
mailto:<anyiliu@oakland.edu>

A. Liu, S. Haidar, Y. Cheng, and Y. Li

0 20 40 60

Time (in second)

0

20

40

60

80

100

C
P

U
 U

s
a

g
e

 (
in

 p
e

rc
e

n
ta

g
e

)

0

0.5

1

1.5

2

M
e

m
o

ry
 U

s
a

g
e

 (
in

 G
B

)

CPU Usage

Memory Usage

(a) Docker container in Amazon
AWS

0 10 20 30 40

Time (in second)

0

20

40

60

80

100

C
P

U
 U

s
a

g
e

 (
in

 p
e

rc
e

n
ta

g
e

)

0

0.5

1

1.5

2

M
e

m
o

ry
 U

s
a

g
e

 (
in

 G
B

)

CPU Usage

Memory Usage

(b) Docker container in IBM
Cloud

Figure 13. The CPU and memory usage for Docker containers in
AWS and IBM Cloud

high-performance applications [50]. Although we made
similar observations through the experiments, we conclude
that the slow-down incurred by homomorphic encryption
does not limit its applicability for most applications,
which do not require an online response. The online
component of VERDICT, the state updater, performs only
one HE operation (either addition or subtraction) upon
an observed audit record, which is nearly constant. The
performance bottlenecks, including vector initialization and
state veri�cation, can be performed o�ine. Thus, our
approach is still applicable to online auditing systems, if the
performance of state updaters satis�es the timing constraint
of those applications. In our future study, we will test
real-world applications and explore the possible solution to
mitigate the performance gap.

Second, recall that the event generator sends Pi =
[indexα,EnHK+(r)] (α= u or v) to the vectors. The plain-
text of indexα poses security breaches. One possible solution
is that the event generator �rst creates two mirror vectors,
namely Mirror_U[sizeof(U)] and Mirror_V[sizeof(V)], which
are of equal size to U and V , respectively. Then, Mirror_U
and Mirror_V are initialized as follows:

Mirror_U[i] =
{
EnHK

+(r), if i= indexu;
EnHK

+(0), if i 6= indexu;
(1)

and

Mirror_V[i] =
{
EnHK

+(r), if i= indexv ;
EnHK

+(0), if i 6= indexv ;
(2)

After that, the mirror vectors Mirror_U and Mirror_U are
sent to SU1 and SU2, respectively. Finally, each element in
Mirror_U will perform a HE subtraction with the element
on the same index in U . Similarly, each element in Mirror_V
will perform a HE addition with the element on the same
index in V . This process preserves the secrecy of indices
while still allowing the speci�c elements in U and V to be
updated. The only drawback is that it will increase the time

complexity from O(1) to O(n). More cost-e�cient schemes
will be developed to reduce the computational complexity
and still keep the information con�dential.

Finally, in this paper, we primarily focus on retaining
the secrecy of the model, without constructing a TCB. Our
current design requires a model to be generated as the result
of a static analysis from a program. The model that we
have studied is deterministic, instead of probabilistic. As a
future direction, we will apply some learning algorithms,
such as Hidden Markov Model (HMM), to build a non-
deterministic and probabilistic model. In addition, we will
consider the side-channel attacks, which could possibly infer
the execution path of the delegated job by analyzing the
resources used by VERDICT.

9. Related Work

Homomorphic Encryption As a cryptosystem that pre-
serves privacy for secure multi-party computation, Homo-
morphic Encryption (HE) allows an untrusted party to per-
form computating upon encrypted data. The two primary
types of HE cryptosystems are partial homomorphic encryp-
tion (PHE) and fully homomorphic encryption (FHE). PHE
supports the HE operations/primitives of additive homomor-
phic encryption and multiplicative homomorphic encryption
separately, while FHE supports both additive homomor-
phic encryption and multiplicative homomorphic encryption
over ciphertext simultaneously. Gentry [50] proposed the
�rst FHE scheme based on lattice-based cryptography with
numerous follow-up work [25, 26, 51]. Although researchers
show that HE is computationally costly and only supports
limited cryptographic operations [52], they have nonetheless
been widely adopted in various applications [53], [54],
and [55]. Li et al. [54] introduced a distributed incremen-
tal data aggregation scheme, in which data collected from
smart meters can be aggregated along the route from the
source meter to the collector unit. HE is used to protect
user’s private data en route. As a result, the involved meters
cannot tell any intermediate or �nal results. Hong et al. [55]
presented a collaborative search log sanitization scheme,
which allows multiple parties to collaboratively generate
search logs with boosted utility while satisfying di�erential
privacy. To this end, a protocol, namely CELS, was proposed
to meet the privacy-preserving objectives. Compared with
existing HE applications, our approach serves for a speci�c
purpose of verifying the state of a delegated job through the
encrypted audit log it generates. It encrypts the behavior
model extracted from an application and updates the state
of that model through the HE cipher. In such a way, the
encrypted model can be deployed on a platform whose TCB
might not have been constructed.

Recent research demonstrates that HE might be vulnerable
to various attacks. Bogos et al. [34] performed cryptanalysis
against the HE scheme proposed by Zhou and Wornell [56],
which encrypts data in the form of integer vectors. The
analysis results show that the speci�c HE cryptosystem is

10

Confidential State Verification for the Delegated Cloud Jobs with Confidential Audit Log

vulnerable to at least three attacks: the broadcast attack,
the chosen-ciphertext key recovery attack, and the chosen-
plaintext decryption attack. Our paper does not restrict any
speci�c HE cryptosystem and explores the application of
a general HE scheme that is aimed at enabling arbitrary
computing tasks. The research of a speci�c vulnerable HE
cryptosystem is out of the scope of this paper.
Behavior Modeling for Anomaly Detection A number
of anomaly detection approaches, based on behavior model-
ing, have been proposed to detect host-based intrusion [45,
46]. Sekar et al. [43] presented a framework that detects
anomalous program behaviors using FSM. As a follow-up,
Bhathar et al. [45] proposed a technique that can generate the
behavior model of the program based on learning the tem-
poral properties of system call arguments. Both approaches
model the expected behavior of a program as an FSM or an
augmented FSM, which can be used to detect the abnormal-
ities that deviate from the expected behaviors. A common
assumption of both approaches is that the machine that
runs the intrusion detection system is trustworthy; therefore,
there is no need to preserve the secrecy of the behav-
ior model. Unfortunately, this assumption can be invalided
due to the recent exploits that compromised the OS and
the hypervisor. Compared with these approaches, VERDICT
makes realistic assumptions on the trustworthiness of the
computing nodes by preserving the con�dentiality of the
behavior model. Meanwhile, the speci�c features of the HE
cryptosystem allow the encrypted behavior model to be used
for verifying the state of the delegated job. Therefore, it is
more appropriate for a computational environment, in which
the guarantee of its trustworthiness might not be available.
Remote Attestation In general, the problem presented
in this paper is closely related to the remote attestation
problem [57], in which a remote party, namely the veri�er,
veri�es the trustworthiness or the integrity of the software
running upon an untrusted device, namely the prover [14].
Most remote attestation approaches are static, which only
prove the integrity of software initially loaded by a
prover [58–60] and are incapable of detecting run-time
attacks [61]. Recent technology enables a veri�er to detect
run-time attacks based on control-�ow correctness such that
it overcomes the limitations of static attestation [14, 62].
The enforcing techniques, such as control-�ow integrity
(CFI) [11], enable a veri�er to detect the attacks that
explicitly violate the model that describes a software normal
behavior [61] or implicitly cause a valid but unintended
program execution behavior [32, 38]. The primary di�erence
in objective between the remote attestation and our approach
is that the remote attestation is to let a veri�er determine
the degree of trust in the software from the platform of
a prover, while our approach determines the state of the
software, which is delegated by the user. The technique
that veri�es the correctness of control-�ow still trusts the
veri�cation result generated by the prover, which might be
compromised.

10. Conclusions
To ensure the accountability and model checking of the
delegated jobs running on the cloud, we presented VERDICT
that veri�es the state of a delegated job through a
con�dential behavior model and audit log. We leveraged
the technique of Homomorphic Encryption, partitioned the
model, and stored the partitions in a distributed manner
to achieve con�dentiality and privacy. This scheme can be
deployed across various computing environments without
relying on any speci�c trusted hardware. We presented the
algorithms to update and verify the state of a delegated job as
well as to detect abnormalities that violate the control-�ow
integrity. Lastly, our experimental evaluation demonstrated
that the VERDICT only introduces a bounded performance
overhead for the HE operations invoked in model updating
and veri�cation.

Acknowledgment
The work is supported by the National Science Foundation
under Grant No. DGE-1723707 and Michigan Space Grant
Consortium. The authors would also like to thank the
anonymous reviewers for their valuable comments and
helpful suggestions.

References
[1] Crinimal Justice Infromation Services (CJIS), [Online]. Avail-

able: https://www.fbi.gov/services/cjis.
[2] C. S. Alliance, “CSA Security, Trust & Assurance Registry

(STAR),” [Online]. Available: https://cloudsecurityalliance.
org/star/#_overview.

[3] Cyber Essentials Plus, [Online]. Available: https://www.
cyberessentials.org/.

[4] Cloud Audit Logging, [Online]. Available: https://cloud.
google.com/logging/docs/audit/.

[5] AWS CloudTrail, [Online]. Available: https://aws.amazon.
com/cloudtrail/.

[6] Monitor Subscription Activity with the Azure Activity Log,
[Online]. Available: https://docs.microsoft.com/en-us/azure/
azure-monitor/platform/activity-logs-overview.

[7] Azure Monitor, [Online]. Available: https://azure.microsoft.
com/en-us/services/monitor/.

[8] Amazon Web Services: Risk and Compliance - Amazon S3 -
AWS, [Online]. Available: https://s3-us-west-2.amazonaws.
com/naspovaluepoint/1484182671_DLT_File_08_-_
Appendix_2_AWS_Risk_and_Compliance_Whitepaper.pdf.

[9] U.S. Department of Health & Human Services,
“$5.5 million HIPAA settlement shines light on the
importance of audit controls,” [Online]. Available: https:
//www.hhs.gov/about/news/2017/02/16/hipaa-settlement-
shines-light-on-the-importance-of-audit-controls.html.

[10] T. Gar�nkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” in Pro-
ceedings Network and Distributed Systems Security Symposium,
2003, pp. 191–206.

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
�ow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, 2005, pp. 340–353.

11

https://www.fbi.gov/services/cjis
https://cloudsecurityalliance.org/star/#_overview
https://cloudsecurityalliance.org/star/#_overview
https://www.cyberessentials.org/
https://www.cyberessentials.org/
https://cloud.google.com/logging/docs/audit/
https://cloud.google.com/logging/docs/audit/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-logs-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-logs-overview
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://s3-us-west-2.amazonaws.com/naspovaluepoint/1484182671_DLT_File_08_-_Appendix_2_AWS_Risk_and_Compliance_Whitepaper.pdf
https://s3-us-west-2.amazonaws.com/naspovaluepoint/1484182671_DLT_File_08_-_Appendix_2_AWS_Risk_and_Compliance_Whitepaper.pdf
https://s3-us-west-2.amazonaws.com/naspovaluepoint/1484182671_DLT_File_08_-_Appendix_2_AWS_Risk_and_Compliance_Whitepaper.pdf
https://www.hhs.gov/about/news/2017/02/16/hipaa-settlement-shines-light-on-the-importance-of-audit-controls.html
https://www.hhs.gov/about/news/2017/02/16/hipaa-settlement-shines-light-on-the-importance-of-audit-controls.html
https://www.hhs.gov/about/news/2017/02/16/hipaa-settlement-shines-light-on-the-importance-of-audit-controls.html

A. Liu, S. Haidar, Y. Cheng, and Y. Li

[12] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK:
Automated Software Diversity,” in Proceedings of the 2014 IEEE
Symposium on Security and Privacy, 2014, pp. 276–291.

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song, “Code-pointer Integrity,” in Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation, 2014, pp. 147–163.

[14] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman,
A. Paverd, A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-
Flow Attestation for Embedded Systems Software,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 743–754.

[15] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee,
“E�cient Protection of Path-Sensitive Control Security,” in
Proceedings of the 26th USENIX Security Symposium, 2017, pp.
131–148.

[16] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris,
T. Kim, and W. Lee, “Enforcing Unique Code Target Property
for Control-Flow Integrity,” in Proceedings of the 2018 ACM
SIGSACConference on Computer and Communications Security,
2018, pp. 1470–1486.

[17] ARM, ARM Security Technology - Building a Secure
System using TrustZone Technology, [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.prd29-genc-009492c/index.html.

[18] Intel Processor Trace (IPT), [Online]. Available:
https://software.intel.com/en-us/blogs/2013/09/18/processor-
tracing.

[19] T. Bletsch, “Code-reuse Attacks: New Frontiers and Defenses,”
Ph.D. dissertation, 2011.

[20] C. Gentry, “Fully Homomorphic Encryption Using Ideal
Lattices,” in Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, 2009, pp. 169–178.

[21] Intel Corporation, “Intel Trusted Execution Technology:
Software Development Guide,” Tech. Rep., [Online]. Available:
Available:http://download.intel.com/technology/security/
downloads/315168.pdf.

[22] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel Software Guard Exten-
sions Support for Dynamic Memory Management Inside an
Enclave,” in Proceedings of the Hardware and Architectural
Support for Security and Privacy, 2016, pp. 101–109.

[23] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
VM Side Channels and Their Use to Extract Private Keys,”
in Proceedings of 2012 ACM Conference on Computer and
Communications Security, 2012, pp. 305–316.

[24] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing,” in Proceedings of the 26th USENIX
Security Symposium, 2017, pp. 557–574.

[25] S. Halevi and V. Shoup, “Faster Homomorphic Linear
Transformations in HElib,” in CRYPTO (1), vol. 10991.
Springer, 2018, pp. 93–120.

[26] X. Liu, R. Deng, K.-K. Choo, Y. Yang, and H. Pang, “Privacy-
preserving outsourced calculation toolkit in the cloud,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1,
March 2018.

[27] Amazon Web Services, [Online]. Available: https://aws.
amazon.com/.

[28] Microsoft Azure Cloud Computing Platform and Services,
[Online]. Available: https://azure.microsoft.com/en-us/.

[29] Google Cloud Platform, [Online]. Available: https://cloud.
google.com/.

[30] IBM Cloud, [Online]. Available: https://www.ibm.com/cloud/.
[31] A. Liu and G. Qu, “H-veri�er: Verifying con�dential system

state with delegated sandboxes,” in Science of Cyber Security,
F. Liu, S. Xu, and M. Yung, Eds. Springer International
Publishing, 2018, pp. 126–140.

[32] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data Attacks Are Realistic Threats,” in Proceedings of
the 14th Conference on USENIX Security Symposium - Volume
14, 2005, pp. 12–12.

[33] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
Preserving Symmetric Encryption,” in Proceedings of the 28th
Annual International Conference on Advances in Cryptology:
The Theory andApplications of Cryptographic Techniques, 2009,
pp. 224–241.

[34] S. Bogos, J. Gaspoz, and S. Vaudenay, “Cryptanalysis of
a Homomorphic Encryption Scheme,” Cryptology ePrint
Archive, Report 2016/775, 2016, [Online]. Available: https://
eprint.iacr.org/2016/775.

[35] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack,” in
Proceedings of the 23rd USENIX Security Symposium, 2014, pp.
719–732.

[36] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software Grand Exposure: SGX Cache
Attacks Are Practical,” in Proceedings of the 11th USENIX
Workshop on O�ensive Technologies, 2017, pp. 11–11.

[37] R. Guanciale, H. Nemati, C. Baumann, and M. Dam,
“Cache Storage Channels: Alias-Driven Attacks and Veri�ed
Countermeasures,” in Proceedings of the 2016 IEEE Symposium
on Security and Privacy, 2016, pp. 38–55.

[38] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space
layout randomization with intel tsx,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 380–392.

[39] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing Oblivious Access on Cloud Storage: the Gap, the
Fallacy, and the New Way Forward,” in Proceedings of the 22nd
ACM Conference on Computer and Communications Security,
2015, pp. 837–849.

[40] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk,
and S. Devadas, “Constants Count: Practical Improvements to
Oblivious RAM,” in Proceedings of the 24th USENIX Security
Symposium, 2015, pp. 415–430.

[41] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive Data
Leak and More: Large-scale Threat Analysis of Inter-app
Communications,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, 2017,
pp. 71–85.

[42] V. M. Glushkov, “The Abstract Theory of Automata,” Russian
Mathematical Surveys, vol. 16, pp. 1–53, 1961.

[43] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors,” in Proceedings 2001 IEEE Symposium on Security
and Privacy, 2001, pp. 144–155.

[44] D. Lee and M. Yannakakis, “Principles and methods of testing
�nite state machines-a survey,” Proceedings of the IEEE, vol. 84,
pp. 1090–1123, August 1996.

[45] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Data�ow Anomaly
Detection,” in Proceedings of the 2006 IEEE Symposium on

12

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
Available: http://download.intel.com/technology/security/downloads/315168.pdf
Available: http://download.intel.com/technology/security/downloads/315168.pdf
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/
https://cloud.google.com/
https://www.ibm.com/cloud/
https://eprint.iacr.org/2016/775
https://eprint.iacr.org/2016/775

Confidential State Verification for the Delegated Cloud Jobs with Confidential Audit Log

Security and Privacy, 2006, pp. 48–62.
[46] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and

W. Gong, “Anomaly Detection Using Call Stack Information,”
in Proceedings of the 2003 IEEE Symposium on Security and
Privacy, 2003, pp. 62–75.

[47] HElib: the library that implements homomorphic encryption
(HE), [Online]. Available: https://github.com/shaih/HElib.

[48] Libguestfs, [Online]. Available: http://libguestfs.org/.
[49] Docker Container, [Online]. Available: https://www.docker.

com/.
[50] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D.

dissertation, 2009.
[51] C. Gentry, A. Sahai, and B. Waters, “Homomorphic

Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based,” in Advances
in Cryptology, 2013, pp. 75–92.

[52] Z. Brakerski and V. Vaikuntanathan, “E�cient Fully Homo-
morphic Encryption from (Standard) LWE,” in Proceedings of
the IEEE 52nd Annual Symposium on Foundations of Computer
Science, 2011, pp. 97–106.

[53] M. Hirt and K. Sako, “E�cient Receipt-Free Voting Based
on Homomorphic Encryption,” in Proceedings of the 2000
International Conference on the Theory and Application of
Cryptographic Techniques, 2000, pp. 539–556.

[54] F. Li, B. Luo, and P. Liu, “Secure Information Aggregation for
Smart Grids Using Homomorphic Encryption,” in Proceedings
of the 1st IEEE International Conference on Smart Grid
Communications, 2010, pp. 327–332.

[55] Y. Hong, J. Vaidya, H. Lu, P. Karras, and S. Goel, “Collaborative
Search Log Sanitization: Toward Di�erential Privacy and
Boosted Utility,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 5, pp. 504–518, 2015.

[56] H. Zhou and G. Wornell, “E�cient Homomorphic Encryption
on Integer Vectors and Its Applications,” in Proceedings of the
2014 Information Theory and Applications Workshop, 2014, pp.
1–9.

[57] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. O. Hanlon, J. Ramsdell, A. Segall, J. Sheehy, and B. Sni�en,
“Principles of Remote Attestation,” International Journal of
Information Security, vol. 10, no. 2, pp. 63–81, June 2011.

[58] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART:
Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust,” in Proceedings of the 19th Annual Network and
Distributed System Security Symposium, 2012, pp. 5–8.

[59] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New Results for Timing-Based Attestation,”
in Proceedings of the 2012 IEEE Symposium on Security and
Privacy, 2012, pp. 239–253.

[60] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software
Attestation for Key Establishment in Sensor Networks,”
in Proceedings of the 4th IEEE International Conference on
Distributed Computing in Sensor Systems, 2008, pp. 372–385.

[61] H. Shacham, “The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86),” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security, 2007, pp. 552–561.

[62] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koe-
berl, N. Asokan, and A.-R. Sadeghi, “LO-FAT: Low-Overhead
Control Flow ATtestation in Hardware,” in Proceedings of the
54th Annual Design Automation Conference, 2017, pp. 24:1–
24:6.

13

https://github.com/shaih/HElib
http://libguestfs.org/
https://www.docker.com/
https://www.docker.com/

	1 Introduction
	2 Motivation and Overview
	2.1 A Motivating Example
	2.2 System Overview

	3 The Threat Model
	4 Detailed Design
	4.1 Constructing Secure Model
	4.2 Updating Secure Model
	4.3 Verifying Secure Model

	5 Security Analysis
	6 Detecting Abnormal Activities
	7 Implementation & Evaluation
	7.1 Computational Overhead
	7.2 The Update Time
	7.3 The Applicability of Using the Container

	8 Discussion
	9 Related Work
	10 Conclusions

