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Abstract

INTRODUCTION: In medical cyber-physical systems (mCPS), availability must be prioritized over other
security properties, making it challenging to craft least-privilege authorization policies which preserve patient
safety and confidentiality even during emergency situations. For example, unauthorized access to device(s)
connected to a patient or an app controlling these devices could result in patient harm. Previous work has
suggested a virtual version of “Break the Glass” (BTG), an analogy to breaking a physical barrier to access
a protected emergency resource such as a fire extinguisher or “crash cart”. In healthcare, BTG is used to
override access controls and allow for unrestricted access to resources, e.g. Electronic Health Records. After a
“BTG event” completes, the actions of all concerned parties are audited to validate the reasons and legitimacy
for the override.

OBJECTIVES: Medical BTG has largely been treated as an all-or-nothing scenario: either a means to obtain
unrestricted access is provided, or BTG is not supported. We show how to handle BTG natively within the
ABAC model, maintaining full compatibility with existing access control frameworks, putting BTG in the
policy domain rather than requiring framework modifications. This approach also makes BTG more flexible,
allowing for fine-grained facility-specific policies, and even automates auditing in many situations, while
maintaining the principle of least-privilege.

METHODS: We do this by constructing a BTG “meta-policy” which works with existing access control policies
by explicitly allowing override when requested.

RESULTS: We present a sample BTG policy and formally verify that the resulting combined set of access
control policies correctly satisfies the goals of the original policy set and allows expanded access during a BTG
event. We show how to use the same verification methods to check new policies, easing the process of crafting
least-privilege policies.
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1. Introduction
Non-safety-critical systems prioritize confidentiality
over availability, usually expressed in system autho-
rization policies as a “fail-closed” requirement. How-
ever, in certain domains, particularly in medical cyber-
physical systems (mCPS), fail-closed is not always the
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safest approach: in some emergency situations, medi-
cal systems’ availability must be prioritized over other
security properties, leading to a non-traditional access
control model. Nevertheless, unauthorized access to
device(s) connected to a patient or an app controlling
these devices could result in patient harm, privacy
violation, or even death [1–3]. This seemingly impos-
sible situation is encountered in medical facilities all
too regularly. As a result, defining an authorization
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policy that can follow the principle of least-privilege
as closely as possible without compromising patient
safety or confidentiality even during unforeseen situa-
tions is an unresolved and ongoing challenge. Previous
work and industry practices have suggested a virtual
version of the “Break the Glass” (BTG) concept [4],
an analogy to breaking a physical barrier to access a
protected resource such as a fire extinguisher during
a fire, or a “crash cart” or automated external defib-
rillators (AED) for a medical emergency. In healthcare,
BTG is used to override access controls and allow for
unrestricted access to resources, e.g. Electronic Health
Records (EHRs). After a “BTG event” completes, the
actions of all concerned parties are generally audited,
requiring detailed logging (currently performed post-
hoc and manually) of what happens during BTG. Post-
hoc auditing s used to determine the reasons and legit-
imacy for the override.

Medical BTG has largely been treated in the literature
as an all-or-nothing scenario: either unrestricted access
is provided (BTG allowed; fail-open) or BTG is not
supported (fail-closed). We show how to bridge this
gap using an access control model and set of “BTG-
compliant” policies which maintains the power and
flexibility of policy-based dynamic access control
decisions, provides structured logging and auditing
functionality, and allows for automated system rollback
to a known-secure state after the emergency has
passed. Traditionally, restricting access to resources can
be achieved by either a) allowing access to selected
resources and denying everything else by default
(whitelisting), or b) denying access to selected resources
and allowing everything else by default (blacklisting).
While whitelisting is considered a more secure fail-
closed option, blacklisting is less secure but safer in the
context of fail-open (high availability) requirements.

Popular access control models such as Role-Based
Access Control (RBAC) [5] and Attribute-Based Access
Control (ABAC) [6, 7] (also referred to as PBAC –
policy-based access control) are the dominant models
used in medical domain and excel in protecting data
in a closed environment, where all resources (objects)
and users (subjects) are known. RBAC is based on
user identity (static roles assigned to users) and lacks
flexibility and dynamic access control capabilities.
For example, a user is only allowed access to a
resource if it is included in the user’s pre-assigned
role(s). An RBAC role is usually a static organization
position, but the medical domain requires decisions
to be based on both static and dynamic information
such as physical location, device status, clinician’s
relationship to patient, etc. ABAC allows for a more
flexible and dynamic access control and is used mostly
for information sharing in large enterprises where
access control decision are based on evaluation of
access control request against predefined characteristics

(attributes) of user, resource, action and environment.
Attributes in ABAC can be static (e.g. name) and
dynamic (e.g. working shifts). However, ABAC also falls
short when used for enforcement of access control in
a dynamic environment, which requires taking into
account information context, users, and objects that are
not known (e.g. medical emergencies) prior to issuing a
“deny” or “allow” decision.

In this work, we approach BTG from a more flexible
standpoint, and demonstrate how to first “Break the
Glass” and then “Fix the Glass” within systems of
interoperable medical devices and applications, on a
time-bounded, patient-by-patient basis. By scoping a
BTG session to single patients rather than individual
resources, and by allowing sessions to last as long as an
emergency is active, we minimize the amount of manual
auditing required after the session ends. In previous
BTG work (and in real-world deployments), overrides
must be invoked for every instance of emergency access
to every different device or health record. We avoid
system-defined “default” BTG duration windows, since
these may easily be forgotten during an emergency,
raising the possibility of an abrupt end to a BTG
session, inconveniencing and confusing caregivers by
disrupting their workflow. In this work, BTG will last
until a clinician1 explicitly signals the end of the event.

We base our work in the context of increasingly
prevalent but difficult to secure interoperable med-
ical systems, which enable intuitive “plug-and-play”
functionality (e.g. the Integrated Clinical Environment
(ICE) [8]), and can significantly ease the burden of
medical product integration and testing. Policy-based
access control provides a flexible solution to the prob-
lem of managing this complex security scenario, and
allows us to tackle a wider problem of not only access
to information such as EHRs, but also to functions of
individual sensing and treatment devices which may
allow different levels of access and/or control based on
user identities.

Fine-grained access control requires increasingly
sophisticated BTG policies to maintain patient safety.
However, increasing policy sophistication brings with
it the risk of unintended consequences (e.g. insufficient
permission or excessive permission based on the
situation). We therefore focus on constructing a
BTG “meta-policy” which works with existing access
control policies by explicitly allowing override when
requested, with integrated verification functions to
avoid unexpected (emergent) effects of multi-policy
interaction in complex environments. We test our
policies for inconsistencies and incompleteness, and
verify the access control model is expressed correctly.

The core contributions of this work include:

1Any authorized caregiver including physician, nurse, technician, etc.
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• Description, implementation, and verification
of a new flexible medical “Break the Glass”
access control model based on ABAC which
maintains compatibility with existing access
control frameworks.

• Comparison of our solution to a currently-
implemented Break the Glass for Electronic
Health Records used by one of the largest health-
care providers in the United States, showing that
our BTG system is strictly more flexible and
expressive.

• Demonstration of ways to construct access control
and BTG policies such that it is all but impossible
to mistakenly grant or withhold resource access
(even during emergencies), backed by tool-based
formal analysis of potential inconsistencies in the
overall facility policy set.

Implementation and performance testing of the system
is out of scope and left as a subject of future work.

2. Background
Interoperable medical systems are especially beneficial
in multi-vendor environments with different devices
on a shared IT network. In essence, by combining
independent sensors and actuators with a coordinating
entity (e.g. script or application running on commodity
hardware), the system becomes more than the sum of
its parts – a complex multi-featured virtual device [9].
Easy integration and avoidance of vendor lock-in would
allow for significantly more flexible interoperable
systems, able to carry out monitoring and even
treatment functions as a group which no individual
system component could accomplish by itself, and can
significantly ease the burden on clinicians leading to
more efficient and effective patient care [3].

Simplifying connectivity increases the complexity
of resulting “Medical Application Platforms” (MAPs),
making them more difficult to understand and manage.
Frameworks capable of creating and controlling these
“system-of-systems” must be carefully designed to
preserve patient safety despite of the increased
complexity [10]. Their increased power requires greater
assurance that they will not be misused (intentionally
or unintentionally) to harm the patient(s) they are
treating [1, 3, 8]. MAPs also present novel problems
in terms of privacy and security. Each device and
application within a MAP may require different levels
of network access and quality of service, complicating
the resulting access control policies. Policy-based access
control can be used to provide a comprehensive and
flexible solution to the problem.

Figure 1. BTG request workflow. PDP is the policy decision
point, and PEP is the policy enforcement point. Parentheses
indicate the state of the system through condition variables, and
steps 3, 4, 7, and 10 denote returned decisions.

2.1. Access Control
Access control policies for users, devices, and appli-
cations can be formally expressed in a policy lan-
guage, such as the pervasive XML-based eXtensible
Access Control Markup Language (XACML) [11]. Such
a formally-written policy can be automatically inter-
preted and enforced in real time, reducing the bur-
den of auditing, as the system will not permit policy-
violating actions. Break the Glass must be invoked if
a temporary policy violation is needed to care for a
patient, and such events are later audited.

XACML is one of the most widely used policy lan-
guages. It defines a fine-grained attribute-based access
control policy, and an architecture and processing
model to describe evaluation of access requests. The
main components of a XACML reference architec-
ture [11] are: the Policy Decision Point (PDP), the Policy
Enforcement Point (PEP), the Policy Access/Adminis-
tration Point (PAP), and the Policy Information Point
(PIP) and context handler. A subset of the components
are shown in Figure 1. Numbering in the diagram
represents the order of operations. A clinician accessing
a resource will need to be authenticated and authorized.
The access request is sent to the context handler in its
native format along with required session information
(attributes). The context handler generates a request
context and forwards it to the PDP, which queries the
PIP for any additional attributes needed for evaluation.
PDP proceeds with policy evaluation and returns the
decision along with any obligations to the context han-
dler, which in turn translates the decision into a PEP-
acceptable format. The final decision and obligations
are forwarded to PEP for enforcement. (Obligations are
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constraints – required actions on which the decision is
contingent – and are enforced by the PEP.)

XACML provides different levels of access, a policy
language, and a query language. When a query (access
request) is evaluated, the returned result can be one of
“allow”, “deny”, “indeterminate”, or “not applicable”.
Indeterminate means there is an error in the query,
and not applicable means no policy was located with a
target that could match the information in the request.
We take advantage of the different levels of access, and
the flexibility of policy decision and policy enforcement
points to design BTG for real-time interaction with
dynamic, plug-and-play interoperable medical devices,
systems, and applications.

Access Control Override. Controlling access to resources
is the main goal of an authorization policy. Traditional
access control mechanisms prevent misuse of infor-
mation by restricting users’ access to that which is
needed to fulfill their tasks. Depending on environment
(application domain) requirements, access control rules
are typically either defined too lax or too restrictive. A
less restrictive authorization policy gives users unnec-
essary access and defeats the purpose of least privi-
lege, while a more restrictive policy than needed could
stop users from fulfilling their tasks. Healthcare is one
application domain where restricting access by default
only to authorized users is not always the best and
safest solution. As discussed in the Health Insurance
Portability and Accountability Act (HIPAA) [12, 13],
systems should allow access during medical emergen-
cies – access control override is considered a safer
authorization approach over a strict fail-closed system.

Overriding access control requires a mechanism
within the authorization engine that enables it to
reverse (or reevaluate) a returned decision and allow the
access request which was initially denied. Certain user
action(s) (e.g. explicitly requesting the override through
either a software control or a physical hardware
device/lever/button) are required as a prerequisite to
overriding an access control decision. While an access
control override mechanism (BTG) allows for life-
saving care in unexpected situations, it also leaves
the system open to misuse, such as accessing patient’s
private records or even changing the dosages of
life-sustaining medications. By performing a post-hoc
audit, facilities determine the reasons (legitimacy) for
overriding access control.

2.2. Related Work
In one of the earliest papers on real-time (time-
of-emergency) Break the Glass (BTG), Povey [14]
discusses unexpected risks resulting from static nature
of authorization and proposes a new access control
paradigm for constraining access in situations like
medical emergencies where a user may need to

exceed their normal privileges. In a similar work,
Rissanen, Firozabadi, and Sergot [15] suggest a
mechanism for increased flexibility in access control
by overriding denied access (when necessary) using
the possibility-with-override concept. Additionally,
auditing of overrides using the access control policy is
also recommended.

Ferreira et al. [16] propose a BTG policy within
an implemented access control policy (defined by
healthcare professionals) and access control hybrid
model for a hospital. The implementation allows for the
start of BTG, but does not have a method to exit the
emergency state. In follow-up work, Ferreira et al. [17]
apply BTG concepts to the NIST/ANSI RBAC model
and name it the BTG-RBAC model. Their work is mainly
focused on overriding access in a controlled manner
using a state-based RBAC authorization infrastructure:
in situations where a user is not allowed to access
a resource and a deny decision would normally be
returned, the BTG-RBAC model allows for a third
decision option. Instead of “deny”, a “BTG” decision is
returned for an access request and allows the user to
break the glass and access the requested resource. This
more complete model (compared to [16]) incorporates
the concepts of BTG obligations as well as post-
event auditing. BTG-RBAC requires policies to consider
predefined values of BTG variables meant to keep track
of the system BTG state, making it difficult for humans
to reason about the policies they are writing. In contrast
to BTG as an alternative returned decision (vs. “allow”
or “deny”), we define BTG in terms of states in which
the system is operating. Instead of overriding “deny”
decisions on a one-by-one basis, such decisions are
automatically overridden during BTG events.

Brucker and Petritsch [18] demonstrate a BTG model
that allows for access control override with different
levels of emergency specified by policy. In their work,
permissions are attached to emergency levels and
need to be specified in emergency policies that are
handled by a separate emergency policy manager and
policy decision point. While making significant strides
toward flexible and controlled BTG, the system has
some drawbacks. There is little built-in verification
that BTG policies will behave as expected, especially
when combined with other facility policies, which can
be especially dangerous when they result in denial
of availability at the time of emergency. (Emergency
level- and permission-specific policies are prone to
errors such as inconsistencies, insufficient or excessive
permissions, etc.)

Nazerian et al. [19] extend RBAC into an Emergency
RBAC (E-RBAC) model. The system has one of three
states representing normal, emergency, and exception
situations. The normal status is similar to RBAC with
no access control override, whereas in emergency and
expiation situations a user can override access control
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only if the user has been preassigned an appropriate
trust label (M for emergency and/or H for exception).
Exception is an undefined emergency, similar to our
“uncontrolled BTG”, and requires an administrative
role to assign or revoke permissions to/from user active
(normal) role. The authors use Alloy to verify whether
users have the right trust levels and if the newly
assigned or modified roles meet static separation of
duty constraints. Helal et al. [20] borrow from database
concepts to propose Isolated enabled-RBAC (I-RBAC),
in which an isolated environment with a copy of the
original resources such as patient records is created for
use in situations where a user wants to access a resource
for which they do not have access permission. Any
modified data will be updated in the “live” system (the
origin source of data) after a security check performed
on accumulated modifications by authorized user at
a later time. This concept is similar in principle to
our “uncontrolled BTG” followed by a manual audit.
Both approaches suffer from the inflexibility of RBAC
(instead of ABAC), and are limited to static resources
(as opposed to attributes) and lack real-time evaluation
of conditions at access time. These approaches are
also meant as augmentations to existing access control
framework, and lack the flexibility and incremental
deployment possibilities of our meta-policy approach.

In an orthogonal piece of related work, Tasali,
Chowdhury, and Vasserman [2] propose an ABAC-
based authorization architecture for systems of interop-
erable medical devices. They implement and evaluate
a proof-of-concept system within the Medical Device
Coordination Framework [1], and partially address the
lack of compatibility between current access control
models, BTG, and plug-and-play dynamic medical sys-
tems composed of heterogeneous devices. Their work is
only a partial solution to BTG, and we use it as a starting
point for our work.

Prior work does not address the situation wherein
the authorization system may fail to fulfill the returned
obligations (constraints returned with a decision and
enforced by the PEP) accompanying a decision from a
BTG request, and it is therefore unclear whether a BTG
request would be allowed or denied at that time [17,
18]. Due to the importance of resource availability
in medical emergencies, we must explicitly consider
unmet obligations in our model. It is necessary to
allow for emergency access even if PEP fails to enforce
the obligations. Therefore, our access control model
allows access even if the obligations are not met. We
handle unmet obligations by forcing the system into an
alternate BTG state which we call uncontrolled BTG,
which increases the auditing requirements on actions
taken during a BTG session, up to a potential full
manual audit. The inclusion of uncontrolled BTG is
meant to ensure availability even under resource (e.g.
bandwidth, processing, etc.) constraints.

3. Design

Access control override is normally handled on a field-
by-field basis in electronic health record (EHR) systems,
with a BTG request granting an exceptional one-time
access to a single record. With minimal customization,
our controlled BTG solution can be implemented as
an extension to existing access control models which
already allow for override sessions. The authorization
architecture of Tasali, Chowdhury, and Vasserman [2]
is used as a starting point. Our BTG granularity is
per-patient (although the system does support multi-
patient deployments), as the authorization system we
describe is meant for dynamic systems of medical
devices attached to a single patient, i.e. if an emergency
is declared, access to devices connected to the patient
suffering the emergency, as well as that single patient’s
electronic health records, are made available for the
duration of the BTG session. Therefore, multiple access
requests to a single patient’s devices or EHR (even to
different fields) are all allowed on an emergency basis
as part of the same BTG session. This continues until the
BTG session terminates via explicit action of a clinician,
who marks the session as completed.

We implement as-needed access control override by
forcing decision reevaluation in the context of the
override. For any “deny” decision returned by the
PDP, the clinician may choose to override (effectively
declaring an emergency), resulting in a second access
request being generated. That request is forwarded to
the context handler and PDP for a second decision, now
in a BTG context, as shown in Figure 1. In contrast to
the first request, PDP evaluates the override against a
BTG policy. System status and user session attributes
including resource and action are used to determine
what policies are used for evaluation by PDP.

Other than the change from normal to BTG policy
used for the decision, PDP behaves in a similar manner
to the previous request. However, the PEP logic is
modified from [2] to allow user to request an access
control override (e.g. initiate an emergency session).
A returned decision may include obligations that PEP
will enforce prior to allowing access. PEP delegates
obligation fulfillment to an external entity we call
“Obligation Service” and will only return a decision
after a confirmation is received from Obligation Service,
as shown in Figure 1. The Obligation Service ensures
all obligations, including logging requirements, are
fulfilled. It returns true if an obligation was successfully
fulfilled, otherwise it returns false. The final decision
to be enforced by PEP is dependant on the outcome of
Obligation Service evaluation of obligations as well as
the system operating state, further discussed below.
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Figure 2. BTG state machine showing the normal state and two
emergency (BTG) states, along with transition criteria. The system
starts in “Normal” and moves into “Controlled BTG” when BTG
is activated, as long all BTG obligations are met (otherwise the
system transitions to “Uncontrolled BTG”). Normal state can be
restored via automated or semi-automated audit from Controlled
BTG, or via manual audit from Uncontrolled BTG.

3.1. Operating States
Our model has three system states – a normal operating
state and two emergency (BTG) states. Transitions
between states are controlled through evaluation of
system-wide obligations. The BTG state machine for
our system is diagrammed in Figure 2. Emergencies are
time-sensitive and dynamic in nature, and the access
control framework must take into account the changing
conditions of the system as the emergency runs its
course. For the purposes of implementation simplicity
and policy flexibility, we treat BTG as an RBAC/ABAC
resource or a system state variable. Therefore, the
access control framework does not need to periodically
reevaluate whether or not BTG is in effect. Instead,
accessing the BTG resource triggers a permission check,
allowing the system to make the transition at that time.
For the moment, the system is designed to only exist
a BTG state when explicitly requested by a clinician.
Whether the system can then be rolled back to “normal”
state automatically or must be flagged for audit depends
on whether it is in the “controlled” or “uncontrolled”
state when BTG ends.

Normal State. This is the initial state for the authoriza-
tion system and remains the current operating state
as long as for every user access request the Policy
Decision Point (PDP) returns a decision and the user
has not initiated an emergency session (BTG). Common
decisions after evaluation of an access request include

“allow”, “deny”, “not applicable”, or “indeterminate”.
(“Not applicable” means the PDP could not locate a
policy that matches the request, and an “indeterminate”
decision means an error was encountered during policy
evaluation.) An “allow” decision can have obligations
attached – the action is allowed on the condition that
the obligations are fulfilled. It is important to note
the differences between the two types of obligations
returned by the PEP. We refer to the obligations that are
returned after evaluation of a non-BTG request as non-
BTG obligations, and to obligations that are required to
be met in order to allow BTG as BTG obligations. Non-
BTG obligations are evaluated every permission check,
whereas BTG obligations are evaluated every system
state change.

Controlled BTG State. The authorization system changes
its state from normal to controlled BTG whenever the
user overrides an access control decision by initiating a
BTG session. In order for the system to change its state
to controlled BTG, all returned BTG obligations need to
be met. Obligations are facility- and policy-specific, and
we expect them to include at least e.g. a requirement
for more detailed logging prior to allowing a BTG
session. The BTG obligations are meant to help track
the clinicians’ actions for audit and system rollback
purposes, and must include sufficient detail.2 A system
in a controlled BTG state returns to a normal state once
the clinician explicitly signals an end of emergency.
Independent of BTG state, the system evaluates every
access request against existing (non-BTG) policies as it
would if the system were operating in normal mode.
Therefore, the only further change to the evaluation
process is allowing an override in the first place, and
even that override is subject to BTG policy evaluation.

Uncontrolled BTG State. As shown in the state diagram
in Figure 2, the authorization system transitions to
uncontrolled BTG if 1) it is already in a controlled
BTG state but no longer able to fulfill some or all BTG
obligations (returned when BTG was started), or 2) it
is in a normal state and the user overrides a “deny”
decision, declaring BTG, and yet the system cannot
meet some or all returned BTG obligations, e.g. there is
insufficient available bandwidth to ensure all activities
are logged at a higher-than-normal level of detail. The
system in an uncontrolled BTG state meets the “fail-
open” requirement of the medical systems. However, a
system in uncontrolled BTG cannot return to controlled
BTG – it can only return to normal state via a manual or
semi-automated audit.

During uncontrolled BTG, the system performs
permission checks similar to controlled BTG, such that

2Determining the specific details that satisfy this “sufficiency”
condition are facility-dependent, and the subject of future work.
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Figure 3. Permissions grouped by access: P, N, and R are groups
of permissions assigned to Physician, Nurse, and BTG Restricted,
respectively.

the system evaluates each user access request against
authorization policies and for any decision other than
“allow”, access control is overridden. In addition, any
returned non-BTG obligation is fulfilled on a best-effort
basis. Although the system is in an uncontrolled state,
it is still governed by the authorization rules – the
policies are never ignored, only overridden.

“BTG-restricted” Permissions. To ensure that the system
retains its overall integrity and can be rolled back to
a known secure state, some “deny” decisions cannot
be overridden, including changes to the authorization
policies themselves, certain patient information (e.g.
VIP status) and certain other critical system resources
(which may vary between facilities and explicitly
specified in the BTG policy). A real-world example of
a BTG-restricted resource is provided in Section 4. We
do not expect that security-critical resources such as
the access control database would need to be accessed
during BTG, especially since all other permissions can
be overridden, removing the need to manipulate user
roles and/or permissions.

This design is implemented purely via policy and
does not require modification to the access control
framework (see Section 3.3). A facility can write
an alternate, more permissive BTG policy so that,
e.g. access to the authorization policy database is
allowed during BTG. This “allow” decision, however,
would only apply to authorized users and cannot
be overridden, so access control policies cannot be
altered at all during BTG.

3.2. BTG Policy Evaluation

An effective BTG policy is dependent on proper
identification of resources at the time of policy
evaluation. Thus, resources need to be identified and
categorized into their relevant access groups (sets),
which are then stored in a database. Attributes
including resource group information are retrieved
from a policy information point (PIP) at the time of
policy evaluation. To implement the concept of “BTG-
restricted” permissions as discussed in Section 3.1,
we define a list of BTG-restricted resources, i.e. a
limited number of resources marked as not for use
during a BTG session – these resources can only be
accessed in normal situations and policy decisions for
those rules are not subject to BTG override. Resource
assignment into groups is not fixed and may change like
other dynamic attributes (e.g. conditional authorization
based on the current time, and the clinician’s assigned
work hours). Therefore, the system will query for group
information only at policy evaluation time, returning
the correct group for a resource even if the group is
subject to change.

Dynamically assigning resources in groups is similar
to whitelisting and blacklisting. We approach resource
identification from a more flexible perspective to allow
for controlled BTG access. We identify resources that
are available to a group of users as the “normal” set
(whitelist), and resources that should be not available
for access during unexpected situations (BTG) as
BTG-restricted resources (blacklist). Resources that are
otherwise not accessible to a user, but are not part of the
blacklisted set, can be accessed during BTG.

Figure 3 shows a diagram of how resources (grouped
by access) work within our architecture. The outer
circle represents the set of all available resources
available in a facility (a superset of resources accessible
by our example subjects). The circles marked with
letters P (physician) and N (nurse) represent the set
of resources that can be accessed by physicians and
nurses, respectively. (As Nurse and Physician are chosen
arbitrarily, the example is representative of any two
roles in an organization.) The circle R represents
the set of resources that are restricted during BTG,
but can be accessed by authorized entities outside of
BTG events. A nurse or physician is only allowed to
access a BTG-restricted resource if it is included in
the set(s) of their accessible resources (PR and PNR)
and the authorization system is in normal operating
mode. Access to resources in R, PR, and PNR is
unconditionally denied during BTG (see Section 3.1).
NR is omitted for simplicity. Note that we expect real-
world policy sets PR and PNR to be null (empty), as
they would contain e.g. the access control database
itself, which should not ever require access during BTG
since all other permissions can be overridden. If these
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Resource System State Decision
1 P any state allow
2 PN any state allow
3 N normal state deny
4 N any BTG allow
5 PR normal state allow
6 PR any BTG deny
7 PNR normal state allow
8 PNR any BTG deny
9 R any state deny
10 < (P ∪N ∪ R) normal state deny
11 < (P ∪N ∪ R) any BTG allow

Figure 4. Sample access control table for a physician (the
“Subject” column is omitted, as it is always “physician”)

sets happen to be not empty, access is denied by default
as we do not see any practical reason for allowing access
otherwise. Even so, the policy enforcement point (PEP)
can be customized to allow rather than deny.

The resources within the outer circle are assigned
to sets accessible by other clinicians or users not
shown here. There may exist resources not assigned
to any set (e.g. specification error causing resources to
be “orphaned”). These are not included in the outer
circle. Access control decisions for those resources
cannot be made conclusively in either normal or BTG
operating modes (see “indeterminate” in Section 3.1).
One may argue that “indeterminate” decisions should
be overridden to “allow” in a BTG context. This is a
design decision, and is explored further in Section 5.3.

Figure 4 is a tabular view of access control requests
and decisions for a physician accessing resources
categorized as in Figure 3. For ease of illustration, we
assume that all obligations are fulfilled by the PEP; the
table would be rendered unreadable otherwise.

• In row 1 - 2, the physician is allowed access to
P and PN regardless of the current state of the
system since P and PN are the sets of resources
explicitly allowed for physicians.

• In row 3, the physician requesting access to N
is denied unless the authorization system is in
either controlled or uncontrolled BTG state (row
4). Resources in N are allowed access to only by
nurses. Thus, a physician may need to break the
glass to successfully gain access.

• In row 5 and 7, the physician request for PR and
PNR is permitted only if the authorization system
is in normal state.

• In row 6 and 8, access to PR and PNR is disallowed
during BTG since PR and PNR are part of the
BTG-restricted set.

• In row 9, access to R (not PR or PNR) is
denied regardless of the current state of the
system because those resources are not within the
allowable physician set during normal operation,
and are restricted during BTG.

• In row 10, the physician is requesting access
to some resource not diagrammed in Figure 3,
meaning permission to access them has not been
explicitly granted, and therefore the request is
denied in normal mode.

• Finally, during BTG, access is allowed in row 11
since those resources are not within R. Contrast
this to row 10 where BTG is not active and the
resources are not explicitly permitted in a policy.

The above method of identifying BTG-restricted
resources (R) ensures that access to all resources
outside (R) is granted via a normal or BTG request.
Treating R as a blacklist simplifies writing least-
privilege BTG policies, because any access to R
would be unconditionally denied during BTG – this
prevents inconsistencies or emergent properties in
policy combinations from creating loopholes where in
some cases, access to R is allowed during BTG.

3.3. BTG Policy Specification
Figure 5 shows an example policy, written in the Abbre-
viated Language For Authorization (ALFA) [21], that
contains rules for normal, controlled, and uncontrolled
BTG access. Resources in “BTG-restricted” are pro-
tected set from any access during a BTG session. The
policy is meant to be very generic, and can be easily
customized to any BTG access control scenario with
more fine-grained rules and obligations. Furthermore,
the BTG rules and policies are meant to be easily
integrated into existing authorization policies.

The example policy is expressed as a policyset

containing three policies. The first (polSetFlowRate)
specifies the target clauses for resource flowRate,
possible actions (read or write), and contains two
rules that come with their own target clauses and
conditions. If a user access request matches the policy
polSetFlowRate target clauses, then the authorization
engine checks enclosed rules within the policy. The
allowSettingFlowRate rule allows for normal access
if 1) the access request matches its target clause
(requesting subject to be a nurse or physician), 2) the
access request meets the conditions specified within
the rule (checking if care relation exists), and 3) the
obligations are fulfilled by PEP. Otherwise, a deny
decision is returned. The sequence is similar for all
rules. Assuming either the condition or target clause
in the allowSettingFlowRate rule cannot be matched
to the request, the rule allowEmergencyAccess is
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namespace org.facility {

obligation log = "org.

facility.normalLog"

obligation btgAudit = "org.

facility.btg"

rule allowEmergencyAccess {

target clause EMG.BTG ==

true

condition not (

integerOneAndOnly(

resource.group) == "

BTG-restricted")

permit

on permit {

obligation btgAudit {

//obligations

}

}

}

policy polSetBtgFlag {

target clause resource.

resourceId == "btg"

apply permitOverrides

allowBtg //invokes the rule

below

}

rule allowBtg {

//start BTG session if not

in BTG already

condition EMG.BTG == false

permit

on permit {

obligation btgAudit {

//obligations

}

}

}

rule allowSettingFlowRate {

target clause user.role ==

"nurse"

or user.role == "

physician"

condition integerIsIn(

integerOneAndOnly(

user.userId),

patient.

assignedClinicianId)

permit

on permit {

obligation log {

//obligations

}

}

}

policy polSetFlowRate {

target clause resource.

resourceId == "

flowRate"

clause action.actionId ==

"write"

or action.actionId == "

read"

apply permitOverrides

allowSettingFlowRate

allowEmergencyAccess

}

rule allowModifyAuthPolicy {

target clause user.role ==

"sysadmin"

condition EMG.BTG == false

permit

on permit {

obligation log {

//obligations

}

}

}

policy polModifyAuthPolicy {

target clause resource.

resourceId == "auth

-policy"

clause action.actionId ==

"write"

or action.actionId == "

read"

apply permitOverrides

allowModifyAuthPolicy

}

policyset authPolicySet {

apply permitOverrides

polSetFlowRate

polModifyAuthPolicy

polSetBtgFlag

}

}

Figure 5. Example BTG policy written in ALFA, reformatted for
readability

evaluated. The target clause and condition in the
allowEmergencyAccess rule ensures that the BTG flag
is set to true and the requested resource (flowRate)
is not part of the “BTG-restricted” resources group.
The user request for access to the resource flowRate

is permitted as long as any of the two rules returns an
allow decision. This is ensured by the rule combining
algorithm permitOverrides, specified within the
policy polSetFlowRate. Combining algorithms are
specified in policy sets (referred to as policy combining
algorithms) and policies (referred to as rule combing
algorithm) to avoid potential conflicts within policies
and rules, respectively. For example, given the results
of evaluating a set of rules (within a policy) the
policy combining algorithm permitOverrides ensures
that a combined permit decision will be returned

if there is at least one rule providing a permit
decision. The sequence is similar for the policy
polModifyAuthPolicy.

The policy polSetBtgFlag controls access to BTG. Its
target clause requires the resource to be set to (btg)
and the policy consists of a single rule: allowBtg. That
rule has only one condition which checks the status of
the BTG flag. If the user requesting BTG access and
the BTG flag is not set then an allow with obligations
decision is returned to the PEP, which in turn ensures
the obligations are fulfilled prior to allowing for a BTG
access. If any of the returned obligations cannot be
fulfilled then the BTG access is still granted and the
authorization system changes its state to uncontrolled
BTG. Otherwise, access is granted and the authorization
system changes state to controlled BTG.

Access control requirements in general and the
example policy in Figure 5 are kept simple on
purpose. They provide a “generic” starting point
for more complex and lengthy policies. They are
formally verified in Section 5 in order to show
how we may prove the correctness (or at least
that certain heuristics/invariants hold) in arbitrarily
complex policies. The example and formal verification
are short to ease explanation, but the steps shown are
meant to scale up and test policies which are too large
to interplay and too complex to be done ad-hoc.

4. Comparison to Real-World EHR-BTG

We analyze our policy structure design by comparing
the available features and flexibility to real-world
procedures for electronic health record access as
implemented by one of the largest US health care
groups. We studied their procedure for overriding
access control from a large U.S. medical provider.
The intention for this task was to verify that our
approach meets the requirements for a real-world
emergency access control policy deployed within
healthcare facilities. Our BTG “meta-policy” works
with existing access control policies by adding explicit
override permissions which are granted or denied
based on various dynamic factors, but the real-world
example represents an explicit (rather than meta) BTG
policy for medical record access during emergencies.
(We stress that our BTG design is strictly more
powerful and flexible than what is currently used with
electronic health records, as it not only allows access
to information, but also differential access to sensing
and treatment device functions based on user identity
and properties.) Figure 6 provides an emergency access
control (BTG) matrix based on our analysis of BTG
functionality in the health system. Figure 7 shows a
policy within our framework that satisfies the BTG
requirements in Figure 6.
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Patient Type
Clinician Mental Confidential 42 CFRType Health
Emergency allow allow allow
Mental

allow allow allowHealth
PCPs allow allow deny

Figure 6. Sample access control matrix based on patient and
clinician types, indicating when BTG access is allowed and when
it is denied

The health system uses Epic3 for managing emer-
gency access control (BTG) to patient information. A
BTG decision is based on patient type (e.g. VIP, Con-
fidential), clinician type (e.g. emergency department
(ED), primary care physicians (PCP), etc.), and several
other constraints such as timeframe. Access is either
granted with a BTG warning, or not granted at all. We
found that only access to information for patients at
a Federally Funded Substance Abuse Clinic (42 CFR)
is denied for primary care physicians and clinicians of
type “other” (but allowed for mental health clinicians).
For all other accesses to information, clinicians are
required to provide a reason when invoking BTG. BTG
is needed every 7 days to access information on VIP
patients who may have greater privacy concerns, but
not needed for clinicians who are part of the patient’s
care team, or patients whom the clinician has seen
within the last 30 days or scheduled to see within the
following 30 days.

Figure 7 shows that the medical group’s EHR BTG
requirements are easily expressed in our BTG meta-
policy. The BtgRule ensures the requirements (e.g.
PCP’s access to information for a patient with 42
CFR condition should never be granted even if the
status of BTG is valid) are met prior to granting
access to information. All “normal” access requests
will be evaluated against readAndWriteRule. This rule
ensures access to requested information will only be
granted if a care relation exists between patient and
clinician, or if the patient has had appointments 30
days prior or 30 days after the access date. The rest
of the policy matches our meta-policy in Figure 5 and
is self-explanatory. In addition, while our approach
requires expressing any system-wide requirements (e.g.
invoking BTG once every 7 days) as obligations to avoid
adding any complexity to existing policies, there is no
compelling reason why they should be added as target
clause or condition. We are not aware of any further
obligations other than the ones listed in the policy that

3https://epic.com/

namespace org.facility {

obligation log = "org.

facility.normalLog"

obligation btgAudit = "org.

facility.btg"

rule BtgRule {

target clause EMG.BTG ==

true

condition not (stringIsIn (

"Federally�Funded�
Abuse�Clinic", (

patient.location)) &&

(user.role == "PCP"

|| user.role == "

others"))

&& patient.BtgStatus ==

true

permit

on permit {

obligation btgAudit {

//obligations

}

}

}

rule readAndWriteRule {

target clause user.role ==

"clinician"

condition integerIsIn(

integerOneAndOnly(

user.userId), patient

.assignedClinicianId)

|| user.

hasAppt30DaysPriorOrAfter

== true

permit

on permit {

obligation log {

//obligations

}

}

}

rule defaultDeny {

deny

on deny {

obligation log {

//obligations

}

}

}

rule setBtgFlag{

condition EMG.BTG == false

permit

on permit {

obligation btgAudit {

//obligations e.g.

BtgStatus,

btgPeriod, etc.

}

}

}

policy polSetBtgFlag {

target clause resource.

resourceId == "btg"

apply permitOverrides

setBtgFlag

defaultDeny

}

policy EHR {

target clause resource.

resourceId == "ehr"

clause action.actionId

== "write" or

action.actionId

== "read"

apply permitOverrides

readAndWriteRule

BtgRule

defaultDeny

}

policyset EHRPolicySet {

apply permitOverrides

EHR

polSetBtgFlag

}

}

Figure 7. Sample BTG policy from a major medical group, written
in ALFA and reformatted for readability

need to be met prior to granting access to information
within the medical group.

5. Verification and Validation
Access policies in medical domain are defined by
clinical administrators, and translated by facility
technical/IT staff into a set of polices expressed in
a formal access control language. The nature of the
policies is governed not only by clinical role but by
job title and perhaps even regulatory and contractual
requirements.

There is a natural knowledge gap between clinicians,
administrators, and IT staff, who are expert in their
respective fields, but must work together to ensure that
formally-written access control policies represent the
intent of the facility administrators and the needs of
the clinicians. None of the people involved in crafting
these requirements and policies may simultaneously
have a full understanding of the policy intent and
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Tool (col.) / Feature support (row)
Custom

Attribute
Types

Relational
Rules

Static
Verification

Dynamic
Verification

t-way
Testing

XACML
Support

Alloy [22] - - -
ACPT [23]

Margrave [24] - - -
SPIN [25] - - - - -

ACCOn [26] - - - - -

Figure 8. A brief comparison of the model checking tools we considered. A more complete treatment can be found in the work of Aqib
and Shaikh [27].

simultaneous grasp of the richness and constraints of
the language expressing the authorization policy. As
a result, these authorization policies are either too
expressive or not expressive enough. Defining BTG
requirements within authorization policies adds more
complexity, which can easily result in misconfigurations
and faulty policies, introducing serious vulnerabilities.
Therefore, rigorous verification and validation through
systematic testing are required to ensure the security
properties are satisfied, the access control model is
expressed correctly in the authorization policy, multiple
policies enforced simultaneously are consistent, and
single policies are self-consistent. Two policies can
be called inconsistent if they are both applicable
to a specific access request and yet return different
decisions, e.g. one returns “allow” while the other
returns “deny”.

5.1. Tool Selection
To formally verify and test authorization policies for our
BTG framework, we explored a series of access control
policy test tools. Many were either not compatible
with our model or missing properties/features that
we required for thorough testing. Tools which we
would consider good candidates for validating our work
should support model-based verification in addition
to properties enumerated below. The features marked
bold are required while others are simply helpful.

1. Different types of attributes: XACML has four
categories for attributes by default, subject, action,
resource, and environment categories. These
categories are supported by available XACML
implementations such as WSO2 Balana [28].
We are looking for support for the default
and additional categories, including customized
contextual categories of attributes with discrete
and continuous values, since the types of
attributes used in practice (e.g. at a medical
facility) are not limited to these four categories.
Additional categories can be added as needed.

2. Rules with relational expressions: A simple
XACML policy such as in Figure 5 can contain

conditions composed of relational expressions
(written as logical expressions).

3. Static and dynamic verification: Although we
currently only use static verification, both are
useful in detection and resolution of inconsistency
and incompleteness in policies. In a realistic
deployment, we envision a static policy check
before they are enacted, and continuous dynamic
checking to detect problems after deployment.

4. t-way combination tests: A policy developer
can easily end up with hundreds of access
control polices even for a relatively small size
organization. t-way combinatorial testing is useful
for generating smaller, more manageable test
suites and reducing testing costs [29].

5. Native support for XACML: Our access control
policies are written in ALFA and then translated
into XACML for reasons of compatibility and
portability. Therefore, the tool needs to support
importing, processing, and exporting standard
XACML policies.

Our initial search resulted in more than 12 tools or
approaches. We filtered these tools by methods used
and only focused on the approaches that were based
on model checking. This reduced the list to 5. Our next
step in filtering was to check for the tools that use or
support XACML for policy specifications, but filtering
by XACML would have left us with a very limited
number of tools. Therefore, we also looked into tools
that did not support XACML but some other policy
specification language. A brief summary of the tools or
approaches based on model checking is given in Table 8.
We refer the readers to Aqib and Shaikh [27] for a
detailed survey of verification and validation tools and
approaches for access control policies.

The Access Control Policy Testing (ACPT) tool [23,
30], developed by the National Institute of Science
and Technology (NIST) comes closest to fulfilling our
requirements above. It can be used not only to compose
and generate access control polices, but also to verify
and test these policies, supporting both static and
dynamic verification. The tool uses the Symbolic Model
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Verification (SMV) model checker [31] for property
checking and Automated Combinatorial Testing for
Software (ACTS) [32] for test suite generation. In
addition, ACPT allows for policies to be either merged
or combined prior to verification or testing.

5.2. Checking Policy Consistency
The verification of safety requirements stated as
properties can assure only the logical integrity of the
policy rules against the specific safety requirements.
This is a heuristic approach – although we use model
checking, the model cannot provide complete coverage
because of temporal logic within the policy, and so it
may not cover all possible values of all rules (or all
conditions in the rules).

Figure 9 shows the list of requirements for our
authorization policy (Figure 5) in the form of high-level
security properties along with the status for each of
the properties returned by the tool after verifying it.
The result confirms that all properties hold.4 A policy
is shown correct by checking a set of properties that
the system should satisfy against. We verify our model
against the below specified properties:

• Request to update or view flowRate by physician
or nurse should always be granted when BTG is
set to true, as shown in lines 1 and 2. flowRate is
a medical resource which belongs to group BTG-
allow and should be granted access if a clinician
requests it during an active BTG session. These
properties verify the rule allowEmergencyAccess
from the policy set in Figure 5.

• The property in line 3 ensures that physi-
cian should never be granted access to “BTG-
restricted” resources when BTG is set to true.
This property particularly verifies the condition
in the rule allowEmergencyAccess, which restricts
emergency access (BTG) to resources that belong
to “BTG-restricted” group. Line 4 further gen-
eralizes this check by replacing physician with
anyone. A resource-specific version of this prop-
erty (denying access for physician to modify auth-
policy – a “BTG-restricted” resource – while BTG
is enabled) is given in line 5.

• Line 6 checks that sys-admin should be allowed
to update auth-policy when the system is not in
BTG state. Line 7, on the other hand, checks that
if BTG is active, then the same request should be
denied. Only sys-admin is allowed to update or
view auth-policy and since auth-policy belongs to

4To avoid confusion we use BTG (in capital letters) as a flag indicating
status of the BTG state of the system and btg (in small letters) as a
resource in policies.

1 spec AG (((((role = "physician" & resource = "flowRate") & group = "BTG
-allow") & DefaultAction = "write") & BTG = "True") -> decision =
Permit) is true

2 spec AG ((((role = "nurse" & resource = "flowRate") & group = "BTG
-allow") & BTG = "True") -> decision = Permit) is true

3 spec AG (((role = "physician" & group = "BTG-restricted") & BTG = "True"
) -> decision = Deny) is true

4 spec AG ((group = "BTG-restricted" & BTG = "True") -> decision = Deny)
is true

5 spec AG (((((role = "physician" & resource = "auth_policy") & group = "
BTG-restricted") & DefaultAction = "write") & BTG = "True") ->
decision = Deny) is true

6 spec AG (((((role = "sys_admin" & resource = "auth_policy") & group = "
BTG-restricted") & DefaultAction = "write") & BTG = "False") ->
decision = Permit) is true

7 spec AG (((((role = "sys_admin" & resource = "auth_policy") & group = "
BTG-restricted") & DefaultAction = "write") & BTG = "True") ->
decision = Deny) is true

8 spec AG (((resource = "btg" & group = "normal") & BTG = "False") ->
decision = Permit) is true

9 spec AG (((((role = " visitor " & resource = "flowRate") & group = "BTG
-allow") & DefaultAction = "write") & BTG = "True") -> decision =
Permit) is true

Figure 9. Results of ACPT verification of policy consistency
as specified by the facility, reformatted for readability. An
inconsistency within a facility’s policy corpus will cause at least
one of the specifications to evaluate as “false” and the tool will
provide a counterexample.

“BTG-restricted” group, requesting access to it by
sys-admin should be granted only if the system is
in normal state. These properties verify the rule
allowModifyAuthPolicy.

• The property in line 8 is used to verify that a
request for setting btg (e.g. BTG access) flag by
anyone should be granted unless the system is
already in BTG state. This requirement is defined
in the rule allowBtg.

• The property in line 9 verifies the BTG require-
ment in the rule allowEmergencyAccess – any-
one with role visitor5 requesting write access to
flowRate should be granted if BTG is set to true
and the resource flowRate belongs to BTG-allow
group for the user. Recall the rule allowEmergen-
cyAccess does not require a specific role (e.g. see
physician and nurse in lines 1 and 2, respectively).

5.3. Testing Results
We use ACPT to validate a slightly modified version
of the BTG policy shown in Figure 5, and verify that
our model meets safety requirements for emergency
override. For example, the safety requirement in line 4
of Figure 9 (expressed in temporal logic) formalizes the
rule allowEmergencyAccess in the example BTG policy
in Figure 5, and is checked for any violations verified
using the model checker.

5A visitor could be a visiting doctor from a different healthcare
facility who is holding temporary security credentials.
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1 spec AG (((((role = "nurse" & resource = "flowRate") & group = "BTG
-allow") & DefaultAction = "write") & BTG = "True") -> decision =
Permit) is false as demonstrated by the following execution
sequence:

2 Trace Description: Counterexample-
3 > ABAC_ polSetBtgFlag.decision = Deny-
4 > ABAC_ polSetFlowRate.decision = Permit

Figure 10. Policy inconsistency shown with a counterexample,
reformatted for readability

The reason for verifying a slightly modified policy
in the previous paragraph can now be revealed:
Figure 10 shows faults in the seemingly trivial policy.
The issues are inconsistency and incompleteness.
The authPolicySet was initially defined with the
denyOverrides policy combining algorithm, which
favors “deny” decisions, and was considered the safest
for our example. During verification, however, the
property on line 9 from Figure 9 returned false with
a counterexample demonstrating incompleteness via
a “not applicable” decision, since no matching rule
was found. To resolve this, we added default deny
rules to the polices to ensure that in cases where
there is not a policy matching an access request,
a deny decision is still enforced. This resulted in
other properties failing due to conflicting decisions
(inconsistency). For example, the property on line 2
ensures that a request for a resource in the “btg-allow”
group should always be allowed provided that the
system is in a BTG state (recall this property is defined
in allowEmergencyAccess rule in Figure 5). During
verification, polSetFlowRate returned “allow” and
polSetBtgFlag returned “deny”, resulting in a “deny”
decision being returned by the combined policy set
(authPolicySet) because of the combining algorithm
denyOverrides, as shown in Figure 10. Replacing
denyOverrides with permitOverrides resolved the
inconsistency and the final verification result is shown
in Figure 9. Conflicting and missing rules are hard
to detect without a policy verification and evaluation
engine, i.e. a clinician or policymaker may not foresee
the consequences of a policy combination until an
unexpected result occurs (likely during a medical
procedure), and it may be difficult to determine the
reason for the unexpected result after-the-fact, making
the policies difficult to fix once deployed.

When a new resource is added to the list of available
resources, it should be “flagged” for administrative
review, and an access control policy for the identified
resource should be written. Normally a resource
without a written access control policy is considered
non-existing and the policy decision point (PDP) will
return an indeterminate or not applicable result if
the resource is requested for access. In our design
and implementation of a sample BTG policy we

1 (resource="btg")&(BTG="False")&(role="sys_admin")&(group="BTG

-allow")->Permit

2 (resource="auth_policy")&(BTG="True")&(role="sys_admin")&(group

="normal")->Deny

3 (resource="flowRate")&(BTG="False")&(role="sys_admin")&(group="

BTG-restricted")->Deny

4 (resource="btg")&(BTG="False")&(role="physician")&(group="

normal")->Permit

5 (resource="auth_policy")&(BTG="True")&(role="physician")&(group

="BTG-restricted")->Deny

6 (resource="flowRate")&(BTG="True")&(role="physician")&(group="

BTG-allow")->Permit

7 (resource="btg")&(BTG="True")&(role="visitor")&(group="BTG

-restricted")->Deny

8 (resource="auth_policy")&(BTG="False")&(role="visitor")&(group=

"BTG-allow")->Deny

9 (resource="flowRate")&(BTG="False")&(role="visitor")&(group="

normal")->Deny

10 (resource="btg")&(BTG="False")&(role="nurse")&(group="BTG-allow

")->Permit

11 (resource="flowRate")&(BTG="True")&(role="nurse")&(group="BTG

-restricted")->Deny

12 (resource="auth_policy")&(BTG="True")&(role="nurse")&(group="

normal")->Deny

Figure 11. Results of ACPT’s auto-generated heuristic testing,
reformatted for readability and with metadata header removed

added default deny rules to avoid not applicable and
indeterminate results in situations such as those. Also,
if a well written access control policy (e.g. meta-policy)
is written for resources such as medical devices or
apps that share some properties, then a new policy is
not necessary to be written. For example, by adding a
new medical device that is either part of a new setup
with identical configurations to an existing device or a
replacement for an existing device in the system there
needs to be no further actions to be taken except for
approving the installation by an administrator.

Mistakes such as misconfigurations or faulty policies
can remain undetected even after some thorough
verification and testing. Our approach is designed
to make “misassigning” a BTG-restricted resource
difficult, unless one also adds or modifies the resource-
specific policy in addition to the overall BTG policy.
“Mis-assinging” a BTG-restricted resource, which is
similar to not including a resource in a blacklist,
can introduce system vulnerabilities. We built on the
concept of a policy fault model presented in [33, 34]
to check for misassigned resources. We introduced new
resources and misassigned them to the list of resources
other than BTG-restricted resources. Testing results for
these resources were either “indeterminate” or “not
applicable”. By re-running the tests and adding default
deny rules to these policies, the results changed to
“deny”. However, access to resources, for which we
also added new policies or modified their existing
policies, the authorization engine returned decisions
as expected. Therefore, the testing confirmed the need
for a policy modification step for already misassigned
resources before they can allow unwanted access.
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In Figure 11, we perform conformance testing to
validate compliance of implementation of the policy
model. The tool automatically generates test cases
from the model using combinatorial array generation
technology [32], evaluates test requests against the
policy, and returns the testing results – which can be
used for identifying conflicts, inconsistencies, and other
type of faults in the given policies.

Properties like those in Figure 9 can be written for an
identified fault and verified using ACPT. In Figure 11
each of the test cases generated for the BTG policy in
Figure 5 consists of certain attributes (resource, role,
group, BTG) and a final decision:

• Users should be granted access to the resource btg
(e.g. initiating a BTG session) if the BTG flag is set
to false, confirmed by the test cases 1, 4, 7, and 10.

• A user should not be granted permission to access
the resource auth_policy when the system is in a
BTG state, validated by test cases 2, 5, and 12.

• Similarly, test cases 5, 7, and 11 validate that
access to any resource in the group BTG-restricted
will be denied during BTG.

• Test cases 3, 8, and 9 are used to validate access
restrictions during the normal operating state
(e.g. non-clinicians – system administrators –
should not be able to set medication dispensing
rates).

• Finally, in test case 6, we check that a user will
be granted access to any resource in group BTG-
allow, other than btg and auth_policy, only if the
system is in a BTG state.6

Note that not all possible cases are covered due to
the use of t-way combinatorial testing. We were able to
perform 2-way, 3-way and 4-way combinatorial testing
on the given policy set. Due to space limitations, we
only report on 2-way testing results.

6. Conclusion, Limitations, and Future Work
Current access controls override mechanisms in medi-
cal systems allow for uncontrolled access when needed,
which may leave systems open to misuse and unnec-
essarily compromise patients’ privacy, resulting in
irreversible damage. The controlled emergency access
model in our work allows for a flexible emergency

6Recall the policy polSetBtgFlag in 5 returns deny only if the BTG
flag is set to True. In all other cases it returns permit regardless of
what group the resource btg belongs to or what the role of requesting
user is. Similarly, the policy polModifyAuthPolicy, which defines
access control policy for authorization policies, returns permit only if
the requesting user is a system administrator and the system is normal
state. Otherwise, it returns deny.

access control override while ensuring system safety-
and security-critical resources are protected even dur-
ing the Break the Glass state by managing system state
and BTG obligations as specified in a formally verified
and validated authorization policy. Furthermore, we
show how the authorization architecture allows for the
system to return to a known safe state and reduce or
eliminate the need for manual audits when returning
from a controlled BTG session. Finally, we formally
show that our example policy is expressed correctly and
the policy specifications are satisfied.

While our work makes some headway towards flexi-
ble emergency access (BTG) within existing authoriza-
tion frameworks, there are several important limita-
tions, derived mostly from our limited access to non-
PHI healthcare data. Given the difficulty in locating
healthcare providers willing to participate in sharing
data on their facility-specific policies regarding access
control override mechanisms, authorization policies,
and log data, we could only achieve a limited under-
standing of how our proposed model would fit in a
real healthcare setting. An in-depth qualitative case
study of emergency access control override mechanisms
from hospital settings is a subject for future work.
Another potential direction for future research could
include log auditing to determine if by using real-time
resource access log analysis and enforcement of logging
obligations, we can limit the extent of uncertainty of
the system state following an emergency access session,
and allow for recovery to a known safe and secure state.
Therefore, implementation and performance testing of
such a system is included in future work plans as well.
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