced by tradi-
tional practices, primarily using human and livestock
labor, and farmers assess the status of their farms
relying on personal experience. It has been customary
that farmers have to be present on their farms during
every stage of the crop’s growth. This requirement stems
from the necessity to ensure the crops’ well-being and
upkeep. Consequently, around 70% of the cultivation
timeline is spent on directly monitoring the farms
instead of hands-on field activities. To address this,
gathering and utilizing effective data is essential, and
this can be achieved by precision agriculture. Precision
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agriculture refers to the implementation of hardware
and software technologies that enable farmers to make
informed and customized decisions about various agri-
cultural activities, including planting, fertilizing, pest
control, and harvesting [2]. Precision agriculture relies
much on the accurate monitoring and forecasting of
environmental conditions to optimize farm manage-
ment and enhance crop productivity. However, envi-
ronmental unpredictability makes it difficult to deploy
continuous monitoring sensors in agriculture. Large
farms have several kinds of terrains, affecting tempera-
ture, humidity, soil composition, and sunlight exposure.

1.1. The integration of IoT and other technologies
The adoption of the Internet of Things (IoT) is crucial
for implementing smart farming practices, especially
in large and remote areas [3]. In recent years, the
rapid advancement of the Internet of Things (IoT)
has significantly enhanced agricultural productivity
worldwide. The integration of advanced technologies
with IoT has enabled it to optimize agricultural
processes. In [4], AI and ML were applied with
IoT to support farmers with decisions on irrigation,
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fertilization, and pest management. Meanwhile, IoT
was also combined with ML-Blockchain framework 5.0
in [5] to predict optimal crop outcomes. This model was
suitable for both small and large farms. In addition,
sensors were also combined with ML and AR to help
people in aquaculture. In [6], Rahman et al. combined
these 3 technologies to detect water issues in shrimp
ponds and predict conditions 24 hours in advance.
When combining IoT with different technologies, it
brings unexpected efficiency in improving agricultural
quality and productivity, helping farmers reduce the
time to monitor and predict the status of the farm.
However, to meet the infrastructure, installation costs
are a relatively large obstacle. In addition, farmers’
understanding of data is also limited due to their low
technological level.

1.2. Our approach
In this paper, we propose the deployment of an
IoT device using the STM32 series microcontroller
and supporting the Long-Range Wide Area Networks
(LoRaWAN) protocol which was determined to be
the most reliable and deliver the greatest benefit
for on-farm environmental data gathering in this
project. The system helps enhance data gathering
and quality by offering efficient, dependable, real-
time environmental monitoring overbroad and remote
locations. However, simply monitoring environmental
indicators in the field in real time is not enough. In
addition to knowing critical field indicators such as
temperature, soil moisture, and air humidity, farmers
need to forecast information on these indicators to
make timely crop decisions. Furthermore, a system that
allows farmers to monitor their fields remotely can
save time and improve efficiency. For these reasons,
we integrate an interactive interface to the IoT system,
in which Augmented Reality (AR) technology and
Machine Learning (ML) algorithms are being used
to predict field conditions based on data collected
from the LoRaWAN-IoT system. This interface is called
Farmerly, which includes a web-based management
application and an AR mobile app that allows managers
to oversee conditions across the entire farm, including
current and near-future environmental conditions and
stages of crop development. These models helped
farm management from reactive to proactive, allowing
farmers to anticipate and prepare for changes, showing
promising accuracy in forecasting critical parameters.

2. System architecture
IoT provides a global infrastructure for the information
society by interconnecting physical and virtual objects
through interoperable information and communication
technologies [7]. IoT enables real-time monitoring and
control, leading to precise farming practices. This

Figure 1. The proposed model of an IoT platform using
LoRaWAN integrated AR

helps optimize planting times, irrigation schedules, and
harvesting periods, ultimately improving operational
efficiency [8]. Key components of IoT include smart
sensors, cloud computing (CC), wireless networks,
and analytic software [9]. Common IoT technologies
are low-power Wi-Fi, Bluetooth Low Energy (BLE),
DASH7 Alliance Protocol (D7A), Long Range (LoRa),
and LoRaWAN [10]. Because of the long-range, low
power consumption of LoRaWAN and the powerful
processing capabilities of the STM32 microcontroller,
edge computing enables data pre-processing, resulting
in more efficient bandwidth utilization and higher
data quality. The model of an IoT system based on
LoRaWAN integrated with ML and AR is given in Fig.
1. ML, a crucial branch of Artificial Intelligence, allows
computer systems to learn and improve independently
without human intervention. Applying ML, IoT devices
can predict and behave based on their own [11].
This model that outlines a comprehensive system for
farm monitoring and management in four key stages:
(1) Data collection; (2) Data transmission and cloud
processing; (3) Data analysis and prediction; and (4)
Visualization and interaction.

(1) – Data collection
Sensors that connect to STM32 microcontroller-

based IoT devices, transmitting data via the LoRaWAN
protocol, placed across the farm gather environmental
metrics. To collect data, End Nodes are equipped with
various sensors and actuators. Each End Node includes
an STM32 series microcontroller; Temperature, soil
moisture, and air humidity sensors; LoRaWAN module
for data transmission. The End Nodes are designed
using a development kit that allows engineers to easily
attach different sensors and actuators. These nodes
collect data on temperature, soil moisture, and air
humidity from the environment. The collected data is
then sent to a central gateway via LoRaWAN.

(2) – Data transmission and cloud processing
The data transmission and cloud processing stage

is critical for ensuring that the data collected by
IoT devices is efficiently transmitted, stored, and
processed. This stage involves multiple steps to
ensure data integrity, scalability, and accessibility.
IoT devices equipped with STM32 microcontrollers

2
EAI Endorsed Transactions 

on Smart Cities 
| Volume 7 | Issue 4 | 2023 |



Enhancing precision agriculture: An IoT-based smart monitoring system integrated LoRaWAN, ML and AR

collect data from various sensors (temperature, soil
moisture, air humidity) deployed across the farm. These
microcontrollers process the raw sensor data locally
to reduce noise and errors, ensuring that only clean
and meaningful data is transmitted. The processed
data is sent from the STM32 microcontrollers over the
LoRaWAN network. LoRaWAN is ideal for large farms
because it supports long-range communication with
low power consumption, making it suitable for areas
with limited internet access [10]. LoRaWAN enables
devices to exchange data for up to ten years on battery
life, meeting the needs of long-distance, ensuring low
power consumption [12]. A LoRaWAN gateway acts
as a central hub that facilitates data transmission
from multiple IoT devices to the cloud. The gateway
receives data from the IoT devices over the LoRaWAN
network and then relays it to cloud servers using high-
bandwidth networks like Wi-Fi, Ethernet, or Cellular.

(3) – Data analysis and prediction

In the cloud, the data collected from the IoT devices
goes through a structured pipeline involving three key
modules: Business, Process Data, and Prediction. Each
of these modules plays a crucial role in transforming
raw data into actionable insights and predictions
that can help farmers make informed decisions. The
Business Module is responsible for handling the
operational aspects of the data pipeline. It ensures
that the data collected is securely stored and readily
accessible for further processing, controlling who can
access the data and what operations they can perform,
maintaining the accuracy and consistency of data,
and coordinating the sequence of operations from
data collection to analysis and prediction. The Process
Data Module conducts the initial analysis of the
collected data. Data cleaning removes inaccuracies and
inconsistencies, normalization standardizes the data to
bring all variables onto a common scale, and feature
extraction identifies and extracts significant features
from the raw data, such as trends, seasonal patterns,
and cyclical components. The Predict Module leverages
ML algorithms to forecast future environmental
conditions such as temperature, soil moisture, and air
humidity daily. These models are trained on historical
data and continuously updated as new data becomes
available, ensuring that the predictions generated
are accurate and reliable, providing farmers with
actionable insights.

(4) – Visualization and interaction

The final stage of the precision agriculture moni-
toring system involves presenting the analyzed and
predicted data to end-users through interactive inter-
faces, enhancing their ability to make informed deci-
sions. This stage is crucial for translating complex data
into helpful insights, which can be easily understood

and utilized by farmers or farm managers. The web-
based system serves as a comprehensive farm man-
agement dashboard that provides a detailed overview
of the farm’s status and environmental conditions.
This dashboard offers status indicators that visually
show the overall status of the farm, such as normal,
sunny, rainy, drought, or flood conditions. Besides, the
AR application provides an immersive and interactive
way to visualize the farm’s condition. Real-time 3D
graphics overlay sensor data onto the farm’s physical
environment, highlighting areas that require attention;
showing the alert when there is a change from the
environment. Otherwise, the AR app shows the main
stages of crop development, enhancing their decision-
making processes based on both real-time insights and
future forecasts.

3. Pilot implementation
With the requirements and proposed system mentioned
above, we developed a pilot IoT system for monitoring
the farm’s seasonal time series such as moisture, humid-
ity, and temperature parameters named Farmerly. This
system seamlessly integrates LoRaWAN communica-
tion, ML algorithms, and AR technology. Designed to
provide farmers with real-time insights and predictive
analytics, Farmerly offers a new solution for modern
farming challenges. Table 1 highlights the specifications
and functions of the IoT system adopted in this study,
showcasing the innovative approach and comprehen-
sive capabilities of Farmerly in revolutionizing agricul-
tural practices.

3.1. LoRaWAN nodes and gateway for data
transmission

In the first phase, the system performs data
collection. Environmental indexes are collected via
sensors set across the farm, which are connected
to STM32 microcontroller-based IoT devices and
communicate data using the LoRaWAN protocol. End
Nodes are equipped with a variety of sensors and
actuators to collect data. The End Node is designed
based on the STM32F103 microcontroller. This is a 32-
bit microcontroller that incorporates an ARM Cortex-
M3 core processor operating at a 72 MHz frequency and
high-speed embedded memories. Another advantage of
this microcontroller is its compatibility with Arduino
platform so the developer can easily reuse a lot of
Arduino’s libraries. The RFM95W LoRa module is
used as a modem to provide a long-distance wireless
connection while keeping a low power consumption.
The MCU connects to the LoRa module via SPI
connection for high-speed data rate and least I/O pins
Fig. 2. A power supply is very important for a device
to work well in many different conditions. Therefore,
the power management (PM) block is also designed
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Table 1. Specifications and Functions of IoT Devices

No IoT Specifications and Functions
1 NodeMCU ESP32 Microcontroller: ESP32

CPU: Dual-core Tensilica LX6
Connectivity: Wi-Fi, Bluetooth
Digital I/O Pins: 36
Analog Input Pins: 18
Function: IoT device development, wireless connectivity, sup-
ports Arduino IDE.

2 Arduino Uno R3 Microcontroller: ATmega32P
CPU: 8-bit AVR
Digital I/O Pins: 14
Analog Pins: 6
Function: General-purpose microcontroller for various electron-
ics projects, programming with Arduino IDE.

3 SmartFarm Cloud Cloud-based IoT platform
Features: Pre-process, stores and processes data; Hosts ML
models
Functions: Allow IoT device data to be uploaded, stored,
analyzed, and visualized in real-time through web-based
interfaces.

4 ML Integration ML models for data analysis and predictions
Features: Analyzes, predicts
Functions: Analyze historical data to predict future environmen-
tal conditions daily (based on temperature, wind, pressure, cloud
cover, and humidity)

5 Famerly Applications AR mobile app & web-based application for IoT monitoring
Features: Comprehensive farm management, real-time monitor-
ing
Functions: Allows farmers to see data in its actual context,
enhancing decision-making processes with real-time insights
and future forecasts through website and mobile app interface.

Figure 2. Schematic of MCU and RFM95W module

carefully to provide many types of output voltages,
reduce the EMI (Electromagnetic interference) noise
and keep a stable supplier. A current/voltage sensor
and a temperature sensor are integrated into this PM
block for monitoring and controlling, ensuring good
conditions for the power supply (Fig. 3).

Figure 3. Schematic of power management block

After finishing the schematic design, the printed
circuit board (PCB) design is an important step to have
a good layout for board manufacturing. A good PCB
design reduces the size of the board but still solves
the heatsink problem and prevents the crosstalk noise.
A prototype of End Node is shown in Fig. 4. The
gateway is used to connect two networks with different
communication protocols that can communicate with
each other. A LoRa gateway can communicate with
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Figure 4. Schematic of power management block

Figure 5. Board ESP32 - WiFi Lora 32 for Gateway LoRaWAN

other LoRa End Nodes to get the data from them and
then send it to the network server through a high-
speed internet connection. For smart farm applications,
a simple 1-channel gateway is implemented by using
an ESP32 – Wifi LoRa board Fig. 5. This board runs
appropriate software to configure it as a gateway in the
LoRaWAN. ESP32 - WiFi Lora board is a development
board with a combination of ESP32 SoC chip, and
Tensilica LX6 processor clocked at 240MHz. It supports
many wireless connections such as WiFi 802.11 b/g/,
Bluetooth, and LoRa. This board uses the LoRa SX1278
chip to operate with a frequency of 918MHz for a
distance of up to 5 km.

3.2. Data management and processing hub
SmartFarm Cloud contains data from sensors and

Application Server which is used to get, process, store,
organize information, analyze and make predictions.
The Things Network (TTN) is LoRaWAN cloud network
server that we use in SmartFarm Cloud. TTN is an
open community platform supported by over 100,000
developers in the LoRaWAN sector. TTN supports more
than ten thousand LoRaWAN gateways around the

Figure 6. System’s data management and processing diagram

Figure 7. Warning alerts from Firebase Cloud Message

world [13]. SmartFarm Cloud manages information that
is collected by IoT devices and is streamed to the
cloud. This information is sent to different parts of
the system using the UDP protocol and this incoming
data is stored in the form of MongoDB (NoSQL). The
information managed by End nodes is displayed via
the dashboard and AR mobile application from this
Application server as shown in Fig. 6. Moreover, in
this system, Firebase Cloud Message sends warning
alerts to mobile app to keep control of their farm as
in Fig. 7. The prediction module within the application
server processes farm weather data, collecting and
cleaning information like temperature, humidity, soil
moisture, and particulate matter through SmartFarm
Cloud. This data is then used to train a prediction
model, which generates real-time weather forecasts
for the area based on collected indicators and past
predictions, resulting in highly accurate forecasts. Upon
completing the training process, the system utilizes a
Data Processing module to analyze farm data using
optimal parameters efficiently. Its primary objective
is to identify any abnormal alterations in the farm
environment. In the event of such changes, the system
promptly issues alerts to notify farmers and provide
guidance on corrective actions to maintain an optimal
farm environment.

3.3. Machine Learning-Driven weather forecasting
Weather prediction has always been a critical aspect

of planning and decision-making across various sectors,
from agriculture to disaster management. Traditional
methods of weather forecasting rely heavily on numer-
ical weather prediction models that use mathematical
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equations to simulate atmospheric conditions. While
these models have been effective, they often require
significant computational resources and can sometimes
lack the precision needed for localized forecasts. In
recent years, machine learning (ML) has emerged as
a powerful tool for enhancing weather prediction [14]
[15]. ML algorithms can analyze vast amounts of his-
torical weather data to identify patterns and make
predictions with high accuracy. These algorithms are
capable of learning from the data, improving their
performance over time, and providing more precise
and timely weather forecasts. Research indicates that
ML methods are becoming key features in modern
weather forecasting systems. A study [16] highlights
the growing importance of ML in weather prediction,
noting that it competes with traditional physical mod-
els and often exceeds them in short-term forecasts.
However, challenges remain in medium-to-long-term
climate forecasting due to the complexity of climate
variables and data limitations. Furthermore, the inte-
gration of ML in weather prediction systems has led to
improved efficiency and accuracy.

Therefore, we use machine learning models, includ-
ing Random Forest (RF) and Logistic Regression (LR),
for weather prediction, specifically rain or sun, in our
application. We use these two models to compare and
choose the one with the highest performance:

(1) RF is an ensemble learning method that constructs
multiple decision trees during the training phase,
with each tree trained on a random subset of the
training data. For classification, the final output is
determined by a majority vote of the predictions from
all individual trees. RF’s strength lies in its ability to
handle large datasets with high dimensionality and
complex interactions between variables. The use of
bagging (bootstrap aggregating) reduces overfitting by
ensuring that each tree is exposed to different subsets
of data, making the model robust and generalizable.
This capability makes RF particularly suitable for
applications like weather prediction, where the data can
be noisy and intricate.

(2) LR is a simple yet powerful statistical method
used for binary classification tasks. Unlike linear
regression, which predicts continuous outcomes, LR
predicts the probability of a given input belonging
to a particular class. It uses the logistic function to
model this probability, producing outputs between
0 and 1. The model is trained by maximizing the
likelihood that the observed data can be predicted by
the logistic function. LR is valued for its simplicity,
ease of implementation, and interpretability, making
it a baseline model in many classification tasks. It is
particularly effective when the relationship between the
features and the target variable is linear, as it provides
clear insights into the influence of each feature on the
prediction.

Data

Normalization
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encoding
Training Data from 

2023

Testing from 

1/2024 to 4/2024
Model testingData and 

Preprocessing

Optimized Hyperparameters 

of ML models

RF LR

5-fold CV

Model prediction

RF LR

Figure 8. The flowchart of ML model for weather prediction

The proposed method, shown in Fig. 8, consists
of three steps. Initially, the data is preprocessed,
including steps: data collection, label encoding, and
normalization. The preprocessed data is then used for
model training, specifically applying Random Forest
(RF) and Linear Regression (LR) algorithms with 5-
fold cross-validation to optimize hyperparameters. The
optimized models are subsequently tested using the
2024 data to ensure accuracy and reliability in weather
prediction.

3.4. Augmented Reality integration for interactive
farm monitoring

In this section, with the aim to support comprehen-
sive farm management, we developed a high-level mod-
ule with two parts: a website-based data management
system and an AR mobile application. Farmerly web-
based system oversees smart farm operations, recording
and displaying temperature, humidity, and soil mois-
ture details on a dashboard with time-valued data. The
graphics illustrate trends across various terrains and
periods, aiding farm managers in decision-making. The
system includes a dedicated section for managing this
region, displaying all relevant metrics and updates as
in Fig. 9.

Farmerly AR App uses ARKit [17] integration
to visualize real-time sensor data overlaid on the
actual field view. ARKit’s plane detection identifies
horizontal and vertical surfaces through points of
interest such as corners, edges, and color transitions,
allowing accurate placement of virtual objects within
the real-world scene. Additionally, the application
utilizes ARKit’s brightness sensor to dynamically
adjust the brightness of virtual objects based on the
surrounding light, ensuring seamless integration with
the real environment [17]. To predict the environment,
Farmerly AR app displays 3D models and texts
representing predicted daily conditions, including
temperature, humidity, and soil moisture levels which
are collected from LoRaWAN end nodes. Users can tap
on AR elements to see detailed data and predictions
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Figure 9. Dashboard of Farmerly web-based system

as in Fig. 10. Farmerly AR app also had alerts for
significant predictions, such as impending adverse
weather conditions. Farmerly AR application fetched
data and forecast from the backend API. Real-time
data on temperature, humidity, and soil moisture is
displayed alongside ML-generated predictive analytics,
forecasting the daily conditions of the farm based
on historical data. Beyond environmental data, this
application also visualizes stages of the crop life
cycle based on its usual development timeline. This
feature allows farmers to see a detailed, augmented
representation of crop growth stages overlaid onto the
actual field, providing crucial insights into the health
and progress of their crops.

4. System evaluation
4.1. Experimental setup
a. Location and crop

Centella is a herbaceous plant, often growing in
humid places and tropical regions such as Southeast
Asia, China, India, Sri Lanka, Central Africa... [18]. The
ideal growing conditions for centella include nutrient-
rich alluvial soil with a loose texture that retains
moisture and drains well. Centella has been grown in
different regions of Vietnam for commercial production
purposes. The most typical regions are in Thanh Hoa
and Thua Thien Hue provinces. Quang Tho, Thua Thien
Hue, Vietnam (16°32’06.2"N,107°31’39.7"E) is selected
to be the pilot area. This region has the biggest area
of centella cultivation, covering over 70 hectares. In
2013, the VietGAP centella process of production was
officially implemented in Quang Tho. Thua Thien Hue
is a central coastal province with a hot, humid climate,
abundant rainfall, and frequent flooding, especially
from October to December. Each year, in Quang Tho,
centella is usually planted in 3 seasons: Spring crop

Figure 10. ARKit plane detection in Farmerly AR mobile app

(planted in February), Summer crop (planted in May)
and Autumn crop (planted in August) [19], requiring
heavy watering initially during the dry, sunny weather.
Subsequently, the crop is watered every two days.

The sample collection demonstration was conducted
from January 2023 to April 2024, aligning with
centella’s typical growth cycle. A centella crop typically
takes 84 - 90 days from planting to harvest [19],
given optimal meteorological conditions (temperatures
between 30-32°C, average monthly rainfall below 100
mm, and no flooding). Regular soil humidity checks
are necessary to ensure proper watering. However,
the region’s frequent floods and the characteristics
of alluvial soil mean that prolonged submersion in
floodwaters can result in a significant layer of mud
covering each centella stem. If not harvested promptly,
this can lead to crop damage and potentially result in
total crop loss for the farmers.

b. System configuration
1. End Nodes: Equipped with STM32F103 microcon-

trollers, RFM95W LoRaWAN modules, and specialized
sensors including temperature, humidity, soil moisture,
and nutrient levels tailored for centella growth.

2. LoRaWAN Gateway: Deployed using ESP32 –
WiFi LoRaWAN boards with integrated LoRaWAN
SX1278 chips, strategically positioned to cover centella
cultivation areas effectively.
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Figure 11. Farmerly web-based system

3. AR Interface: Accessible through a mobile
application developed using ARKit, providing centella
farmers with a 3D visualization of crop health, growth
patterns, and environmental conditions.

c. Data collection and analysis
Data collection occurs at high-frequency intervals,

with sensors providing readings every 15 minutes.
Parameters specific to centella cultivation including
temperature, soil moisture, humidity, and weather were
monitored alongside traditional environmental factors.
Data was transmitted wirelessly to the LoRaWAN
gateway, then processed and analyzed within the
SmartFarm cloud. Algorithms tailored for centella
cultivation provided insights into optimal growth
conditions and disease prevention strategies.

4.2. AR application
a. Data for prediction

The data was collected daily from January 2023 to
April 2024 in Quang Tho, Thua Thien Hue province,
with each sample containing seven features: minimum
temperature, maximum temperature, wind speed, wind
direction, humidity, cloud cover, and pressure. The
entire dataset includes 485 samples. The data is divided
into training and testing sets, with samples from
January 2023 to December 2023 (365 samples) used
for training and model optimization, and samples from
January 2024 to April 2024 (120 samples) used for
testing. Fig. 11 is an example of the system generating a
warning signal indicating a potential drought.

The data after being learned through the Markov
chain will be fed into the system. At the same time,
based on the given prediction threshold, the system
will give warnings to users through the AR application
about the data in the next 3 days. The system shows a
warning when the sunny weather remains for more than
2 days, the temperature is higher than 33°C, wilting
point occurs when soil moisture drops to approximately
15-25% of the soil’s water holding capacity. While
centella plants tolerate moisture well, excessive rainfall

and flooding can pose risks. When the rainy or storm
remains up to 2 days, soil moisture levels above 60%
of the soil’s water holding capacity, and waterlogging
threshold appears [20]. If the indexes exceed the safe
threshold, the system automatically provides a warning
to the manager based on checking the set condition in
Table 2.

Table 2. Conditions to issuing alerts

Conditions on
farms

Messages shown in
Farmerly system

Temperature
<33°C. Soil
moisture >25%;
Duration > 1 day.

Your irrigation practices
are perfect. Continuous
monitoring of soil mois-
ture to maintain these
optimal conditions.

Temperature
increased >33°C;
Soil moisture
<25%; Duration >
2 days.

Your plants are at risk
of entering the wilting
point. Please irrigate to
restore soil moisture.

Temperature
<33°C; Soil
moisture 25-
60%; Duration > 1
day.

Your irrigation practices
are perfect. No immediate
action is required.

Temperature
increased 25-32°C;
Soil moisture
>60%; Duration >
2 days.

Current conditions can be
waterlogging. Stop irri-
gating immediately and
reduce excess water if
necessary.

b. Crop visualization via Farmerly system and AR
application

The data management system oversees the operations
of the smart farm, keeping track of vital details
such as temperature, humidity, and soil moisture. In
this case, the system is tracking specific to centella
cultivation. On the dashboard, users can observe these
metrics along with their respective values over time.
Additionally, the system manages designated regions
where centella crops are grown. In the event of adverse
weather conditions, the system triggers a farm tracking
alert, notifying users to take necessary precautions and
enabling users to promptly attend to their centella
crops based on real-time weather conditions. The farm’s
environmental parameters are recorded at regular 15-
minute intervals, maintaining consistency throughout
the day. The data collected from these measurements
is then input into the prediction model. If any serious
future fluctuations occur, the model automatically
notifies and displays related alerts in the upper right
corner of the AR Mobile app. The farm displays model
also shows areas in the field that are not uniform in
the index, e.g. 1/5 areas in the field lack moisture. This
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Figure 12. High moisture alerts follow the real weather on the
farm

enables immediate monitoring and response to changes
in the agricultural environment, while also optimizing
the management and monitoring processes. Rainy
weather and indexes on temperature, air humidity, and
soil moisture from the farm are shown in real time in
Fig. 12.

When farmers used the AR app to monitor the farm,
they gained the ability to visualize every stage of the
centella crop’s development. Quang Tho experiences
a tropical climate with distinct wet and dry seasons.
Ensuring consistent moisture during the dry season
and preventing waterlogging during the wet season is
crucial. In particular, during the post-harvest period,
farmers must pay close attention to providing moisture
and nutrients to continue stimulating new roots to
grow for the new crop. With this information displayed
on the AR application, farmers may have a more
comprehensive view of the development stages, such
as planting, initial growth, root development, leaf
expansion, flowering, and harvesting as shown in Fig.
13. For visualization purposes using AR, we collect

Figure 13. Farmerly AR App displays the development stage of
the crop

the morphological characteristics of the crop in the
whole development stages into 5 main stages: (1) Seed
Germination; (2) Seedling Stage; (3) Vegetative Growth;
(4) Flowering Stage; (5) Fruiting Stage. They can make
decisions in the field to help centella plants grow
strongly and produce high-quality yields in Quang
Tho. The stages displayed in each period of the crop’s
development are shown in Table 3.

4.3. Assessment results
By optimizing the RF and LR models using grid

search CV and combining 5-fold CV on the 2023
dataset, our machine learning model is optimized
and reliable. Next, we conducted training. Finally,
we implemented testing from January 2024 to April
2024. The results show that the RF model correctly
predicted 108 out of 120 days (90% accuracy), while
the LR model correctly predicted 105 out of 120 days
(87.5% accuracy). Therefore, we choose RF for the
daily weather prediction model on our application.
Implementing the automatic monitoring, prediction,
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Table 3. Life Cycle Of centella Asiatica With Time And Key
Factors

Stage Duration Key Factors Influ-
encing Stage

Seed Germi-
nation

First 7-14
days

Moist soil
conditions,
optimal
temperature (20-
30°C), shallow
sowing

Seedling
Stage

In 2-4 weeks Moisture, light,
temperature (20-
30°C)

Vegetative
Growth

In 8 - 12
weeks

Light intensity, soil
quality, consistent
watering

Flowering
Stage

In 16 weeks Insect activity, suit-
able climatic con-
ditions (25-35°C)

Fruiting
Stage

In 20 weeks Environmental fac-
tors affecting seed
dispersal

and warning system significantly expedited farm
monitoring tasks, reducing both implementation and
decision-making times by 80% compared to traditional
methods without the AR application.

Table 4. Aspect and Feedback/Observation

Aspect Feedback/Observation
Ease of Use 90% of farmers found the

AR app easy to navigate and
use.

Real-Time
Monitoring

85% of farmers appreciated
the real-time data visualiza-
tion.

Decision-Making 80% reported enhanced
ability to make informed
decisions.

Crop Growth Visu-
alization

88% found growth stage
visualization very benefi-
cial.

Environmental
Alerts

75% felt timely alerts
helped prevent potential
issues.

Accuracy of Pre-
dictions

82% trusted the accuracy
and reliability of predic-
tions.

Resource Manage-
ment

70% observed improved
efficiency in water and
nutrient management.

System Reliability 95% experienced high sys-
tem reliability and uptime.

The AR visualization enabled farmers to make
more informed decisions by understanding the precise
conditions and needs of their crops at each stage.
During the pilot project, interviews were conducted
with farmers to gather feedback on their experiences
using the Farmerly data management system and AR
application. The results of the farmer interviews were
evaluated and feedback on the system in Table 4.
This integrated approach greatly improved the scope
and accuracy of environmental data collection, which
is crucial for making well-informed decisions about
agricultural operations. The ability to monitor and
predict environmental conditions, combined with the
visualization of crop growth stages, allowed farmers
to optimize resource usage, anticipate and mitigate
potential issues, and ultimately improve crop yield and
quality.

5. Conclusion
In response to the increasing need for precision agri-

culture, this paper has explored the opportunities and
challenges associated with implementing a novel IoT-
based system for farm management and monitoring.
The proposed system integrates Long-Range Wide Area
Networks (LoRaWAN), Machine Learning (ML), and
Augmented Reality (AR) technologies with IoT devices,
specifically STM32 family microcontrollers. This com-
bination enhances the way farmers interact with and
control their farms, improving the efficiency and reli-
ability of data collection. The primary results indicate
that this integrated approach significantly enhances the
scope and accuracy of environmental data collection,
which is crucial for making well-informed agricultural
decisions. The AR interactive interface demonstrated
an impressive 87.5% accuracy in facilitating manage-
ment decisions while reducing both implementation
and decision-making times by 80% compared to tradi-
tional methods without the AR application. The pilot
study conducted in Quang Tho, Vietnam, validated the
effectiveness of this integrated approach in predicting
key environmental conditions such as temperature, soil
moisture, and air humidity, thus enabling proactive and
informed decision-making. The system demonstrated
high prediction accuracy and significantly reduced
monitoring and decision-making times.

The combination of LoRaWAN, ML, and AR in
IoT-enabled smart farm monitoring has proven to
be an effective solution for precision agriculture.
LoRaWAN allows data to be transmitted over long
distances with minimal power consumption, while AR
offers farmers real-time insights and visualizations of
their crops, providing an immersive and interactive
experience. The integration of ARKit further enhances
the system’s accuracy and usability. This technology
has the potential to revolutionize farm monitoring and
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management, leading to increased efficiency and higher
crop yields. However, considerations around scalability,
cost, and technical challenges need to be addressed for
broader implementation.
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