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Abstract 

Organizations collect log data for various reasons, including security related ones. The multitude and diversity of the 
devices that generate log records increases, resulting to dispersed networks and large volumes of data. The design of a log 
management infrastructure is usually led by decisions that are commonly based on industry best practices and experience, 
but fail to adapt to the evolving threat landscape. In this work a novel methodology for the design of a dynamic log 
management infrastructure is proposed. The proposed methodology leverages social network analysis to relate the 
infrastructure with the threat landscape, thus enabling it to evolve as threats evolve. The workings of the methodology are 
demonstrated by means of its application for the design of the log management infrastructure of a real organization. 
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1. Introduction

Most organizations, in order to comply with standards and 
legislation, or for ensuring efficient maintenance, 
troubleshooting and security, need to maintain data logs. 
Because current technology allows it, at low cost, the 
types of log sources continuously increase; this raises the 
challenge of managing and analyzing large amounts of 
data, as well as modifying log management 
methodologies [1]. Automation facilitates the 
performance of log management tasks; yet, due to 
security policy restrictions, geographic dispersion and 
operational costs, security personnel have to carry out 
their tasks without having all of the necessary data at their 
disposal [2].  

Recent reports e.g. [3] describe an ever evolving and 
dynamic threat landscape, where attack and defense is an 
arms race. Combined with emerging business models and 
new technologies, new threats also emerge, posing new 

challenges, that may render current security controls 
ineffective [4]. Even though log management exhibits 
dynamic characteristics, organizations implement log 
management infrastructures by making design decisions 
based solely on technical criteria, neglecting the threat 
landscape they will operate in.  

The design of a log management infrastructure for a 
Wide Area Network (WAN) is a demanding task, 
particularly when the network is dispersed and 
heterogeneous. As stated in [5], “a log management 
infrastructure consists of the hardware, software, 
networks, and media used to generate, transmit, store, 
analyze, and dispose of log data”, and it typically 
comprises three tiers: the Log Generation tier that 
contains the hosts that generate the log data, the Log 
Analysis and Storage tier, which is composed of one or 
more log servers, often called collectors or aggregators, 
that receive log data or copies of log data from the hosts 
in the first tier; and the Log Monitoring tier, that contains 

∗Corresponding author. Email: Vasanasto@gmail.com

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 01 2019 | Volume 6 | Issue 19 | e2

EAI Endorsed Transactions 
on Security and Safety Research Article

http://creativecommons.org/licenses/by/3.0/


consoles that may be used to monitor and review log data 
and the results of automated analysis [5],[6].  

The placement of the log collectors is a design problem 
that is usually solved by following vendors’ guidelines 
and recommended good practices. For example, in [6] a 
hierarchical placement of the log management 
components is proposed, placing the collectors close to 
the log originators, in a hub-and-spoke architecture, 
considering also the geographic dispersion of the WAN, 
with the aim of collecting the log data to a central point 
for analysis. In [5] the complexity and variety of the log 
analysis and storage tier is handled by deploying multiple 
log servers, each performing specific analysis, or storage 
functions, for specific log generators. Thus, each log 
collector of a large scale infrastructure can store or 
process only part of the generated log data, either because 
of the design criteria or because of lack of resources; the 
volume of the generated log data may prohibit its storage 
or transmission to a single central location, due to the 
incurred economic cost. In this context, security staff 
working in different locations and performing varying 
duties, need access to specific log data sources to 
accomplish their assigned log management tasks in order 
to meet the requirements. Adjusting the design of the log 
management infrastructure, though necessary, impacts the 
availability of the log data (collectors may be added or 
removed, log generators may be redirected, the retention 
policy may change, etc.) possibly hindering the 
accomplishment of the log management tasks.  

The problem addressed in this work is how to design a 
dynamic log management infrastructure for a WAN, able 
to adapt its design as the threat landscape evolves, while 
continuing to meet the set of operational log management 
requirements. 

The work presented in this paper is motivated by the 
need for a methodology that does not limit itself to the 
evaluation and documentation of technical design 
decisions, but also takes account of the dynamic threat 
landscape into the design decision making process, and 
further validates the alignment of the log management 
infrastructure to the log management requirements. 
Validation herein means ensuring that an analyst 
accessing a log collector can perform the required log 
management tasks using the log data actually collected on 
it; if not, a measure of the lack of data, or excess of data, 
occurs. 

In this work we adopt the risk definition of [4]: “a 
measure of the extent to which an entity is threatened by a 
potential circumstance or event”. This definition includes 
all aspects of risk that could possibly affect a log 
management infrastructure (physical security, business 
processes, external relationships, human factor, etc) and is 
not limited to software related risks. The relationships 
among log data, log collectors and log management tasks, 
comprise the design structure of the log management 
infrastructure, which can be modeled as a collection of 
interlocked networks, called a Meta-Network. A Meta-
Network can be represented using the Meta-Matrix 
conceptual framework [8], enabling the extension of the 

Social Network Analysis (SNA) techniques and concepts 
[9] to those of Meta-Network Analysis (MNA) [10] that
are used to analyze the structural properties of real-world
organizations. A log management infrastructure is viewed
as a complex organization, enabling the application of
MNA concepts and measures.

The proposed methodology leverages the techniques of 
Social Network Analysis (SNA) to analyze the design of 
the log management infrastructure in relation to the risks 
that its assets face and results in a new design that 
mitigates those risks. It then applies concepts and 
measures provided by Meta-Network Analysis, to analyze 
the design structure of the resulting infrastructure to 
confirm that the ability to accomplish the required log 
management tasks is maintained. Combining the SNA and 
MNA results in an optimal design of the log management 
infrastructure, customized to the risks it faces.  

The contribution of this work is a novel methodology 
that 
• allows the evolution of a log management

infrastructure whenever the threat landscape, the log
management requirements or the logged
infrastructure changes;

• takes into account the security risk when making
design decisions on the log management
infrastructure;

• leads to a design optimized for the threat landscape in
which the infrastructure operates;

• validates the fulfillment of the design requirements;
• provides the security personnel with measurements of

the effectiveness of the design, that guide and
document the design decisions.

The remainder of this paper is organized as follows: In 
Section 2 related work is discussed, in Section 3 the 
proposed methodology is presented, and in Section 4 its 
application to a log management infrastructure of a real 
organization is demonstrated. In Section 5, the 
conclusions are summarized and directions for future 
work are presented. 

2. Related work

In [11] the authors present a high level guide for building 
a log analysis system, where the organizational risk is 
considered for defining the log retention policy and the 
log storage requirements. The four-step process for the 
collection of log data proposed in [12] starts with the 
definition of the threats that an organization faces and 
continues with prioritizing them, based on the risk they 
induce for the organization. It then identifies the data 
feeds that are required to address each threat and 
concludes by further analyzing the selected sources. A 
high level perspective of the design process is also 
provided in [5], where an organization prioritizes its goals 
and log management requirements according to the 
perceived reduction of risk and the required resources. 
Additionally, [13] argues that, in order to allow for 
sensible security monitoring that avoids gaps and 
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excessive controls, the level of monitoring of information 
processing facilities should result from a risk assessment 
exercise. 

Functions related to log collection and storage are 
discussed in [14], where a method that ensures the 
forensic soundness of log data transferred over untrusted 
networks is proposed. Log collection and storage 
functions are also addressed in [15], that proposes a log 
management architecture in conjunction with commercial 
SIEM products. In [16] the authors propose a framework 
for log management in distributed systems, aiming to 
address log-based anomaly detection and problem 
identification tasks. Though [16] aims to provide an end-
to-end log management framework, no validation of the 
resulting design is offered, and its application is not 
demonstrated. In  [17] the log management task of 
preprocessing is addressed. The current state of the art of 
log parsers is evaluated in terms of efficacy, using real-
world datasets composed of millions of log messages. The 
authors designed and implemented a parallel log parser, to 
address the deficiencies of current log parsers when logs 
grow to a large scale. The system’s performance in log 
mining tasks, in terms of accuracy, efficiency and 
effectiveness was evaluated. In [18] the authors present an 
integrated system that aims to perform data analytics on 
system logs from complex networks and high-throughput 
web-based applications. It utilizes data mining techniques 
to assist the analysts in conducting log knowledge 
discovery, system failure diagnosis and system status 
investigation. A web-based framework for the analysis of 
log files provided by the user is proposed in [19]; it aims 
to correlating events in huge log files. The authors 
developed a prototype that parses log files, based on text 
phrases selected by the user and visualized the results of 
the analysis. Indicative works of delegating log 
management to the cloud are [20] and [21]. Block chain 
technology is leveraged in [22], where the authors 
propose a secure log storage platform that uses block 
chain on the cloud to achieve the integrity of the log data 
and the log process, as well as scalability for longer 
retention and deep analysis. 

Social network analysis is based on the assumption that 
relationships among interacting units are of importance. 
The network perspective encompasses theories, models, 
and applications that are expressed in terms of relational 
concepts or processes. In [9] and [23] methods and 
measurements for the analysis of social networks are 
documented along with their interpretation;  the latter 
focuses on exploratory analysis, whilst in both works  the 
identification of the key nodes is performed using 
measures of centrality. The inefficiency of these measures 
in identifying important and key nodes, is addressed in 
[24] and [25], that introduce new methods of  analysis.

SNA is used in [26] to build a model for the
recognition of the key risk elements in cooperative 
technological innovation. The authors follow a three-step 
analysis process (factor analysis, relations analysis, matrix 
analysis) to identify the key risk elements. Our work is 
different, as it analyzes the relations among the assets as 

the result of facing common risks rather than their direct 
linkage to risks. The work presented in [27] employs SNA 
to explore the dynamics of risk causality and interaction 
patterns, using both participatory and computerized 
techniques. A risk analysis model is proposed in [27], that 
allows to capture, model and simulate the capacity of risk 
interactions in respect to the network structure; SNA 
visualization tools are leveraged to gain visibility into risk 
characteristics. In contrast, our work leverages SNA to 
integrate risk complexity into the process of designing a 
log management infrastructure, instead of only modeling 
it. The authors in [28] propose a theoretical model for risk 
analysis of complex systems. The model is based on SNA 
and characterizes risk as failure rates on network links and 
nodes, aiming to evaluate the risk of the whole complex 
system in real-time; however, the applicability of the 
model is not demonstrated. The resilience of the banking 
system to a contagion (failure of an institution and spill 
over to the whole financial system) and the channels of 
contagion are studied in [29], by applying SNA 
measurements. A model for capturing, drawing and 
simulating the risk impact propagation patterns and 
interrelationships is proposed in [27]. The proposed 
model is applied on a water supply infrastructure system, 
revealing the value of participatory networked approaches 
in capturing the intricate processes that shape 
infrastructure risk. SNA is also used to study risk in large 
hydraulic engineering projects in [30]. The authors 
combined stakeholder management with risk 
management, to provide a reference for the social stability 
risk management. Additional applications of SNA in 
studying risk are presented in  [31] and [32] where the 
risk of spreading a disease is discussed. 

SNA usually handles networks composed of nodes of 
the same type, such as agent networks or task networks. 
Its methods do not lend themselves well to treating 
complicated data structures such as those encountered in 
multi-mode networks, where three or more modes may 
coexist [9]. Therefore, whereas SNA can be used to model 
the log management infrastructure and identify its key 
nodes (log collectors/generators), it does not lend itself to 
modeling and analyzing their design structure, i.e. the 
relationships among different types of nodes: log 
collectors, log files and log management tasks. MNA, on 
the other hand, extends SNA and enables its application to 
complex cross-connected networks composed of multiple 
types of nodes. Meta-networks were first described by 
means of the precedence, commitment of resources, 
assignment, networks, and skills (PCANS) model [33]. 
They involve key entities that influence organizational 
design, such as tasks, resources, knowledge, and agents, 
as well as their relations [34] and have been applied to 
diverse fields [35],[36],[37],[10].  

A guide for implementing a log management 
infrastructure in WANs by applying SNA to justify design 
decisions that where formerly made based on intuition or 
experience is presented in [7]. It encompasses both high-
level and low-level aspects of log management, and 
guides the design, implementation and evaluation of such 

A Methodology for the Dynamic Design of Adaptive Log Management Infrastructures 

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 01 2019 | Volume 6 | Issue 19 | e2



infrastructure, following an eleven-step method. 
However, the method in [7] does not alow the design of 
dynamic log management infrastructures. An extension to 
the work in [7] was presented in [38] where MNA was 
used to dynamically design log management 
infrastructures.  

The work herein further consolidates that in [38] and 
[7] to propose a complete methodology for the design and
validation of risk-adaptive log management
infrastructures and to demonstrate its workings.

3. Adaptive log management
infrastructure design methodology

In SNA a node (or actor) is a social entity that can be a 
discrete social unit (e.g. a person) or a collective social 
unit (e.g. a corporate department); the term actor does not 
imply that it has the ability to act. The actors are 
connected by establishing links (or social ties) and the 
collection of social ties formed among a specific set of 
actors is a relation. A social network is composed of 
nodes and links and can be either directed, i.e. the link 
from node A to node B is different from the link from 
node B to node A, or undirected. A node can have 
attributes and a link can be valued or binary. In graph 
theory notation, G = (V, E) is a social network G with |V| 
nodes and |E| links and it is represented by a |V| x |V| 
adjacency matrix. A link between node vi ∈ V and node vj 
∈V, is indicated by a value in the eij ∈ E cell. When the 
links are formed among the nodes of the same set, the 
network is a one-mode social network [39]; the term mode 
refers to a distinct set of entities on which the structural 
variables are measured. A two-mode network is formed 
between two distinct sets of nodes, N and M, and is 
represented by the |N| x |M| incidence matrix. Folding the 
two-mode network results in two one-mode networks, one 
for each dimension. A network is folded when it is first 
transposed to the desired dimension and then multiplied 
with the initial incidence matrix, resulting in the 
adjacency matrix. Folding the |N| x |M| incidence matrix 
will result in the |N| x |N| and |M| x |M| arrays.  

The infrastructure of a WAN comprises a variety of 
devices and equipment that in the context of this work are 
referred to as assets. Assets are not limited to network 
equipment; they also include operating systems and 
applications, physical security mechanisms etc. When two 
assets face the same risk (they have a common 
vulnerability and there exists a threat that can exploit it), 
they are implicitly connected.  

An overview of the proposed methodology is depicted 
in Figure 1, while its components are discussed in detail 
in the subsequent sections. 

3.1 Adjustment of the dynamic log 
management infrastructure design 

Affiliation networks are two-mode networks where the 
first mode is a set of actors and the second mode is a set 
of events. The linkages among members of one of the 
modes are based on the linkages established through the 
second mode [9]. An event can be a wide range of 
occasions, such as participation to a club, a party or a 
committee and it does not necessarily correspond to a 
face-to-face interaction. An actor belonging to a club is 
affiliated with that event. When two actors belong to the 
same club they are affiliated (linked) by the same event. A 
two-mode matrix, |A| x |E|, is used to represent an 
affiliation network,  where a value of 1 in the ij cell 
affiliates row actor i to column event j [9]. Folding this 
two-mode matrix results in an array of linkages among 
actors through their participation to events, |A| x |A|, and 
an array of linkages among events through the 
participation of actors to these events, |E| x |E|. In the 
proposed methodology an asset corresponds to an actor 
and a risk corresponds to an event. Two assets are linked 
when they share the same risk and two risks are linked 
when they pertain to the same asset.  

The relation among the assets of the log management 

Figure 1. Overview of the proposed methodology 
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infrastructure and the risks they are exposed to is modeled 
as a two-mode social network. Let A = {a1, a2, …, an} be 
the node set of the assets of the log management 
infrastructure and let R = {r1, r2,…, rm} be the node set of 
the risks that these assets face. When an asset ai is 
threatened by risk rj, the entry in the ij cell of the |A| x |R| 
incidence matrix is equal to 1. The |A| x |R| incidence 
matrix is folded, resulting to the |A| x |A| and |R| x |R| 
arrays. 

Total degree centrality is the number of links a node 
has and it is used to identify the nodes that participate 
actively in the social network. It is distinguished into in 
and out degree centrality, where the links are directed to 
and from the node, respectively. The total degree 
centrality of a node is equal to its normalized in degree, 
plus its out degree. Let G = (V, E) be the graph 
representation of a square network and a node v. The 
Total degree centrality of node v = deg / 2 * (|V| - 1), 
where deg = card {u∈V|(v,u) ∈ E ∨ (u,v) ∈ E}([9] as cited 
in [8]). A node with high degree centrality is a well-
connected node and can potentially influence directly 
many other nodes [24]. 

The total degree centrality is measured on the |A| x |A| 
one-mode social network and the nodes are sorted in 
descending order to identify the high-valued ones; these 
nodes (assets) face the same risks with many other nodes. 
A threat could pivot among them by exploiting their 
common vulnerabilities, or it could compromise multiple 
assets by exploiting a vulnerability present on these 
assets. 

The analysis of the |A| x |A| matrix continues with the 
identification of the m-slices. An m-slice is a maximal sub 
network containing the links with multiplicity equal or 
greater than m and the nodes incident with these links 
[23]. The 0-slice assets are “isolated” as they share no 
risks with the rest of the assets, while a 4-slice, for 
example, is a pair of assets that have four common risks.  

The m-slices are sorted in descending order, 
identifying the high-valued pairs. These sub groups of 
assets share many common risks, that result in increased - 
compared to the rest of the assets- attack surface for the 
WAN. A threat could compromise the whole sub group of 
assets by exploiting their multiple shared vulnerabilities. 

The SNA measurements (total degree centrality and m-
slices) are used to identify the high-risk assets, and to 
prioritize them for log management. For example, these 
assets could be prioritized for system hardening 
(preparation), deployment of sensors and log analysis 
(detection),  minimization of the impact of a possible 
incident (containment), mitigation of vulnerabilities 
(eradication) and restore of normal operation (recovery) 
[40].   

Based on the prioritization of the assets and the 
incident response measures that the organization [4] 
chooses to implement, the log management infrastructure 
is adjusted by modifying the log generation, analysis, 
storage or monitoring tiers, as defined in [5]. The output 
of this step of the proposed methodology is the design of 

the log management infrastructure optimized to address 
the risks that it currently faces. 

3.2 Validation of the log management 
infrastructure design 

The dynamic design of the log management infrastructure 
needs to be validated to confirm that after its adjustment it 
still fulfills the log management requirements for which it 
was designed. 

Social network model construction 
A log management infrastructure comprises of log files, 
log collectors and log management tasks (component of 
the requirements). These three entities are related as each 
log file is sent to one or more log collectors, each log 
management task needs the data contained into specific 
log files, and with the log data stored on a specific log 
collector a subset or the full set of log management tasks 
is expected to be carried out by the analyst. The 
relationship among these entities is depicted in the entity 
relationship diagram of Figure 2,  where a log file, a log 
collector and a log management task are linked with 
many-to-many relationships.  

These three entities are used to construct a three-mode 

Figure 2. Entity relationships diagram 

social network with the following modes: 

T = {t1,t2,..,tr}, the log management tasks. 
C = {c1,c2,…,cc}, the log collectors. 
F = {f1,f2,…,ff}, the log files. 

The links formed among these three modes are 
represented by the following incidence matrices: 

|F| x |T|, the log files necessary to perform each log 
management task. 

|F| x |C|, the log collectors to which each log file is 
sent. 
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|T| x |C|, the log management tasks expected to be 
accomplished with the log data of each log collector. 

Meta-network model construction 

In MNA the design structure is composed of the following 
entities: agents, an entity that processes information; 
tasks, a set or subset of actions that accomplish an 
assignment; and knowledge, the available information 
[41]. Each of these entities corresponds to a node class, 
and the nodes belonging to a node class form a node set. 
The nodes can be connected with links, while both may 
have attributes that describe them and provide context to 
their relationship. When the links are formed among the 
nodes of the same node set, the result is a one-mode 
network; when they are formed among N node sets, the 
result is an N-mode network. Different networks may 
describe specific relationships among the nodes; the 
collection of these networks is referred to as a meta-
network. 

In the context of the proposed methodology, a log 
management infrastructure corresponds to an organization 
with agents (log collectors), knowledge (log files) and 
tasks (log management tasks). This analogy is 
summarized in Table 1, where adopting the notation of 
[41], AT is the agent x task matrix, AK is the agent x 
knowledge matrix and KT’ is the knowledge x task 
transposed matrix. The constructed meta-network is 
analyzed by applying knowledge measurements to the 
organization (meta-network of the log management 
infrastructure), as documented in [41] and [42]. 

Agent Knowledge Needs Congruence, is the amount of 
knowledge that an agent lacks to complete its assigned 
tasks, expressed as a fraction of the total knowledge 
required for completing the assigned tasks. This metric 
measures the difference between the knowledge that the 
agent needs to do its assigned tasks and the agent’s actual 
knowledge. The value of the metric is increased when the 
agent needs knowledge that has not been assigned to it. 
Let NK = AT*KT' be the knowledge needed by agents to 
do their assigned tasks; then the output value for agent i is 
sum(NK(i,:) .* ~AK(i,:)) / sum(NK(i,:)).  

Agent Knowledge Waste Congruence, is the amount of 
knowledge that an agent has, but is not needed for any of 
its tasks; it is expressed as a fraction of the total 
knowledge of the agent. The formula compares the 
knowledge of the agent with the knowledge it actually 
needs to perform its tasks. Any unused knowledge is 
considered wasted. Let NK = AT*KT' be the knowledge 
needed by agents to do their assigned tasks. Then the 
output value for agent i equals to sum(~NK(i,:) .* AK(i,:)) 
/ sum(NK(i,:)). 

The adjustment of the log management infrastructure 
design, i.e. the output of the analysis of the affiliation 
network, may have impacted the ability to perform the log 
management tasks on the log collectors. This is validated 
using the first two metrics, which identify the log 
collectors that need more data for the accomplishment of 
their tasks, and the collectors that receive more log data 

than they actually need, respectively. Specific log files or 
entire log generators can be reassigned to log collectors, 
in order to verify that the latter have the necessary log 
data for the accomplishment of the log management tasks 
at their disposal.  

4. Case study

The proposed methodology was applied to the 
infrastructure of the Greek Research and Education 
Network (GRNET network) [43]. The WAN of GRNET 
extends to most parts of Greece and provides connectivity 
services to academic institutions; it is composed of 78 
devices with 85 physical connections among them, 
forming the topology depicted in [43]. The SNA 
measurements were performed using CASOS ORA 
version 3.0.9.9.81, a statistical analysis package by 
Carnegie Mellon University [44] used for the analysis of 
complex systems. 

Table 1. Construction of the meta-network 

 Organization 
(Meta-network) 

Log management 
infrastructure 

Node class Node set Interpretation 
Agent (A) Log collectors (C) Log files 

collection/storage. 

Knowledge (K) Log files (F) The generated log 
files. 

Task (T) Log management 
tasks (T) 

The log 
management 
tasks (part of the 
requirements). 

Network 2-mode network Interpretation 
Agent x task (AT) |T| x |C| The tasks to be 

performed on 
each log collector. 

Knowledge x task 
(KT’) 

|F| x |T| The log files 
required for the 
accomplishment 
of each log 
management task. 

Agent x 
knowledge (AK) 

|F| x |C| The log files 
currently 
collected/stored 
on each log 
collector. 

For the needs of this case study we assume that a log 
management infrastructure is already implemented for 
security and administration reasons. Following [5], the 
organization has deployed log collectors in three different 
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physical locations, one for  each category of log records, 
as follows:  

• Athens: logs generated by the network devices.
• Thessaloniki: logs generated by the security

devices.
• Siros: logs generated by the systems’ operating

systems.

The organization has formed three teams: 1) the 
network administrators, 2) the security analysts and 3) the 
system administrators, and has granted them access to the 
log collectors in ‘Athens’, ‘Thessaloniki’ and ‘Siros’ 
respectively.  

4.1 Adjustment of the dynamic log 
management infrastructure design 

Evolution of risks 
To demonstrate the workings of the proposed 
methodology, we assume that the organization becomes 
aware of [45], a vendor’s report on the current attack 
landscape, concluding that the organization is expected to 
be affected by the following risks: 

R-1: NTP and DNS amplification attacks.
R-2: Ransomware and cryptomining software.
R-3: Email spam.
R-4: Software vulnerabilities.
R-5: Use of legit online services for malicious acts.
R-6: Insiders.

The WAN is composed of 78 assets, hence |A|=78, and is 
affected by 6 risks, hence |R|=6. When an asset is affected 
by a risk a link is created among them, resulting in the 
two-mode affiliation network represented by the |A| x |R| 
incidence matrix. The real risks each asset faces are not 
publicly available, thus they are assumed for the needs of 
this case study, resulting in the affiliation network 
depicted in Figure 3, where a circle represents an asset, a 
triangle represents a risk and the nodes highlighted with a 
ring are log collectors.  

Folding the |A| x |R| two-mode network results to the 
|A| x |A| one-mode network shown in Figure 4, where two 
nodes are linked when they face a common risk. The 
assets are sorted based on their total degree centrality to 
identify the high-valued ones, as in Table 2. Nodes 
‘Xanthi’, ‘Kalamata’, ‘Santorini’ and ‘Athens’ are high-
valued; a high-valued node is a high-risk asset, as it faces 
common risks with many other assets.  

The methodology continues with the identification of 
the m-slices, that aims to identify groups of assets that 
face common risks, hence increased attack surface. The 
identified m-slices are depicted in Figure 5, where only 
the 4-slices and the 3-slices are depicted, to ensure 
readability. Assets ‘Santorini’ and ‘Kalamata’ form a 4-
slice, as they face four common risks. Assets 
‘Thessaloniki’ and ‘Athens’ are log collectors and face 

three common risks forming a 3-slice; they are critical for 
the infrastructure and pose an increased attack surface, 
thus they should be prioritized for risk response [4]. 

The affiliation analysis resulted in the identification of 
assets ‘Kalamata’, ‘Santorini’, ‘Xanthi’, ‘Thessaloniki’ 
and ‘Athens’ being the high-risk assets, for the current 
threat landscape, as perceived by the organization 
conducting the analysis. Assets ‘Santorini’ and 
‘Kalamata’ are both part of a 4-slice and high-ranked in 
total degree centrality; the log collectors ‘Thessaloniki’ 
and ‘Athens’ form a 3-slice while ‘Athens’ is also high-
ranked in total degree centrality. 

Evolution of risks and network topology 
For this second scenario we assume that additional to the 
changes on the risks the organization faces, the network 
topology has also changed. The organization, 
hypothetically, deployed ten more systems, five in Kos 
and five in Ios, as shown in Figure 6, where each new 
system is represented by a black circled node. Each of 
these systems is affected by risks which may be common 
to the ones affecting the already deployed ones. This 
causes the affiliation network to change as new assets 
(nodes) are introduced to the network model, and the 
common risks create new links among them, resulting in 
the affiliation network depicted in Figure 7. In both 
figures the nodes have been rearranged to assure the 
readability of the visualizations.  

The affiliation network resulting from the new 
deployments is folded and the SNA measurements are 
repeated (its visualization is omitted due to its poor 
readability). The ranking of the nodes has changed, 
resulting in the nodes listed in Table 3, were the nodes are 
sorted in descending order based on the value of the total 
degree centrality. Comparing Tables 2 and 3, we observe 
that the value of the measurement has increased for all the 
listed nodes; this was expected, as the new deployed 
systems face common risks with the high-ranked ones.  

A new asset is identified in the list of the high-ranking 
assets, “Ios-1”, as it is affected by a risk that affects many 
other systems (R-2: “Ransomware and cryptomining 
software”), and asset “Irakleio” surpassed “Athens”. On 
the other hand, the formation of 3-slices and 4-slices was 
not affected, remaining as depicted in Figure 5 (the low 
valued m-slices have changed, but only the high valued 
ones are considered by the proposed methodology). 

The output of the affiliation analysis is then used for 
the establishment of the organization’s risk response [4]. 
In the context of the proposed methodology, adjusting the 
design of the log management infrastructure is considered 
to be part of the risk mitigation process [4]. Based on the 
findings, the organization redesigned its log management 
infrastructure by deploying more log collectors, by 
enabling more log generators, and by defining new log 
management requirements. Thus, the log management 
infrastructure evolved to adapt to the needs of the new 
threat landscape. 
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Table 2. Sample total degree centrality 

Rank Asset Total Degree Centrality 
1 Xanthi 39 
2 Kalamata 38 
3 Santorini 38 
4 Athens 34 
5 Irakleio 34 
6 Malesina 32 
7 Rhodes 32 
8 Alexandroupoli 31 

 Table 3. Sample total degree centrality with new 
deployments 

Rank Asset Total Degree 
Centrality 

1 Xanthi 48 
2 Kalamata 47 
3 Santorini 47 
4 Irakleio 43 
5 Athens 41 
6 Ios-1 41 
7 Malesina 41 
8 Rhodes 41 

Figure 3. |A| x |R| affiliation network 
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Figure 4. Folded |A | x |A| social network 

Figure 5. m-slices of the |A| x |A| social network 
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Figure 6. GRNET network topology with new deployments 

Figure 7. Affiliation network with new deployments 
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4.2 Validation of log management 
infrastructure design 

The methodology continues with validating that the log 
management infrastructure design is aligned with the new 
set of log management requirements (part of the 
organization’s risk response), and that it still enables the 
three teams (security analysts, network administrators, 
system administrators) to perform their assigned analysis 
tasks. Enabling log generators without properly directing 
them to log collectors may result in the collection of 
unnecessary log data, or in the absence of required log 
data. Adding a new log management requirement may 
need directing a log generator to additional log collectors, 
or the modification of its verbosity e.g. a Web server that 
does not log the user agent string, even though this is 
needed for the analysis tasks.  

The design structure of the log management 
infrastructure is modeled as a meta-network composed of 
three node classes, as shown in Table 4, and as the 
following two-mode networks: 

• |C| x |F|: the log files collected on each log
collector.

• |C| x |T|: the log management tasks required to be
performed on each log collector.

• |F| x |T|: the log files required to perform each log
management task.

The combination of these two-mode networks results 
in the meta-network model of the organizations’ structural 
properties, shown in Figure 8, which will be used for the 
SNA measurements. In the depicted meta-network each 
log collector (circle) is linked with the log files (rectangle) 
it receives and the tasks (polygon) that should be 
performed on it; each task is linked with the log files that 
are required to perform it. The software tool that was used 
is CASOS ORA version 3.0.9.9.81 [44], a tool for the 
analysis of the structural properties of organizations and 
the detection of risks/vulnerabilities in their design 
structure. 

In order to validate that each log collector actually 
collects the log files that are required to perform the log 
management tasks expected to be performed by the 
analysts on each collector, the values of agent knowledge 
needs congruence and agent knowledge waste congruence 
were calculated, as listed in Table 5. The value of the 
agent knowledge needs congruence of collector ‘Siros”, 
for example, is 0.909, that is the portion of the log files 
the collector lacks in order to perform its assigned tasks. 
Figure 9 depicts the tasks (polygon) assigned to ‘Siros’ 
(circle), the log files (rectangle) that are needed, whilst 
only one of them (“antivirus alerts log files”) is currently 
collected on ‘Siros’. The value of the agent knowledge 
waste congruence of collector ‘Siros’ is 0.500, which is 
the portion of log files that are collected on that collector, 
though not needed for its assigned log management tasks 
(‘vulnerability scanning results’). 

The same process can be repeated for the remaining 
log collectors in order to assure that only the log files that 
are necessary for the analysis tasks are collected. 
Corrective actions on the design of the log management 
infrastructure may include modification of the log 
generators’ verbosity, of the assignment of log generators 
to log collectors, as well as the reassignment of log 
management tasks to log collectors. The entities 
considered in the MNA model of the log management 
infrastructure design structure are the collectors, the log 
files and the log management tasks; adjusting each of 
these can result to the desired values of the MNA 
measurements (agent knowledge needs congruence and 
agent knowledge waste congruence). 

Table 4. GRNET meta-network 

Node class Node 
set 

Node name 

Agent (A) |C| = 5 Athens (c-1) 
Thessaloniki (c-2) 
Siros (c-3) 
Ioannina (c-4)  
Patra (c-5) 

Knowledge 
(K) 

|F| = 10 Windows log files (f-1) 
Linux log files (f-2) 
Firewall log files (f-3) 
VPN log files (f-4)  
Antivirus alerts log files (f-5) 
Vulnerability scanning results 
(f-6) 
DNS log files (f-7) 
NTP log files (f-8)  
Router log data (f-9)  
Cloud services log data (f-10) 

Task (T) |T| = 8 Track authentication and 
authorization (t-1) 
Detect systems' configuration 
integrity changes (t-2) 
Track outbound network 
connections (t-3)  
Detect amplification attacks 
(DNS, NTP) (t-4)  
Detect malware activity (t-5) 
Monitor usage of cloud 
services (t- 6)  
Monitor systems performance 
(t-7)  
Monitor network utilization (t-8) 
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Table 5. MNA measurements 

Collector Agent Knowledge 
Needs Congruence 

Agent Knowledge 
Waste Congruence 

Athens 0 1 

Patra 0 1 

Ioannina 0 1 

Thessaloniki 0.591 0 

Siros 0.909 0.500 

5. Conclusions and future work

In this work, concepts models, tools and techniques of 
SNA and MNA were leveraged to design a dynamic log 
management infrastructure optimized for the risks an 
organization is expected to face in the threat landscape it 
operates in. 

A novel methodology was proposed, consisting of two 
main steps; 1) the adjustment of the log management 
infrastructure’s design, by leveraging SNA for the 
identification of the high-risk assets, 2) the validation of 
the alignment of the resulting design with the defined log 
management requirements, by leveraging MNA concepts 
and measures. The workings of the proposed 
methodology have been demonstrated on the WAN of the 
GRNET network using real data when available, and 
assumed data where real data are not publicly available. 
The use of SNA software facilitates the computation of 
the necessary values continuously, thus enabling an 
organization to decide on corrective actions and to assess 
the effectiveness of the resulting design structure. Future 
work will focus on the creation of a software tool that will 
support the use of the proposed methodology, and of its 
evaluation in a real working environment. Additional 
SNA measurements and analysis techniques, involving 
more entities in the design structure of large scale 
infrastructures, will also be considered. 

Figure 8. GRNET meta-network visualization 
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