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Abstract

Cloud computing provides versatile solutions that allow users to delegate their jobs. An apparent limitation of most
cloud audit services is that it is di�cult for cloud users to tell the state of a delegated job. Although cloud users can
provide a user-speci�ed model, the model is susceptible to various exploits. In this paper, we present VERDICT, a system
that ampli�es the capability of the existing cloud audit services and allows users to check the state of a cloud job through
the con�dential model and audit log. VERDICT extracts the model from an application and keeps it in the encrypted
form. The encrypted model is partitioned and updated with homomorphic encryption cipher in multiple sandboxes.
The state of a delegated job can be checked by cloud users at any time. We implement VERDICT and deploy it in the
VMs and containers on popular cloud platforms. Our evaluation shows that VERDICT is capable of reporting the state
of a cloud job at run time, keeping the model con�dential, and detecting malicious operations.

1. Introduction
Cloud computing is considered a ubiquitous and elastic
computing paradigm, in which versatile and cost-e�cient
solutions allow users to delegate their jobs and store data.
To ensure the accountability for their users, major IaaS
cloud service providers (CSPs), nowadays, o�er security
and privacy-compliant audit services [1], [2], [3]. For
instance, Google Cloud provides Cloud Audit Logging, which
o�ers three types of audit logs, namely admin activity,
system event, and data access [4]. Amazon AWS introduces
CloudTrail [5], which records AWS API calls for cloud
users. Microsoft Azure provides the activity log [6] and
Azure Monitor [7], which allow users to analyze and learn
performance issues, identify errors and failures and respond
to alerts automatically.

Although the audit log generated by the current CSPs has
been proven to be e�ective in monitoring the performance
of applications, pinpointing to the errors, and facilitating
forensic investigation [8], verifying the execution status
of a delegated job still poses a number of challenges that
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cannot be met with the existing solutions. First, because
most audit systems keep a daunting quality of audit log,
it is di�cult for them to provide a timely and appropriate
reaction to online incidents. The recent settlement reported
by the U.S. Department of Health and Human Services
(HHS) clearly shows that the audit log of the applications
that maintain electronically protected health information
(ePHI) is signi�cantly overlooked [9]. Therefore, a signi�cant
amount of human e�orts are needed to comprehend and
analyze the audit log, in order to understand the incidents
and perhaps pinpoint the security breaches. It is always
desirable to have an automated tool, orchestrated by the
auditing system, to report the execution status of a cloud job
in a timely manner. Second, the audit log, kept by the cloud
infrastructure, might have been encrypted, which makes
online status veri�cation more challenging. Given that the
audit log might contain the users’ private information, most
CSPs encrypt the audit log immediately after its generation.
However, if a user runs a cloud-based analytic tool, such as
Azure Monitor, it allows a malicious or honest-but-curious
CSP to read the audit log in plaintext at runtime [10]. Third,
existing online exploitation mitigation approaches provide
limited state information of a remote application under
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attestation. The techniques against control-�ow hijackings,
such as control-�ow integrity (CFI) [11], �ne-grained code
randomization [12], and code-pointer integrity (CPI) [13],
provide limited state information of the remote application
to the veri�er. Speci�cally, they can only tell whether a
control-�ow attack occurred, but cannot tellwhat was the state
of an application when the attack occurs. Other techniques
can precisely attest to the execution path [14–16]. However,
these techniques mainly assume the availability of dedicated
trusted hardware, such as TrustZone [17] and Intel Process
Trace [18], which might not be available for certain CSPs.

We aim at tackling the aforementioned challenges by
verifying the status of a delegated cloud job at runtime
through a con�dential model checker and con�dential audit
trial. In particular, our scheme ensures control-�ow integrity
(CFI) against code-reuse attacks [19]. In this context, the
term integrity refers to all operations that obey the model
of a program, such as the �nite state machine (FSM). We
achieve the con�dentiality of the model under checking
by �rst partitioning the model and then encrypting it via
homomorphic encryption (HE) cipher [20]. To ensure the
e�ciency of running HE cipher, the ciphertext of each
partition is kept in distributed but collaborative sandboxes
(e.g., virtual machines (VMs) and containers). The ciphertext
in each sandbox is updated while the audit log is generated
online. To check the online status of a cloud job, a user
can request the ciphertext of partitions from all sandboxes
and thus calculate the state of cloud jobs by herself.
Compared with the existing techniques that rely on trusted
hardware [15, 17, 21, 22], our approach does not rely on any
hardware support and thus can be deployed on the top of
various platforms.

In summary, we make the following four contributions in
this paper:

• We abstract a model to be checked from an application
and keep it in the form of ciphertext. The model
describes the expected behavior of a delegated job. It
is partitioned and updated in multiple sandboxes (e.g.,
virtual machines or containers). Since the partitions of
a model are encrypted with homomorphic encryption
cipher, it keeps the model con�dential and thus
prevents the model from being subverted. In addition,
the sandboxes never store secret keys and thus prevent
the potential key leakage caused by side-channel
attacks [23, 24].

• To further enhance the model’s con�dentiality, we
decouple the rules that update the model from the
model itself. In such a way, an adversary cannot reason
about the state of the model even when the secret of
the model is disclosed to the adversary. To minimize
the run-time overhead of the HE cipher [25, 26], each
online model update operation only incurs a bounded
number of HE operations, which is proportional to

the number of partitions1. We also present e�cient
algorithms that update the con�dential model and
report the state of the delegated job.

• To systematically counter control-data attacks that
explicitly change the program’s behavior, we classify
the attacks that compromise the CFI by de�ning
the abnormalities, including malicious deletion and
repetition attacks. In addition, we present algorithms
to detect such attacks.

• We implement a prototype system, namely VERDICT
(Veri�er for Delegated Integrated Cloud Tasks),
and present a detailed evaluation in both VMs
and containers from Amazon AWS [27], Microsoft
Azure [28], Google Cloud [29], and IBM Cloud [30].
Our experiments demonstrate that VERDICT can
identify the state of a delegated cloud job with a
bounded online overhead for model updating and a
reasonable o�ine overhead for model initialization
and veri�cation.

In contrast to our prior work [31], which proposed a
preliminary framework that describes the functionalities of
key components with limited technical details, we extend
it with comprehensive coverage, more technical details, and
security analysis in this paper. The remainder of the paper is
organized as follows. In Section 2, we present the motivation
and an overview of VERDICT. We then describe the threat
model in Section 3. The detailed methodology, including
how to construct the model and the algorithms about how
to update the model and verify the state of the model, are
elaborated in Section 4. We analyze the security properties of
VERDICT in Section 5. In Section 6, we present the detection
of two abnormalities that violate the expected behavior of a
delegated job. Then, we describe the current implementation
and evaluate the performance of VERDICT in Section 7.
After that, we discuss the limitation of VERDICT and suggest
possible solutions in Section 8. We review the related work
in Section 9. Finally, we conclude the paper in Section 10.

2. Motivation and Overview
In this section, we �rst introduce a real-world example that
motivates our approach (Section 2.1). We then de�ne our
research problem and provide an overview of the proposed
system (Section 2.2).

2.1. A Motivating Example

To further elaborate on the concepts developed earlier,
we present a highly simpli�ed version of a forensic
program (simple_traversal.c) that is delegated to a CSP
to acquire evidence from virtual disks through a virtual
machine introspection library. In this example, the forensic

1The number of partitions is a con�gurable parameter, which depends on
the level of the desired security.
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investigator expects the CPS to ensure the control-�ow
integrity of the delegated job. For example, the control
�ow should not be hijacked or deviate from the expected
execution path.

Figure 1a shows the code snippet of simple_traversal.c,
which traverses the �le system of a virtual disk in the
cloud. For simplicity, we ignore the detailed instructions,
such as initializing the device drivers, archiving the �les,
maintaining the directory structures, or checking the
integrity of raw data. All API calls made by the introspection
library are underlined. The control-�ow of simple_traversal.c
can be modeled as a �nite state machine (FSM), which
is illustrated in Figure 1b. States of the FSM are labeled
with line number Ln. The transitions are labeled with the
corresponding API calls, which can be obtained from the
audit log. As suggested by prior research, this program is
vulnerable to control-data attacks [32], in which the program
deviates from its expected behavior after launching. Figure 2
shows two control-�ow hijackings examples, as re�ected
from audit log. In the �rst example (Figure 2a), the expected
system call write (1, entry->d_name) (at line
10) was bypassed by the exploit. As a result, the entries in
lines 3 and 4 were not recorded in audit log. In the second
example (Figure 2b), one additional system callwrite (1,
entry->d_name) was injected at runtime, and thus two
extra audit entries were generated in lines 3 and 4. These two
examples show that control-data attacks force the behavior
of an application to deviate from its expected behavior, which
is described by its corresponding FSM model.

It is worthwhile noting that the audit log might be
encrypted and thus unintelligible. A cloud user should not
be able to tell whether the application was executed as
expected until she obtains the cryptographic key to decipher
the encrypted audit log. This also poses a potential risk that
a malicious and privileged user, who owns the cryptographic
key, injects arbitrary content into the audit log and sends it
to the cloud user.

2.2. System Overview

VERDICT is designed to ful�ll two major objectives: 1)
ensuring the con�dentiality of the formal model that speci�es
the expected behavior of a delegated job and the audit
log; and 2) guaranteeing that the state of a delegated
job is veri�able, without disclosing the veri�cation rules.
As illustrated in Figure 3, VERDICT contains three key
components: 1) Event Generator generates the audit events
and encrypts them right after their generation; 2) State
Updater cryptographically updates the model in ciphertext
upon the newly generated audit log; and 3) State Veri�er
veri�es the state of the delegated job based on the updated
model and the audit events, both of which are con�dential.

VERDICT veri�es the state of a delegated job s in seven
steps. First, the key generator generates the HE key pair and
passes the public key, HK+, to the encryption engine (step
¶). Once the event log e is generated, it will immediately

1 void listdir(char *name)

2 {

3 DIR *dir; struct dirent *entry; int count; 

4 dir = open(name, RD); 

5 while (getdents(dir, entry, count) > 0) {

6   foreach (dir_entry in entry){

7   if (isdir(entry->d_type)) {

8 char path[1024]; 

9  snprintf(path, 1024, "%s/%s", name, entry->d_name);

10  write(1, entry->d_name);

11   listdir(path);

12 } else {

13 write(1, entry->d_name);

14        }

15      }

16    }

17    close(dir);

18 }

19 int main (int argc, char *argv[]){

20  listdir(argv[1]);

21   exit(0);

22 }

(a) The code snippet of simple_traversal.c

START

L4

L5

open

L7

L17

5
getdents 

!= 0

L21

write ()

exit(0)

close(FD’)

END

close(FD)

isdir == 0

start(I, O)

L13

write ()

L1010

isdir == 1

getdents)

== 0

(b) The FSM of simple_traversal.c

Figure 1. A Motivating Example

be encrypted by HK+ (step ·). The timestamp of the
audit event will be encrypted with an Order-Preserving
Encryption (OPE) cipher [33]. The output of both ciphers
will be kept as encrypted audit logs for future veri�cation
purposes (step ¸). A model of the delegated job, constructed
from an application as an FSM, will be represented as a
loosely-coupled data structure, namely the dual-vectors. The
partial structure of dual-vectors is kept in sandboxes. The
detailed process of how to de�ne the dual-vectors will be
elaborated in Section 4.1. Two vectors of the dual-vectors,
namely U and V , are kept and updated in the two state-
updaters SU1 and SU2 independently (steps ¹ and º). The
detailed process of how to updateU and V upon observation
will be presented in Section 4.2. When a cloud user initiates
a query to the state of a job, the recent copy of U and V ,
namely U ′ and V ′, are sent to the veri�cation engine (step
»). Then, the state veri�er determines the current state of
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…… 

1. trace: is_file "/bin/file1"

2. trace: is_file = 1

3. trace: download "/bin/file1" "/path/bin/file1"

4. trace: download = 0

5. trace: is_dir "/bin/dir"

6. trace: is_dir = 0

…… 

The bypassed 

instructions

3. trace: download "/bin/file1" "/path/bin/file1"

4. trace: download = 0

5 trace is dir "/bin/dir"

(a) The malicious audit deletion

…… 

1. trace: is_dir "/bin/dir"

2. trace: is_dir = 0

3. trace: download "/etc/passwd" "/path/etc/passwd"

4. trace: download = 0

…… 

The audit entries 

caused by the injected 

call 

(b) The malicious audit injection

Figure 2. Malicious Audit Manipulations

the delegated job. Optionally, the encrypted log will be fed
into the state veri�er for o�ine veri�cation (step ¼).

3. The Threat Model
First, we assume that the state veri�er is running inside
a sandbox, whose trustworthiness is guaranteed by its
underlying TCB. It generates and maintains the secret keys
for HE and OPE. We also assume that both pseudorandom
number generator (PRNG) and HE cipher used by the state
veri�er are unbreachable. The reason for this requirement is
at least two-fold: First, it makes sure that the pseudorandom
number used as a one-time pad for the HE cipher
is cryptographically secure [34]. Second, it ensures the
secrecy of the pseudorandom numbers, which might not
be fully trusted. We describe the mechanism of the state
updaters in Section 4.2. Given that the secret inside a
sandbox is susceptible to the side-channel attacks [23], [35],
[24], [36], [37], we assume that the state veri�er is
trustworthy when the secret key is generated. We also
assume that cloud providers run honest-but-curious audit
service. To ensure the integrity of the audit trail, the audit
log must be encrypted right after its generation.

The capabilities of an adversary can be modeled as follows.
First, the adversary can hijack the behavior of an application
by launching a control-data attack [32]. The behavior of
the hijacked application can be recorded by the audit trail,
whose content is secure. Second, the trustworthiness of each
sandbox that runs a state updater might not be guaranteed.
Once a sandbox is compromised, the adversary is capable
of obtaining the ciphertext of the encrypted model, as
well as running brute-force attacks to break the ciphertext.
Third, the adversary, with high administrative privileges,
can launch an insider attack to introspect memory space
relevant to HE operations and try to infer the rules of model
updating. Even though the HE ciphertext is unbreachable,
an advanced adversary can manipulate memory content by
replacing HE ciphertext with an arbitrary value. Therefore,

we assume that the memory address of the ciphertext
might not be continuous, which can be guaranteed by
some existing techniques, including address space layout
randomization [38] or Oblivious RAM [39, 40]. Finally, a
collusion attack [41] might be possible if an adversary can
control several sandboxes in which the state-updaters are
deployed. We assume that the adversary can compromise
partial sandboxes, but not all of them. The countermeasure of
how to defend collusion attacks will be discussed in Section 8.

4. Detailed Design

In this section, we present the detailed design of VERDICT in
the order of model initialization, updating, and veri�cation.

4.1. Constructing Secure Model

To construct a model that describes the expected behavior
of an application and keeps its content con�dential, we
need to overcome at least two challenges. First, we need
to formalize the model of a delegated job to represent a
generic application and keep tracking its state based on
the observation. Second, the model should be encrypted
in such a way that it is cryptographically di�cult for an
adversary to learn any rule or reason about the state of an
application. To overcome the �rst challenge, we formalize the
model as a �nite state machine (FSM) [42], which has been
extensively applied as an e�cient way to check the behavior
model of a system [43], model veri�cation [44], and intrusion
detection [45]. The notations used in the remainder of the
paper are listed in Table 1.

Table 1. Summary of Notations

Notation De�nition
j The delegated job.
Mj The FSM that models j.
DV (Mj ) The dual-vector ofMj .
sizeof(α) The size of vector α (α= u or v).
Re The set of e-Relation.
Ri The set of i-Relation.
HK+ The public key of HE cryptographic cipher.
+++HK+ The public key of HE cryptographic cipher.
HK− The private key of HE cryptographic cipher.
Enk(m) The encryption of message m with key k.
Dek(m) The decryption of message m with key k.
C.plain The plaintext of ciphertext C .

De�nition 1 (The Security Model Mj). The model
used to describe the behavior of a delegated job s can be
de�ned as a deterministic FSMMj , which is a quintupleMj

= (Σ,S,s0,∆,SF ):

• Σ is an event alphabet with a �nite number of symbols.
In our scheme, each symbol e represents an observable
audit event from a delegated job.
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State Updater su1
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Figure 3. An Overview of VERDICT

s0start s1

s2s3s4

e0

e1

e2e5

e3

e4

Figure 4. The sample finite state machineMj

e0 e1 e2 e3 e4 e5
s0 s1 - - - - -
s1 - s2 - - - -
s2 - - s3 - - -
s3 - - - s3 - -
s3 - - - - s0 -
s3 - - - - - s4

Figure 5. The transition functionMj .∆

• S is a �nite set of states. Here, a state si could be
a location in a program [45], a unique value of the
Program Counter (PC) register, or a unique snapshot
of the program’s call stack [46].

• s0 is the initial state, where s0 ∈ S.

• ∆ is a state transition function: ∆ : S×Σ→ S.

• SF is the set of �nal states. In accordance with the
general de�nition of FSM, we include an additional
state se ∈ SF , which indicates an erroneous state that
leads the FSM to halt with errors.

Example 1. Figure 4 illustrates a sampleMj comprises
the alphabet Σ = {ei} (0≤ i≤ 5), the set of states S = {si}
(0 ≤ i ≤ 4), the initial state s0, and the �nal state set F =
{s4}. Figure 5 tabulates the transition functionMj .∆.

To overcome the second challenge, our scheme makes a
key observation: if we can keep the secrecy of 1) the set of
states S and 2) the transition function ∆, we will be able
to prevent the adversary from reasoning about the current
state of a system. However, to meet this requirement is not

easy because the model of the delegated job might run upon
an untrusted node. If an adversary can somehow correlate
the memory locations relevant to each HE operation, she
could potentially infer the states and transition function of
a model. This challenge motivates us to decouple the states
from the transition function, and run partitions of the model
independently. To do that, we de�ne a unique data structure
for Mj , namely Dual-Vector DV (Mj), which keeps the
state information of Mj . The de�nition of DV (Mj) is
listed below:

De�nition 2 (The Dual-Vector DV(Mj)). A DV(Mj)
comprises two vectors of �nite size, namely U [sizeof(U)]
and V [sizeof(V )]. In the vectors, the initial value of each
element is �rst randomly chosen and encrypted by HK+.
Then, the vectors U and V are saved in di�erent sandboxes.

Along with DV(Mj), we also de�ne two relations:
explicit relation and implicit relation, namely e-Relation and
i-Relation, which are used as an alternative to the existing
transition functionMj .∆. More speci�cally, e-Relations are
used to update an FSM based on the observed events, while
i-Relations are used to verify the current state of Mj . The
de�nitions of e-Relations and i-Relations are listed below:

De�nition 3 (e-Relation RE and i-Relation RI ).
Given an FSMMj that expresses a delegated job s, for each
transition δi ∈Mj .∆, there is a mapping relation R : δi→
Jindexu, indexvK andR∈RE∪RI , in which indexα (α= u
or v) refers to the set of indices in the vectors U and V ,
respectively. There are two kinds of relations:

• The e-Relation RE is a binary relation, denoted as
RiE : Jindexiu, indexivK, which corresponds to one
transition δi: si × ei → si+1. The state si+1 is the
next state given the current state si and the event ei,
respectively.

• The i-Relation RI is a binary relation, denoted as
RiI : Jindexiv , indexi+1

u K, which corresponds to two
transitions δi: si × ei→ si+1 and δi+1: si+1 × ej →
si+2 in sequence. The corresponding e-Relation of the

5 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e3



A. Liu, S. Haidar, Y. Cheng, and Y. Li

Transition RE
δ0 J 1, 4 K
δ1 J 7, 13 K
δ2 J 5, 6 K
δ3 J 10, 15 K
δ4 J 14, 8 K
δ5 J 16, 17 K

(a) The e-Relations correspond to transitions δi.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

U

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

V

(b) The dual-vector DV(Mj ).

Figure 6. The time spent on updating the model

two transitions are RiE : Jindexiu, indexivK and Ri+1
E :

Jindexi+1
u , indexi+1

v K.

We further elaborate on the relations of RE and RI , with
the sample FSM shown in Example 1.
Example 2. Figure 6a illustrates the transitions δi

(0 ≤ i ≤ 5) and their corresponding RE . Each row in
the table represents an RiE . Figure 6b illustrates the RE
and RI derived from DV(Mj ). Speci�cally, the solid arrow
that points from an element of U to an element of V
is corresponding to an e-Relation, while the dotted arrow
that points from an element of V to an element of U is
corresponding to an i-Relation. For example, the transition
δ1 : s0×e1→ s1 (row 2) is mapped to the e-Relation R1

E : J1,
4K, which is corresponding to the solid arrow points from
U [1] to V [4]. Similarly, the transition δ2 : s2 × e2 → s3
(row 3) is mapped to the e-Relation R2

E : J7, 13K, which
corresponds to the solid arrow pointing from U [7] to V [13].
Given these two adjacent e-Relations, the i-Relation is R1

I :
J4, 7K corresponds to the dotted arrow points from V [4] to
U [7].

The design of decoupling the formal model as dual-
vector and manipulating its content with e-Relation and i-
Relation has several advantages. First, since the state update
operations and state veri�cation operations are dictated by
RE and RI , respectively, it prevents an adversary from
inferring the transition function from the state updaters.
WhenMj is updated, the state updaters update the elements
in U and V independently by following the relations in RE ,
which is public to an adversary. However, when the state of
Mj is veri�ed, the state veri�er follows the relations in RI ,
which is unknown to the adversary. Therefore, only the state
veri�er can identify the state of the model.

Second, as an online component, each state updater is
only responsible for performing HE re-computation against
the element that matches the index of the corresponding e-
Relation. Only one HE addition or subtraction operation is

needed in each vector for an observed event. This property
ensures that HE operations in each sandbox are bounded
at run time, though the HE operations are considered as
computationally costly.

Algorithm Update_Partitions

Input: The pair Pi = {indexα,E(r)} (α = u or v), the vectors
U and V , which contain the HE ciphertext, and the public key
of HE crypto HK+.

Output: The updated vectors U ′ in SU1 and the V ′ in SU2.
1: switch updater do
2: . Perform HE subtraction on Vector U .
3: case SU1
4: HE_Sub (U [indexu], EnHK

+
(r), HK+);

5: . Perform HE addition on Vector V .
6: case SU2
7: HE_Add (V [indexv], EnHK

+
(r), HK+);

End of Algorithm

4.2. Updating Secure Model

Once the model of the delegated job is partitioned and
deployed in di�erent sandboxes, they will be updated based
on the encrypted audit log. Recall that in Section 2.2, the
model of the delegated job is partitioned into two vectors
(U and V ) and saved in the state updaters (SU1 and SU2),
respectively. The key challenge of updating the elements in
the state updater is that both U and V only contain the HE
ciphertext. If updated, they can only be updated with the HE
ciphertext as well.

To update elements in U and V with HE ciphertext, we
take the following steps: for each event ei, which satis�es
the transition δi: si × ei → si+1, the event generator �rst
produces two pairs, namely Pi = [indexα, EnHK+(r)]
(α = u or v). Then, the pairs are sends to SU1 and
SU2, respectively. In each pair, the indexα (α = u or v)
are the indices of an e-Relation RiE : Jindexiu, indexivK.
EnHK

+(r) is the HE ciphertext of pseudorandom number r
that has been encrypted by HE public key HK+. Algorithm
Update_Partitions presents the procedure of updating vectors
U and V upon receiving a pair. This algorithm uses two
generic HE operations, namely HE_Add for HE addition and
HE_Sub for HE subtraction. The algorithm is executed each
time the state updater receives a Pi. For the state updater
that contains U , the element at indexu, U [indexu], will
be homomorphically subtracted by EnHK+(r) (line 4). For
the state updater that contains V , the element at indexv ,
V [indexv], will be homomorphically added by EnHK+(r)
(line 7). Since Algorithm Update_Partitions ensures that
a transition δi in Mj .∆ only impose one HE operation
(either HE addition or HE subtraction) to a vector, the
time complexity of algorithm Update_Partitions is O(1). It
is worth noting that to send indexα (α= u or v) as plaintext
is vulnerable to security breaches. The solution to solve this
problem will be discussed in section 8.

6 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e3



Confidential State Verification for the Delegated Cloud Jobs with Confidential Audit Log

Algorithm Veri�cation_State

Input: The updated vectors U ′ and V ′, the original copy of
partitions Uinit and Vinit, and the pseudorandom number r.

Output: The ID of the current state of the modelMj if success,
or -1 if fail.

1: . Cancel out the non-�nal states.
2: for each δi ∈∆
3: (indexv, indexu)←Lookup_Imp (i) ;
4: temp← HE_Add(V [indexv],V [indexu]);
5: if DeHK

−
(temp) == V [indexv].plain +

U [indexu].plain then
6: di�=DeHK

−
(V [indexv])−V [indexv].plain;

7: temp_V [indexv]←HE_Sub(V [indexv],EnHK
+

(di� ));
8: temp_U [indexu]←HE_Add(U [indexu],EnHK

+
(di� ));

9: . Now, start to traverse the transition function and determine the
�nal state

10: for each δi ∈∆
11: (indexu, indexv)←Lookup_exp (i) ;
12: if (DeHK

−
(temp_U [indexu]) ==

Uinit[indexu].plain) and (DeHK
−

(temp_V [indexv]) ==
Vinit[indexv].plain+ r) then

13: return i;
14: if DeHK

−
(temp) == V [indexv].plain +

U [indexu].plain then
15: return -1;
End of Algorithm

4.3. Verifying Secure Model

Once the cloud user requests to check the state of an FSM that
corresponds to the monitored program of interest, she will
request both U ′ and V ′ from SU1 and SU2 and perform the
Veri�cation_State algorithm. U ′ and V ′ denote the vectors
that have been updated in the state updater. As illustrated
in the algorithm, it takes the current values of U ′ and V ′ as
input and outputs the ID of the state as de�ned by the FSM
if succeeded, or -1 if failed.

The algorithm uses standard HE encryption Enk(m)
and HE decryption Dek(m). In addition, two functions
Lookup_Exp and Lookup_Imp are used to retrieve the
indices from the explicit and implicit relations, respectively.
Nevertheless, the initial copies of U and V , namely Uinit
and Vinit, are also needed. The algorithm contains two parts.
Lines 1 - 8 cancel out the intermediate states, which are the
states that have been involved in the state transition during
run-time but are not included in the set of �nal states. Lines
10 - 15 traverse the transition function and determine the
�nal state.

5. Security Analysis
In this section, we analyze the security properties that our
scheme entails, including the trade-o� of the vector size and
the resilience against cryptanalysis.

First, three parameters are important to preserve the
secrecy of the model. The �rst two parameters are the sizes

of vector U and V , namely sizeof(U) and sizeof(V ),
which are governed by the complexity of the FSM, or more
speci�cally, the number of states and transitions in the FSM.
The values of sizeof(U) and sizeof(V ) might be di�erent,
as long as they can accommodate all the e-Relations. The
third parameter is EnHK+(r), which is the HE ciphertext
of the pseudorandom number r. This parameter should
be �rst generated by the state veri�er and then passed
to SU1 and SU2. Each time when the Update_Partitions
algorithm is called, theEnHK+(r) will be performed against
the ciphertext of U and V . As we have assumed, the HE
ciphertext is unbreachable, thus the adversary may not be
able to decipher this parameter. Second, as it was stated in
Section 3, our scheme cannot prevent an adversary from
stealing the ciphertext of U and V and launching a brute-
force attack to try to crack HE ciphertext. However, even if
the adversary successfully deciphers the plain-text content
of U and V , if she cannot reason about the complete set
of RI from RE , she will still not be able to tell the state
of the model. Further, to successfully infer i-Relation also
requires that the adversary controls all the state updaters
and observes every HE update operation. Obviously, this
requirement contradicts our assumption that the adversary
can only compromise partial sandboxes that run the state
updates, but not all of them. Third, it is possible that an
adversary deliberately sabotages the scheme by updating
the secure model arbitrarily, without executing Algorithm
Update_Partitions. If that is the case, such an attack can easily
be detected because Algorithm Veri�cation_State will return
-1. Finally, since the state updaters only have HE ciphertext
and HE public key, the adversary will not obtain su�cient
information about the behavior model even if she launches
a side-channel attack.

6. Detecting Abnormal Activities
As an important design goal, VERDICT can not only tell
the state of a delegated job but also detect abnormal
activities that violate the control-�ow integrity by deviating
from the expected behavior model. We categorize such
abnormal activities into two categories: malicious deletion
and malicious repetition. Speci�cally, malicious deletion
deliberately omits certain critical steps during the execution
of the delegated job; while malicious repetition intentionally
repeats certain steps during the execution of the delegated
job.

Figure 7 illustrates an example of detecting malicious
deletion. In the �gure, the symbols ⊕ and 	 indicate the
operations of HE addition and subtraction, respectively. The
HE summation of V [indexk−1

v ] and U [indexku] (k = i and
i+ 1) in the �rst column indicates a veri�cation step that
follows the i-Relation. The second column indicates the
summation of the plaintext values of these two cells, which
is Ci. If one event is deliberately missing, it will cause one
additional HE addition and one additional HE subtraction
in two consecutive veri�cation steps, as shown in the third
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Calculation Init. Values Extra Decrypted value

in plaintext HE Ops. in plaintext

V [indexi−1
v ]⊕U [indexi

u] Ci ⊕EnHK+
(r) Ci + r

V [indexi
v ]⊕U [indexi+1

u ] Ci+1 	EnHK+
(r) Ci+1− r

Figure 7. Malicious deletion a�ack

Calculation Init. Values Extra Decrypted values

in plaintext HE Ops. in plaintext

V [indexi−1
v ]⊕U [indexi

u] Ci 	EnHK+
(r) Ci− r

	EnHK+
(r) for n−1 times C1− r× (n−1)

V [indexi
v ]⊕U [indexi+1

u ] Ci+1 ⊕EnHK+
(r) Ci+1 + r

⊕EnHK+
(r) for n−1 times Ci+1 + r× (n−1)

Figure 8. Malicious repetition a�ack

column. As a result, the recovered plaintext will produce
Ci + r, where r is the pre-de�ned pseudorandom number
speci�ed and known by the state veri�er.

Figure 8 illustrates an example of detecting malicious
repetition. Similar to the previous example, we follow i-
Relations and calculate the HE summation of V [indexk−1

v ]
and U [indexku] (k = i and i+ 1). If an event is deliberately
repeated once, it will cause one additional HE subtraction
and one additional HE addition in two consecutive veri�-
cation steps. Thus, the recovered plaintext will be Ci − r
and Ci + r for the two steps. Likewise, if an event repeats
more than once, say n times, the veri�cation results will be
Ci− r× (n−1) and Ci+ r× (n−1).

7. Implementation & Evaluation
We implemented VERDICT using C++ (around 500 lines
of code). We used HElib [47], a fully homomorphic
encryption (FHE) library that supports HE operations.
We used libguestfs [48] to generate audit logs. We
evaluated VERDICT on four popular cloud infrastructures,
including 1) Amazon AWS [27], 2) Google Cloud [29], 3)
Microsoft Azure [28], and 4) IBM Cloud (DC cluster) [30]. To
demonstrate that VERDICT can leverage di�erent kinds of
sandboxes, we deployed the online component of VERDICT
in both VMs and containers on each infrastructure, whose
con�gurations are listed in Table 2. For simplicity, we
use Si (1 ≤ i ≤ 6) to denote the VMs of di�erent size.
To accommodate the updater with di�erent sizes of the
encrypted vectors, we choose di�erent computing nodes
from a variety of cloud infrastructures. The ranges of the
vector sizes are also listed. Apparently, the larger the vector
size, the higher-performance VMs we have acquired from
cloud infrastructures.

7.1. Computational Overhead
The �rst set of experiments is to analyze the time spent on
initializing, updating, and verifying the model with vectors
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Figure 9. The time spent on initializing the model
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Figure 10. The time spent on verifying the model

of di�erent sizes. We run this experiment in each VM 100
times and calculate the mean and standard deviation of
the execution time. From the experiments, we made the
following observations across di�erent infrastructures. First,
as illustrated in Figure 9 and Figure 10, the time spent on
initializing and verifying the model is nearly linear to the
sizes of vectors. All three infrastructures show nearly similar
timing statistics for model initialization and veri�cation.
Second, since the online component of VERDICT, the state
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Table 2. System Configurations of VMs on Di�erent Cloud Infrastructures

Amazon AWS Google Cloud Microsoft Azure
Settings t2.small (S1) t2.xlarge (S2) n1-standard-1 (S3) n1-standard-4 (S4) textttStandard DS4 v3 (S5) DS2 v4 (S6)

CPU 1 vCPU 4 vCPUs 1 vCPU 4 vCPUs 1 vCPU 4 vCPUs
Memory 2 GB 16 GB 2 GB 15 GB 2 GB 16 GB

Vector Sizes 25 – 100 100 – 1000 25 – 100 100 – 1000 25 – 100 100 – 1000

Table 3. System Configurations of VMs on Di�erent Cloud Infrastructures

A1 A2 A3 A4 A5
Settings t2.small t2.medium t2.large t2.xlarge t2.2xlarge

CPU 1vCPU 2vCPU 2vCPU 4vCPU 8vCPU
Memory 2GB 4GB 8GB 16GB 32GB
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Figure 11. The time spent on updating the model

updater, only performs one HE addition or subtraction
operation on each vector at run time, it incurs constant
computational costs when performing HE operations. As
illustrated in Figure 11, for a particular infrastructure, the
average time spent on each VM is nearly constant. This
information will guide us to determine the performance
upper bound of each auditable event. For those time-
critical applications, whose timing requirement is more
lenient than the performance upper bound, we can adapt
VERDICT without worrying about impairing accountability.
Third, it shows the di�erent performances for di�erent
infrastructures: for the same con�guration, the VMs in
Amazon AWS outperform the VMs in Google Cloud and
Microsoft Azure, regarding all timing metrics.

7.2. The Update Time
The second set of experiments study how di�erent con�gu-
rations of VMs a�ect the time spent in updating vectors. For
this set of experiments, we use �ve VMs using di�erent con-
�gurations as tabulated in Table 3. Figure 12 illustrates that a
higher con�guration of a VM does not signi�cantly improve
the performance of updating vectors. In other word, the
state updaters, which are the online component of VERDICT,
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Figure 12. The update time for di�erent configurations of
VMs

achieve similar performance, regardless of the con�guration
of VMs.

7.3. The Applicability of Using the Container

The last set of experiments is to measure the resource
consumption of executing VERDICT inside a container,
during its execution. We install Docker containers [49] in
both Amazon AWS and IBM Cloud (DC cluster). Figure 13a
and Figure 13b illustrate the CPU and memory usage
by running VERDICT in a Docker container in Amazon
AWS and IBM Cloud, respectively. The containers in both
infrastructures show a similar performance pattern.

8. Discussion
In this section, we �rst discuss some limitations of the
proposed scheme. Then, we suggest the possible solutions,
Finally, we identify some directions for our future study.

First, homomorphic encryption o�ers an appealing
feature of performing computations over ciphertext, while
being complained about its low e�ciency in handling
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AWS
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Figure 13. The CPU and memory usage for Docker containers in
AWS and IBM Cloud

high-performance applications [50]. Although we made
similar observations through the experiments, we conclude
that the slow-down incurred by homomorphic encryption
does not limit its applicability for most applications,
which do not require an online response. The online
component of VERDICT, the state updater, performs only
one HE operation (either addition or subtraction) upon
an observed audit record, which is nearly constant. The
performance bottlenecks, including vector initialization and
state veri�cation, can be performed o�ine. Thus, our
approach is still applicable to online auditing systems, if the
performance of state updaters satis�es the timing constraint
of those applications. In our future study, we will test
real-world applications and explore the possible solution to
mitigate the performance gap.

Second, recall that the event generator sends Pi =
[indexα,EnHK+(r)] (α= u or v) to the vectors. The plain-
text of indexα poses security breaches. One possible solution
is that the event generator �rst creates two mirror vectors,
namely Mirror_U[sizeof(U)] and Mirror_V[sizeof(V)], which
are of equal size to U and V , respectively. Then, Mirror_U
and Mirror_V are initialized as follows:

Mirror_U[i] =
{
EnHK

+(r), if i= indexu;
EnHK

+(0), if i 6= indexu;
(1)

and

Mirror_V[i] =
{
EnHK

+(r), if i= indexv ;
EnHK

+(0), if i 6= indexv ;
(2)

After that, the mirror vectors Mirror_U and Mirror_U are
sent to SU1 and SU2, respectively. Finally, each element in
Mirror_U will perform a HE subtraction with the element
on the same index in U . Similarly, each element in Mirror_V
will perform a HE addition with the element on the same
index in V . This process preserves the secrecy of indices
while still allowing the speci�c elements in U and V to be
updated. The only drawback is that it will increase the time

complexity from O(1) to O(n). More cost-e�cient schemes
will be developed to reduce the computational complexity
and still keep the information con�dential.

Finally, in this paper, we primarily focus on retaining
the secrecy of the model, without constructing a TCB. Our
current design requires a model to be generated as the result
of a static analysis from a program. The model that we
have studied is deterministic, instead of probabilistic. As a
future direction, we will apply some learning algorithms,
such as Hidden Markov Model (HMM), to build a non-
deterministic and probabilistic model. In addition, we will
consider the side-channel attacks, which could possibly infer
the execution path of the delegated job by analyzing the
resources used by VERDICT.

9. Related Work

Homomorphic Encryption As a cryptosystem that pre-
serves privacy for secure multi-party computation, Homo-
morphic Encryption (HE) allows an untrusted party to per-
form computating upon encrypted data. The two primary
types of HE cryptosystems are partial homomorphic encryp-
tion (PHE) and fully homomorphic encryption (FHE). PHE
supports the HE operations/primitives of additive homomor-
phic encryption and multiplicative homomorphic encryption
separately, while FHE supports both additive homomor-
phic encryption and multiplicative homomorphic encryption
over ciphertext simultaneously. Gentry [50] proposed the
�rst FHE scheme based on lattice-based cryptography with
numerous follow-up work [25, 26, 51]. Although researchers
show that HE is computationally costly and only supports
limited cryptographic operations [52], they have nonetheless
been widely adopted in various applications [53], [54],
and [55]. Li et al. [54] introduced a distributed incremen-
tal data aggregation scheme, in which data collected from
smart meters can be aggregated along the route from the
source meter to the collector unit. HE is used to protect
user’s private data en route. As a result, the involved meters
cannot tell any intermediate or �nal results. Hong et al. [55]
presented a collaborative search log sanitization scheme,
which allows multiple parties to collaboratively generate
search logs with boosted utility while satisfying di�erential
privacy. To this end, a protocol, namely CELS, was proposed
to meet the privacy-preserving objectives. Compared with
existing HE applications, our approach serves for a speci�c
purpose of verifying the state of a delegated job through the
encrypted audit log it generates. It encrypts the behavior
model extracted from an application and updates the state
of that model through the HE cipher. In such a way, the
encrypted model can be deployed on a platform whose TCB
might not have been constructed.

Recent research demonstrates that HE might be vulnerable
to various attacks. Bogos et al. [34] performed cryptanalysis
against the HE scheme proposed by Zhou and Wornell [56],
which encrypts data in the form of integer vectors. The
analysis results show that the speci�c HE cryptosystem is
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vulnerable to at least three attacks: the broadcast attack,
the chosen-ciphertext key recovery attack, and the chosen-
plaintext decryption attack. Our paper does not restrict any
speci�c HE cryptosystem and explores the application of
a general HE scheme that is aimed at enabling arbitrary
computing tasks. The research of a speci�c vulnerable HE
cryptosystem is out of the scope of this paper.
Behavior Modeling for Anomaly Detection A number
of anomaly detection approaches, based on behavior model-
ing, have been proposed to detect host-based intrusion [45,
46]. Sekar et al. [43] presented a framework that detects
anomalous program behaviors using FSM. As a follow-up,
Bhathar et al. [45] proposed a technique that can generate the
behavior model of the program based on learning the tem-
poral properties of system call arguments. Both approaches
model the expected behavior of a program as an FSM or an
augmented FSM, which can be used to detect the abnormal-
ities that deviate from the expected behaviors. A common
assumption of both approaches is that the machine that
runs the intrusion detection system is trustworthy; therefore,
there is no need to preserve the secrecy of the behav-
ior model. Unfortunately, this assumption can be invalided
due to the recent exploits that compromised the OS and
the hypervisor. Compared with these approaches, VERDICT
makes realistic assumptions on the trustworthiness of the
computing nodes by preserving the con�dentiality of the
behavior model. Meanwhile, the speci�c features of the HE
cryptosystem allow the encrypted behavior model to be used
for verifying the state of the delegated job. Therefore, it is
more appropriate for a computational environment, in which
the guarantee of its trustworthiness might not be available.
Remote Attestation In general, the problem presented
in this paper is closely related to the remote attestation
problem [57], in which a remote party, namely the veri�er,
veri�es the trustworthiness or the integrity of the software
running upon an untrusted device, namely the prover [14].
Most remote attestation approaches are static, which only
prove the integrity of software initially loaded by a
prover [58–60] and are incapable of detecting run-time
attacks [61]. Recent technology enables a veri�er to detect
run-time attacks based on control-�ow correctness such that
it overcomes the limitations of static attestation [14, 62].
The enforcing techniques, such as control-�ow integrity
(CFI) [11], enable a veri�er to detect the attacks that
explicitly violate the model that describes a software normal
behavior [61] or implicitly cause a valid but unintended
program execution behavior [32, 38]. The primary di�erence
in objective between the remote attestation and our approach
is that the remote attestation is to let a veri�er determine
the degree of trust in the software from the platform of
a prover, while our approach determines the state of the
software, which is delegated by the user. The technique
that veri�es the correctness of control-�ow still trusts the
veri�cation result generated by the prover, which might be
compromised.

10. Conclusions
To ensure the accountability and model checking of the
delegated jobs running on the cloud, we presented VERDICT
that veri�es the state of a delegated job through a
con�dential behavior model and audit log. We leveraged
the technique of Homomorphic Encryption, partitioned the
model, and stored the partitions in a distributed manner
to achieve con�dentiality and privacy. This scheme can be
deployed across various computing environments without
relying on any speci�c trusted hardware. We presented the
algorithms to update and verify the state of a delegated job as
well as to detect abnormalities that violate the control-�ow
integrity. Lastly, our experimental evaluation demonstrated
that the VERDICT only introduces a bounded performance
overhead for the HE operations invoked in model updating
and veri�cation.
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