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Abstract 
Nowadays, cybercriminals tend to leverage dynamic malicious infrastructures with multiple servers to conduct attacks, 
such as malware distribution and control. Compared with a single server, employing multiple servers allows crimes to be 
more efficient and stealthy. As the necessary role infrastructures play, many approaches have been proposed to detect 
malicious servers. However, many existing methods typically target only on the individual server and therefore fail to 
reveal inter-server connections of an attack campaign. 
In this paper, we propose a complementary system, deMSF, to identify server flocks, which are formed by infrastructures 
involved in the same malicious campaign. Our solution first acquires server flocks by mining relations of servers from 
both spatial and temporal dimensions. Further we extract the semantic vectors of servers based on word2vec and build a 
textCNN-based flocks classifier to recognize malicious flocks. We evaluate deMSF with real-world traffic collected from 
an ISP network. The result shows that it has a high precision of 99% with 90% recall. 
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1 Introduction 

Malicious web activity is still a major threat to Internet. 
Nowadays, cybercriminals build malicious web 
infrastructures to supply their crimes, which makes 
attacks complicated and diversified. Dark infrastructures 
today contain multiple servers (e.g., exploit servers, 
command & control servers, redirect servers, payment 
servers). Adversaries growingly combine these servers as 
the platform to spread malicious content, launch attacks 
and monetize from crimes. A typical example is malicious 
redirection, which leverages exploit servers to redirect 
visitor to another website. 

Many approaches have been proposed to identify 
malicious servers. Most detection systems detect 
malicious webs by analyzing web content [5,11,16,24], 
identify malicious servers by building a reputation system 
for an individual server [3,4,9] or find popular techniques 
adversaries used to avoid evasion [18,25,30,32, 33]. 
Unfortunately, these works focus only on a single server 
which makes them lack the panoramic view of attacks. In 

addition, some servers may not easily be discovered by 
only analyzing the single server. Some works 
[2,15,19,27,34] notice the relation of servers by identify 
malicious redirections. Zhang et al. [34] indicate that 
malicious servers tend to be invisible and propose a 
method by analyzing redirections from visible to invisible 
server. Li et al. [15] leverage redirect-chains to build the 
topology of dark infrastructures and further recognize the 
dedicated malicious hosts. However, the collection of 
redirections is not easy while relations of malicious 
servers are various which not only limited to redirect. 

Different from existing works, we focus on relations of 
servers given that increasingly attacks are conducted with 
multiple servers. We aim to identify servers involved in 
the same malicious activity, which we called a server 
flock, without relying on redirections. In particular, we 
find two features of server flocks to help distinguish 
flocks from DNS traffic. First, the completion of the 
attack requires a victim to access multiple servers 
continuously, in other words, servers of a flock tend to co-
exist in the user’s access list within an interval. Second, 
the flock used for crimes only serves certain victims, 

EAI Endorsed Transactions on 
Security and Safety 

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

EAI Endorsed Transactions  
on Security and Safety Research Article 

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/


Yixin Li et al. 

2 

which means that servers of a flock probably have stable 
clients. 

Based on the above observations, in this paper, we 
propose a mechanism, deMSF, to detect malicious server 
flocks on a local network with only three fields: 
timestamp, clients and servers. We generate sever flocks 
in two steps: (a)we cluster servers within a client access 
list according to the timeline; (b)we extract final server 
flocks based on the similarity of clients. Inspired by a 
hypothesis that servers occur in the same contexts tend to 
be similar, we extract semantic vectors as features of 
servers based on word2vec and further design a 
convolution neural network based on textCNN to classify 
malicious flocks. 

It should be noted that deMSF is a complementary 
approach to existing works. We believe that it can help 
detect servers that may be ignored by only analyzing a 
single server. In addition, it helps describing relations of 
servers within a malicious activity. 

In summary, the contributions can be described as 
follows: 

– We present a system, deMSF, to detect malicious
campaigns by recognizing malicious server flocks.
Focusing on flocks rather than an individual server
makes deMSF be capable of revealing the relation of
malicious servers.

– We design a two-step method to discover malicious
flocks. In the first step, we generate flocks by
clustering servers from both sequential and spatial
dimensions. In the second step, we extract semantic
vectors of servers and design a convolutional neural
network to classify flocks based on these vectors.

– We evaluate the effectiveness of deMSF with real-
world data collected from an ISP network, and the
result demonstrates that deMFS performs well in
discovering associated servers involved in malicious
campaigns.

The rest of this paper is organized as follows: section 2 
introduces the background knowledge of our work. 
Section 3 describes the critical components of deMSF. 
Then we evaluate the effectiveness of deMSF in section 4. 
Section 5 presents the related works, and section 6 is our 
conclusion. 

2 Background 

Machine learning has been widely used in many fields 
and gets significant advantages. Our work leverages 
machine learning to describe semantic features of servers 
and identify malicious flocks. In this section, we describe 
the related machine learning techniques employed in our 
system. 

2.1 word2vec 

Word2vec, proposed by Mikolov [20] in 2013, is one of 
the most widely used techniques for learning high-quality 
word vectors from huge data sets with billions of words. 
The resulting vectors can reflect subtle semantic 
relationships between words, for example, 
vector(King)−vector(Man)+vector(Woman) results in a 
vector that is closest to the vector representation of the 
word Queen [22]. 

Fig.1. Two models of word2vec 

Word2vec takes text corpus as input and generates 
word vectors. It includes two learning models, Continuous 
Bag of Words (CBOW) and Skip-gram. As shown in 
Figure 1, both are simple neural network model with one 
hidden layer. The former predicts the word given its 
context, while the latter predicts the context given a word. 
Compared to the one-hot encoder, word2vec generates 
dense vectors. Another significant advantage of word2vec 
is that words with similar meanings will be mapped to 
similar positions in the vector space. 

2.2 textCNN 

Convolutional neural networks (CNNs) are a specialized 
kind of neural network for processing data that has a 
known, grid-like topology [8]. CNNs are originally used 
in computer vision [13], while in recent years, they have 
been found to perform well for NLP. In 2014, Kim 
proposed a network named textCNN [12] for sentence-
level classification tasks with pre-trained word vectors. 
As shown in Figure 2, textCNN is a simply neural 
network with an input layer, an output layer, a 
convolution layer and a max-pooling layer. It takes texts 
as input and usually leverages word embedding to 
increase performance. 

In this paper, we design a network based on textCNN 
for our task. This model achieves superlative performance 
in malicious flocks detection. 
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Fig.2. textCNN 

3 System Description 

Fig.3. Architecture of deMSF 

In this section, we describe our design of deMSF. The 
intuition of deMSF is that servers involved in one activity 
have strong relationships: (a) servers of a flock tend to co-
occur within an interval in a client access list; (b) servers 
for the same campaign have similar clients. As shown in 
Figure 3, deMSF takes network traffic as input, and has 
four components: Preprocessing, Flocks Generating, 
Servers Vectorizing, Flocks Classifying. It leverages only 
three fields (client, timestamp, server) to analyze. In this 
paper, we take DNS logs as raw data. After process raw 
data and extract related fields, we generate server flocks 
from both temporal and spatial dimensions. Then we 
vectorize servers according to word2vec [21]. Finally, we 
build a deep learning classifier to recognize malicious 
flocks based on semantic vectors of servers. In the 
following, we will explain each component in detail. 

3.1 Preprocessing 

The primary goal of this step is to formalize the dirty raw 
data, extract valid fields and generate visit-sequences of 
clients. In order to reduce the data to be processed and 
improve the system efficacy, we first filter records 
according to the following rules. 

– Irregular domain. There are some records in raw data
with irregular domains(domains that do not conform
to domain naming rules, for example, google,com),
which is probably caused by mistyping or
misconfiguration.

– Invalid domain. An invalid domain here indicates that
its TLD(Top Level Domain) is not in the list of
registered TLDs presented by IANA [10]. We filter
records with these domains.

– Hyperactive clients. There are some hyperactive
clients whose queries are greatly more than others,
which are usually proxies forwarding requests for
many users. In order to improve the performance of
deMSF, we remove these clients cause they behave
significantly different from regular clients. In detail,
we remove the top H% most active clients. In this
experiment, H is set to 1% empirically.

Then we formalize the data by extracting three valid 
fields: client, server and timestamp to generate request 
sequences. The form is defined as follows: R = ∪Ci is the 
set of visit-sequences, where Ci = {(s1,t1),(s2,t2),...,(sn,tn)} 
represent the visit-sequence of client i and (sn,tn) indicates 
that client i query server sn at time tn. 
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3.2 Flocks Generating 

Based on the collected sequences of each client, deMSF 
further mines related servers that are involved in the same 
activity. We explore two steps to find server flocks from 
temporal and spatial dimensions. We give an example in 
Figure 4. 

First, we execute clustering according to querying 
time. We analyze dns queries of ten clients within 900 
seconds, Figure 5 shows the result: client’s requests show 
obvious clustering phenomena in timeline. The result 
accords with our expectations as many network activities 

require more than one domain. For example, when query 
a web page, clients usually query other domains to 
download images. Besides, some programs have a static 
domain query list and order. We implement time 
clustering in a simple way: for two adjacent visits 
(sj,tj),(sj+1,tj+1) of client Ci, if the time interval ∆T = tj+1 −tj 

greater than a certain threshold τ (we set τ = 5 in this 
article), we divide them into different clusters. After these 
step, we get a time-clustered sequence of client Ci as 
{s1,s2,...sn}. 

Fig. 4. An example of flocks generating 

Fig.5. Domain queries of ten clients in 900 seconds 

Second, we perform clustering in terms of the client 
similarity of servers. It depends on the intuition that 
normal clients usually don’t query malicious servers while 
infected clients of a same malicious campaign usually 
query same suspicious servers. In other words, servers 
sharing similar client tend to belong to same flocks. We 
leverage Jaccard similarity to measure the connection of 
server si and sj: 

Specifically, for a time-clustered sequence {s1,s2,...sn}, we 
calculate the client similarity of adjacent servers sj and 
sj+1. If the Similarity(sj,sj+1) is less than a certain threshold 
γ (γ is set to 0.5 empirically), we divide them into 
different clusters. 

Finally, as our goal is to find the correlation among 
different servers, the small flocks with only one server are 
removed. In addition, if the adjacent two servers are the 
same, we only keep one. 
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3.3 Servers Vectorizing 

The goal of this step is to map servers into a low-
dimensional feature vector while keeping the context 
information as much as possible. We find that a technique 
named word embedding in natural language processing 
(NLP) is very helpful for learning features of servers. 
Word embedding based on a hypothesis: words that occur 
in the same contexts tend to have similar meanings. The 
same applies to servers: servers that occur in the same 
contexts tend to be similar. Thus we regard servers as 
words, a flock as a sentence, then we can learn features of 
servers the same as word embedding. Based on this, we 
leverage word2vec to learn feature vectors of servers, 
which can effectively describe the relationship among 
different servers. 

Considering the time consuming and effect, we 
experiment with CBOW model. We implement it in 
Python, using the Gensim† package to generate server-
vectors: 
(a) the input layer contains 2a context servers, in this

article, we set a=5.
(b) the output layer contains a vector, which is the server

probability predicted according to the context. In the
experiment, we set the size of vectors as 128.

3.4 Flocks Classifying 

As we mentioned earlier, the server can be regarded as a 
word and the flock as a sentence. Then identifying 
malicious server flocks can be seen as a text classification 
task. Based on this perception, we design the neural 
network based on the textCNN [12] proposed by Kim in 
2014. The structure is shown in Figure 6, consisting of an 
input layer, an embedding layer, convolution layers, max-
pooling layers, a concatenate layer and an output layer. 
And we show the parameter settings in Table 1. 

(a) Input Layer. The input layer takes flocks as input. A
flock can be represented as a sequence Seqflock =
{s1,s2,...sn}, where n is the length of sequence.

(b) Embedding Layer. Let xi be the k-dimensional server
vector corresponding to the i-th server in the
sequence. A sequence with n servers can be
represented as x1:n = x1 ⊕ x2 ⊕ ... ⊕ xn. The output of
the embedding layer is a n*k matrix composed of
server vectors of each sequence, where k is the length
of vectors.

† https://radimrehurek.com/gensim/ 

Fig.6. textCNN-based flocks classification system 

Table 1. Parameter settings 

(c) Convolution Layer. There are three convolution
layers with different window sizes of filters: 3,4,5.
Each type of filters has 100 filters with different
values. A feature ci is generated with a filter which
window size h:

ci = f(w ∗ xi:i+h−1 + b) 

Layer Parameters 

Input Layer shape = (None,200) 

Embedding Layer server semantic vectors 

Conv1D_1 
filters = 100 

kernal_size = 3 activation = 
’relu’ 

MaxPooling_1 pool_size = 198 

Conv1D_2 
filters = 100 

kernal_size = 4 activation = 
’relu’ 

MaxPooling_2 pool_size = 197 

Conv1D_3 
filters = 100 

kernal_size = 5 activation = 
’relu’ 

MaxPooling_3 pool_size = 198 

Concatenate axis = -1 

Flatten N/A 

Dense 
units = number of categories activation 

= ’softmax’ droupout=0.2 
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In this work, we use Rectified Linear Units(ReLU) as 

f. A filter is applied to each possible window of

servers in the sequence {x1:h,x2:h+1,...,xn−h+1:n} to

produce a feature map c = [c1,c2,...cn−h+1].

(d) Max-pooling Layer. We apply a max-pooling
operation over the feature map and take the
maximum value cˆ to capture the most important

feature for a feature map. In this step, we get 300 
features from 300 filters. 

cˆ= max(c) 

(e) Concantenate&flatten & output. All features are
passed to a fully connected softmax layer whose
output is the probability distribution over labels.

4 Evaluation 

In this section, we evaluate the performance of deMSF 
using the real word DNS traffic captured from an ISP 
network. We first introduce the dataset used in our 
experiment. Then we analyze the results of server 
vectorizing and the effectiveness of deMSF. 

4.1 DataSet 

DNS traffic We obtain DNS traffic collected on the edge 
of an ISP network from December 20th, 2018 to 
December 26th, 2018. The summary of dataset is 
presented in Table 2. As we filter hyperactive clients in 
preprocessing step, we don’t count them in Table 2. 

Table 2. Dataset 

Date Clients Domains Queries Flocks 

2018-12-20 14.3k 412k 30,433k 119k 
2018-12-21 14.2k 437k 25,497k 116k 
2018-12-22 12.7k 279k 23,921k 79k 
2018-12-23 12.3k 288k 27,000k 74k 
2018-12-24 13.7k 424k 44,531k 116k 
2018-12-25 13k 385k 34,221k 120k 
2018-12-26 13k 386k 24,517k 119k 

Ground Truth We get the ground truth from two popular 
online blacklists, Malware Domain Block List [7] and 
URLhaus [1]. Except above two blacklists, we also 
leverage a threat intelligence platform named ThreatBook 
[29] to scan all servers appeared in flocks and get their
report. ThreatBook marks a server with three labels:
clean, suspicious and malicious. Also some special clean
servers will be marked as whitelist in ThreatBook.

4.2 Labelling 

We first label servers according to ground truth we collect 
by following steps: 

(a) a server is labeled as white if it is marked with
whitelist by ThreatBook.

(b) a server is labeled as malicious if it is listed in any
blacklists or is marked with malicious by
ThreatBook.

(c) a server is labeled as suspicious if marked with
suspicious by ThreatBook.

(d) a server is labeled as clean if it is marked with clean
by ThreatBook and not listed in any blacklist.

Then we label flocks with harsh conditions. A flock is 
labeled as clean if all servers are labeled as white. A flock 
is labeled as malicious if its threat score is greater than 3. 
The threat score of a flock is the average score of all its 
servers and is calculated by the following formula. 

4.3 Server Vectorizing Results & 
Analysis 

We expect semantic vectors of servers can effectively 
represent the internal relationship among servers, which 
means similar servers tend to have similar vectors. The 
internal relationship here indicates that servers have 
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similar content, provide similar service or have other 
connections like belonging to the same web. 
We trained the vectors with one day data (2018-12-20) to 
check if the results meet our expectations. For a popular 
domain, we extract top 10 servers similar to it according 
to the semantic vectors and manually check whether they 
are similar in practical world. We give partial results in 
Table 3: 

– www.jd.com is one of the biggest online shops in
China. The top 10 servers similar to it are most the
subpages of jd.com. It should be noted that there are
three special examples pf.3.cn, f.3.cn, dx.3.cn, which
are all related to jd.com cause 3.cn is another domain
of JD Inc. and can be redirected to www.jd.com.
Another exception is mediav.com, which is a popular
online advertising provider. It is reasonable that
mediav.com is similar to jd.com

– www.google.com is the most popular search engine
around world. The top 10 servers similar to it all
belong to Google Inc.

– sohu.com is a popular portal web in China. Among
the top 10 similar to itservers, there are four portal
webs (hao123.com, sina.com, qq.com, 163.com), one
popular search engine in China (baidu.com), the
biggest online shop in China (taobao.com), and four
servers related to a popular tool named Kingsoft
Antivirus.

It can be seen that the semantic vectors can reflect 
internal connections of servers. Thus it is feasible to use 
the semantic vectors as features of servers. 

Table 3. Top 10 servers similar to www.jd.com, www.google.com, sohu.com 

Server Similarity Vector Correlation 
jcm.jd.com 0.9894 [0.04064134,-0.016787084...-0.050261103] Subpage 

cm.mediav.com 0.9891 [0.04064134,-0.016787084...-0.050261103] Advertisement 
ccc.jd.com 0.9875 [0.04064134,-0.016787084...-0.050261103] Subpage 

pf.3.cn 0.9872 [0.04064134,-0.016787084...-0.050261103] Subpage* 
f.3.cn 0.9859 [0.04064134,-0.016787084...-0.050261103] Subpage* 

api.m.jd.com 0.9846 [0.04064134,-0.016787084...-0.050261103] Subpage 
list.jd.com 0.9844 [0.04064134,-0.016787084...-0.050261103] Subpage 
ai.jd.com 0.9838 [0.04064134,-0.016787084...-0.050261103] Subpage 
dx.3.cn 0.9833 [0.04064134,-0.016787084...-0.050261103] Subpage* 

floor.jd.com 0.9831 [0.04064134,-0.016787084...-0.050261103] Subpage 
www.googletagmanager.com 0.9689 [0.09148411,-0.23106502...-0.007657597] Google Inc. 

fonts.googleapis.com 0.9548 [0.09148411,-0.23106502...-0.007657597] Google Inc. 
stats.g.doubleclick.net 0.9515 [0.09148411,-0.23106502...-0.007657597] Advertisement of google 

fonts.gstatic.com 0.9473 [0.09148411,-0.23106502...-0.007657597] Google Inc. 
googleads.g.doubleclick.net 0.9450 [0.09148411,-0.23106502...-0.007657597] Advertisement of google 
www.googletagservices.com 0.9411 [0.09148411,-0.23106502...-0.007657597] Google Inc. 

adservice.google.com 0.9399 [0.09148411,-0.23106502...-0.007657597] Google Inc. 
www.googleadservices.com 0.9368 [0.09148411,-0.23106502...-0.007657597] Google Inc. 

pagead2.googlesyndication.com 0.9330 [0.09148411,-0.23106502...-0.007657597] Google Inc. 
ssl.google-analytics.com 0.9328 [0.09148411,-0.23106502...-0.007657597] Google Inc. 

hao123.com 0.9994 [0.36417392,-0.58563906...-0.12286949] Portal web 
sina.com 0.9992 [0.36417392,-0.58563906...-0.12286949] Portal web 

rq.upgrade.cloud.duba.net 0.9988 [0.36417392,-0.58563906...-0.12286949] Anti-virus** 
rq.cct.cloud.duba.net 0.9987 [0.36417392,-0.58563906...-0.12286949] Anti-virus** 

rcmd.pop.ijinshan.com 0.9987 [0.36417392,-0.58563906...-0.12286949] Anti-virus** 
taobao.com 0.9987 [0.36417392,-0.58563906...-0.12286949] Online shopping 

qq.com 0.9983 [0.36417392,-0.58563906...-0.12286949] Portal web 
cv.duba.net 0.9982 [0.36417392,-0.58563906...-0.12286949] Anti-virus** 

163.com 0.9982 [0.36417392,-0.58563906...-0.12286949] Portal web 
baidu.com 0.9981 [0.36417392,-0.58563906...-0.12286949] Search engine 
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* 3.cn is another domain of JD and is redirected to www.jd.com
** duba.net is a domain of Kingsoft Antivirus, which is one of the most widely used software in China

4.4 Classification Results & Analysis 
Evaluation index 

1. Accuracy&Precision&Recall&F1score.
– TP: the number of malicious flocks deMSF
detected as malicious.
– TN: the number of clean flocks deMSF detected
as clean.
– FP: the number of clean flocks deMSF detected
as malicious.
– FN: the number of malicious flocks deMSF
detected as clean.

10-fold cross-validation We experiment with one day
data (2018-12-20) to evaluate the effectiveness of the
classifier. There are 49,760 different labeled flocks in
2018-12-20 data, including 603 malicious samples and
49,157 clean samples. In order to eliminate the
randomness that may exist during some experiments and
improve the reliability of results, we use 10-fold cross-
validation for performance evaluation. Each experiment
contains 39,808 samples in training sets, 4,976 samples in
validation sets and 4,976 samples in test sets. The result
shows in Table 4. It can be seen that the flock
classification model based on server embeddings can
achieve a high accuracy rate over 99%.

Table 4. 10-fold Cross Validation 

No. TP TN FP FN Accuracy Precision Recall F1_socre 

0 48 4925 0 3 99.94 100.00 94.12 96.97 
1 53 4916 1 6 99.86 98.15 89.83 93.81 
2 62 4912 0 2 99.96 100.00 96.88 98.41 
3 60 4909 0 7 99.86 100.00 89.55 94.49 
4 61 4908 0 7 99.86 100.00 89.71 94.57 
5 45 4929 0 2 99.96 100.00 95.74 97.83 
6 62 4907 0 7 99.86 100.00 89.86 94.66 
7 46 4926 0 4 99.92 100.00 92.00 95.83 
8 67 4906 0 3 99.94 100.00 95.71 97.81 
9 51 4918 0 7 99.86 100.00 87.93 93.58 

Experiment on one week data In order to analyze the 
effectiveness of deMSF with new servers, we further 
leverage one model trained above to predict the results 
with the next six days. One significant problem here is 
that there are many new servers that we don’t know the 
semantic vectors of them. Retraining the vectors will 

change the value of vectors we used in the trained model 
and make the model not effective anymore. Thus we 
make an incremental training of server vectors with new 
flocks while keeping the original server vectors be 
constant. Then we use the newly trained vectors to make 
the classification. In order to measure the result of 
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classification, we only use labeled flocks to execute the 
experiment. The summary of data is presented in Table 5 
and the result is showed in Table 6. 

It can be seen that deMSF has excellent results. It has a 
high precision that all detected flocks are actually 

malicious flocks. It has an acceptable recall that only a 
few malicious flocks are not detected. This could be 
caused by the new threat that has weak connections with 
the known threat we trained thus deMSF cannot detect it. 
We show some examples of malicious flocks in Table 7.

Table 5. The summary of six days data 

Table 6. The result of six days data 

Date TP TN FP FN Accuracy Precision Recall F1_socre 

12-21 610 47091 0 62 99.87 100.00 90.77 95.16 
12-22 606 29501 0 49 99.84 100.00 92.52 96.11 
12-23 551 27086 0 67 99.76 100.00 89.16 94.27 
12-24 605 47887 0 60 99.88 100.00 90.98 95.28 
12-25 572 48607 0 66 99.87 100.00 89.66 94.55 
12-26 610 48288 0 57 99.88 100.00 91.45 95.54 

All 3,554 248,460 0 361 99.86 100.00 90.77 95.16 

Table 7. Examples of malicious flocks 

Type Servers 

Mirai 
e.mariokartayy.com

cnc.arm7plz.xyz
cnc.junoland.xyz

Date Flocks(label) Flocks(mal) Flocks(clean) 

2018-12-21 47,763 672 47,091 
2018-12-22 30,156 655 29,501 
2018-12-23 27,704 618 27,086 
2018-12-24 48,552 665 47,887 
2018-12-25 49,245 638 48,607 
2018-12-26 48,955 667 48,288 

All 252,375 3,915 248,460 

EAI Endorsed Transactions on 
Security and Safety 

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1



Yixin Li et al. 

10 

Conficker 

vqhxyffk.ws 
linepve.cc 

zzqvketg.info 
kpsvqpozld.net 

nzdkujuj.ws 
usjhbqrctb.cn 

... 

NrsMiner, CoinMiner 

lebec.attendecr.com 
tar.kziu0tpofwf.club 
swt.njaavfxcgk3.club 
phelan.chereher.com 
p3.qsd2xjpzfky.site 
yuma.dification.com 

... 

Install Core 

q96b7b7.strangled.net 
q968787.ignorelist.com 
q96b7b7.homenet.org 
q968787.mooo.com 

... 

4.5 Discussion 

Overhead 
The most expensive part of deMSF is to calculate the 
client similarity of servers. Since we should calculate 
similarity among different servers and there may be a 
large number of servers in data. Fortunately, there are 
some techniques like sparse matrix multiplication can 
significantly reduce the complexity of calculation. 

Limitation 

• Single malicious servers. deMSF focuses on multiple
servers involved in malicious activities or evasion
techniques instead of a single server. Thus, deMSF
cannot detect malicious campaigns with only a single
server cause there are

• no connections we can extract from these campaigns.
However, malicious campaign with a single server is
very rare.

• Noise. deMSF based on the query sequences of a
client. It is inevitable that there are queries triggered
by background activities mixed in the true
continuous queries. Although we leverage the client
similarity to decrease the noise, this phenomenon can
not be eliminated. But it should be noted that noise is
a small probability event. With the data increase, its
impact is negligible. – New threat. Since deMSF
leverage the inter-connections of servers according to
client queries, deMSF can hardly detect completely
new threats that don’t have connections with before

• servers. To overcome this may need other properties
and data sources. It can be a topic for our future
work.

Evasion 

• Attackers can make internal associations between
benign servers and malicious servers by mixing
benign queries in malicious activities. Thus deMSF
may divide malicious servers within a campaign into
different flocks and delete flocks cause they only
contain one server. However, we can filter popular
benign servers which are impossible involved in
malicious campaigns by add whitelist in
preprocessing step.

• Another approach attackers can use is to let different
compromised clients communicate with different
servers to reduce the client similarity of malicious
servers. However, this may be costly for attackers, as
the more bots they have, the more servers they need
to register.

• One more method attackers can use is increasing the
time interval between two queries. While some
attacks require continuous queries such as malicious
redirections and DGA. In addition, researchers can
adjust the time window threshold to catch them.

Universality 

• deMSF is designed to monitor the traffic from the
edge of a network and it only requires basic three
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fields: client, timestamp and server, thus it can be 
deployed at most enterprise or ISP networks. 

• deMSF is an automatic threat discovery system. It
leverages a basic hypothesis that servers occur in the
same contexts tend to have similar meanings. Then it
learns semantic vectors of servers to get the internal
association between them and further classifies
malicious flocks from normal activities. It should be
noted that deMSF does not need any defined feature
rules or knowledge.

• deMSF don’t need researchers to manually adjust
parameters to get the proper value. By training a
sufficiently good model, deMSF can discover
malware behaviors and exclude known non-
malicious behaviors. While the parameters can be
stable and effective for a long time.

5 Related work 

5.1 Studies focus on Individual Servers. 

Many approaches concentrate on individual malicious 
servers to mitigate malicious avitivites. 

Some works analyze web content to recognize 
malicious webs. Liao et al. [16] develop a semantic-based 
technique, which leverages Natural Language Processing 
(NLP) to identify the bad terms most irrelevant to an 
sTLD’s semantics and detects webpages with malicious 
promotional injections. Delta [5] is a system identifing 
malicious web sites according to the changes of sites. It 
extracts change-related features between two versions of 
the same website and identifies an infection using 
signatures generated from such modifications. Saxe et al. 
[24] propose a deep learning approach to detecting
malevolent web pages operated on a language-agnostic
stream of tokens extracted directly from static HTML
files with a simple regular expression.

Some works construct reputation system for a single 
server to recognize malicious servers. Notos [3] is a 
dynamic reputation system for domains. It uses passive 
DNS query data to construct the network and zone 
features of domains and compute accurate reputation 
scores. EXPOSURE [4] employs large-scale, passive 
DNS analysis techniques to detect malicious domains. It 
extracts 15 features from DNS traffic to characterize 
different properties of domains and the ways they are 
queried. PREDATOR [9] uses only time-of-registration 
features to establish domain reputation to predict 
malicious domains when they are registered. 

Some concentrate on the technique adversaries use to 
avoid detection. Yadav et al. [32] develop a methodology 
to detect domain fluxes in DNS traffic by looking for 
patterns inherent to domain names that are generated 
algorithmically, in contrast to those generated by humans. 
Phoenix [25] is a mechanism using a combination of 
string and IP-based features to tell DGA and non-DGA 
domains.It can find groups of DGA domains that are 

representative of the respective botnets. It can associate 
previously unknown DGA-generated domains to these 
groups, and produce novel knowledge about the evolving 
behavior of each tracked botnet. WoodBridge et al. [30] 
leverages long short-term memory (LSTM) networks to 
predict malicious domains and their respective families. 
Luo [18] leverages the query time lags of non-existent 
domains (NXDomain) to mitigate DGA-based malware 
without the lexical property. 

5.2 Studies focus on relations of servers. 

There are many studies focus on malicious redirections. 
VisHunter [34] investigates the visibility of servers and 
finds that certain malicious servers tend to be invisible to 
normal users. It identifies malicious redirections from 
visible servers to invisible servers at the entryway of 
malicious web infrastructures. Akiyama et al. [2] 
develope a honeypot-based monitoring system across four 
years and analyze the ecosystem of malicious URL 
redirections. Stringhni et al. [27] aggregate the different 
redirection chains that lead to a specific web page and 
analyze the characteristics of the resulting redirection 
graph. Then they detect malicious web pages by looking 
at the redirection chains that lead to them. Mekky et al. 
[19] develop a methodology to identify malicious chains
of HTTP redirections. They passively collected traffic and
extract statistical features which capture inherent
characteristics from malicious redirection cases. They
further apply a supervised decision tree classifier to
identify malicious chains.

Some works leverage many other relations of 
malicious servers. Zhang et al. [35] utilize an 
unsupervised framework to infer malware associated 
server herds by systematically mining the relationships 
among all servers from multiple dimensions: client 
similarity, IP address set similarity, whois similarity, URI 
file similarity. Li et al. [15] perform a study on the 
topological relations among hosts and find that dedicated 
malicious hosts are well connected to other malicious 
hosts and do not receive traffic from legitimate sites. They 
develope a graphbased approach that relies on a small set 
of known malicious hosts as seeds and results in an 
expansion rate of over 12 times in detection. Lee et al. 
[14] construct a domain travel graph based on the
sequential correlation of DNS, cluster domains using the
graph structure and determine malicious clusters by
referring to public blacklists. Sun et al. [28]model the
DNS scene as a Heterogeneous Information Network
(HIN) consist of clients, domains, IP addresses and their
diverse relationships. They leverage a transductive
classification method to detect malicious domains with
only a small fraction of labeled samples. Liu et al. [17]
analyze a new attack infrastructures named shadowed
domain. They propose a system to detect these domains
from two dimensions: the deviation from legitimate
domains under the same apex and the correlation among
shadowed domains under a different apex.
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5.3 Studies using embedding in security 

Xu et al. [31] propose a neural network-based model to 
generate vectors based on the control flow graph of each 
binary function. Then the cross-platform binary code 
similarity detection problem can be done efficiently by 
measuring the distance between vectors. Popov [23] 
proposes a method applying word2vec technique for 
extracting vector embeddings of machine code 
instructions. And further build a convolutional neural 
network-based classifier using extracted vectors to detect 
malware. Ding et al. [6] develope a representation 
learning model named Asm2Vec to construct feature 
vectors for assembly code. It takes assembly code as input 
and does not require any prior knowledge such as the 
correct mapping between assembly functions. It can find 
and incorporate rich semantic relationships among tokens 
appearing in assembly code. Shen et al. [26] calculate the 
vector of an attack step by considering the entire attack 
sequence as a sentence, and each step as a word. They 
develop attack2vec to understand the emergence, the 
evolution, and the characteristics of attack steps in 
relation to the wider context in which they are exploited. 

6 Conclusion 

In this paper, we focus on the servers that are involved in 
the same malicious campaign. We learn the features of 
vectors leveraging the querying relationships among 
different servers and propose a novel approach to detect 
malicious activities using a neural network based on 
server semantic vectors. deMSF first mines server flocks 
from both temporal and spatial dimensions. Further it 
generates server semantic vectors with the techniques 
developed in the area of natural language processing, 
which can effectively model the internal connection 
among servers. Finally it recognizes malicious flocks by a 
deep neural network based on all server vectors of a flock. 
The feasibility of deMSF is demonstrated with one week 
logs acquired from real-world, and the results show that 
deMSF achieves a high precision of 99% with 90% recall. 
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