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Abstract

In order to promote apps in mobile app stores, for malicious developers and users, manipulating average
rating is a popular and feasible way. In this work, we propose a two-phase machine learning approach
to detecting app rating manipulation attacks. In the first learning phase, we generate feature ranks for
different app stores and find that top features match the characteristics of abused apps and malicious users.
In the second learning phase, we choose top N features and train our models for each app store. With
cross-validation, our training models achieve 85% f-score. We also use our training models to discover new
suspicious apps from our data set and evaluate them with two criteria. Finally, we conduct some analysis
based on the suspicious apps classified by our training models and some interesting results are discovered.

Received on 09 January 2019; accepted on 20 January 2019; published on 25 January 2019
Keywords: Machine Learning, App Store, Rating Manipulation, Attack Detection
Copyright © 2019 Yang Song et al., licensed to EAI. This is an open access article distributed under the terms of 
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, 
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.8-4-2019.157415

1. Introduction
The current mobile application markets such as iTunes
App Store, Google Play, Amazon App Store, Windows
Phone App Store, etc. provide a very convenient and
efficient way to distribute mobile apps. As of Feb. 2019,
Google Play and iTunes host 2.45 millions and 1.3
millions of apps, respectively1. A statistical study [1]
showed that in 2017, consumers downloaded 178.1
billion mobile apps and in 2022, this figure was
projected to grow to 258.2 billion app downloads.
Meanwhile, the total app store revenue of Google Play
and iTunes has exceeded 18.2 billions in the Q3 of 2018
alone [2]. All these numbers show that if developers
release very popular apps, they could make a huge
amount of profit from these apps. From computer
security’s perspective, those app stores become the
targets of attackers for the two following reasons: 1)
Users prefer to download apps with higher rating scores
when they have multiple choices, because they usually
consider higher average rating stands for higher quality;
2) App store providers show various app ranking

∗Corresponding author. Email: sxz16@psu.edu
1http://www.apptrace.com/

charts in their front pages and the higher ranking apps
receive more attention and hence more downloads.
App store providers’ ranking algorithms [3] take
reviewers’ ratings as an important factor. Consequently,
some companies started the business to provide app
promotion services and some of them even claim that
they could keep the ranks that developers want for
some periods, according to news articles [4].

Purifying app stores becomes one of the app store
providers’ primary interests. However, detecting app
rating manipulation is difficult due to the following
reasons: 1) massive number of accounts, reviews and
apps makes it impossible to manually investigate the
whole app store. Even it is possible to hire many people
to manually investigate apps, discriminating malicious
users from normal users is very difficult because rating
reflects user’s opinion and opinion is often biased,
and recent deep learning techniques [5] have enabled
automatic generation of fake online user reviews that
are similar to human-generated reviews. 2) many
researchers have studied rating manipulation on online
shopping websites. But compared with traditional
products, mobile apps are either more accessible and
their data are more noisy. Apps are more accessible
because app stores are available in many countries and
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developers may publish their apps world widely just by
one click. For attackers, they can switch countries in
app stores and attack apps across regions. Apps’ data
are more noisy because apps have to be run on the top of
hardware(smartphone) and OS. If hardware or OS gets
upgraded, apps have to be optimized for the updates
too. Failure to do so may result in lower average rating
or app crash. More importantly, numbers of downloads
and reviews are sensitive to app price. For traditional
online shopping websites, 50% percentage discount is
very rare, and even so, customers still have to pay. If a
paid app drops its price to free, it’s very likely that many
more users will download it. Besides, advertisements
will introduce more noise to apps’ data.

Those difficulties and extremely noisy data lead us
to seek machine learning for help. A big advantage of
machine learning is that it provides an automatic way
to figure out a model that human being is not able
to conceive, and we can use this model to discover
attacked (abused) apps. After analyzing the data we
crawled from app stores and considering characteristics
of malicious users and abused apps, we leveraged a
supervised machine learning algorithm to design our
classification model.

Our approach aims to detect abused apps directly
instead of detecting attackers, which also can be used
to discover abused apps indirectly. This is because:
1) detecting attackers is difficult due to the reasons
we mentioned above; 2) apps that have been rated
by attackers do not necessarily mean they have
been abused. More information is needed to confirm
this relation. To build a training set, we used an
algorithm [6] to find an initial group of abused apps for
us and, meanwhile, we select benign apps manually. We
use a 2-step learning procedure to finalize our training
model for each app store. Using cross-validation, our
training models could reach 85% f-score given the fact
that data are extremely noisy. We take a further step and
use our training models to discover more apps from the
data that are not included in the training set. About 5%
suspicious apps are discovered from each app store and
the results are justified even with few direct evidences.

This paper has the following contributions:

1. We characterized abused app, malicious user and
collusion group they form.

2. We leveraged a machine learning based method
to detect abused apps directly, bypassing the
difficulties such discriminating attackers from
normal users, data noise, etc..

3. We selected 55 features and gave feature
rankings for each app store. We found that top
features match our definitions and characteristics
of abused apps, malicious users and collusion
groups. These feature rankings can be used to

further improve our training model performance,
and other researchers who want to use different
learning algorithms to detect abused apps could
consider using these rankings directly.

4. We analyzed the abused apps discovered by our
training models and some interesting results were
found.

Section 2 provides formal definitions and characteri-
zations of of abused apps, malicious users and collusion
groups. All 55 features are presented in Section 3. The
machine learning approach and some detailed feature
analyses are explained in Section 4. The testing is con-
ducted in Section 5. We present some related work in
Section 7 Section 8 concludes the paper and discusses
some future work.

2. Preliminaries
To simplify our terms, in this paper, “user” only refers
to a user who rates apps; “reviewer” only refers to a user
who rates apps and leaves comments.

2.1. Definitions
For any app stores, the motivation of establishing an
online rating system is to help users know the true
quality of apps. Here we give our definition for true
quality.

Definition 1. Let the total number of raters be N and
r = (r1, r2, . . . , rN ) is a vector that contains ratings of all
raters. True quality τ is the expected value of N users’
ratings, or

τ =

N∑
i=1
ri

N
, (1)

where N →∞.

Intuitively, abused app means an app’s average rating
has been manipulated and its rating cannot correctly
reflect its true quality. There is no direct way to know
app’s true quality. Indirectly, as largely adopted today,
app stores expect a large number of users will rate apps
and leave comments, and hopefully, the average rating
could be as close to the app’s true quality as possible.
From an individual user’s perceptive, there are two
problems:

1. Evaluating user’s experience with number is hard
and inaccurate. No global standard defines the
necessary conditions of a 5-star app, nor the
necessary conditions of a 1-star app.

2. Individually, users are all biased. 1) Different
users have different perspectives. User A may
focus on user interfaces, while user B may focus
on the stability and security. It’s very likely that
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one app is perfect in terms of user interface, but
poor in security; 2) Experience plays an important
role. A user who has used more than 100 apps
may not think Skype is the best app he has ever
used. But for intro-level user, he might think
Skype is the best app; 3) Apps usually support
different versions of OS and hardware. An app
could run perfectly on OS version 2.0 but crash
on OS version 3.0.

Therefore, it is not safe to assume that average rating
could accurately evaluate an app’s true quality. But to
some extent, it can reflects the quality of an app. It is not
likely that an app that is often crashed on any supported
devices could gain 5-star average rating. Another way
to look at this problem is that true quality of an app
is the expected value of all its users’ ratings, including
users that will rate this app in the future(theoretically,
infinite number of users could rate this app) and each
user in the data we have crawled is just one random
variable that could reflect the expected value more or
less. According to Hoeffding inequality[7], the larger
the number of ratings, the closer this app’s average
rating will be to its true quality.

For this problem, Hoeffding inequality states that for
any sample size N and vector of independent ratings
Λ = (λ1, λ2, . . . , λN ),

P [|E(Λ) − τ | > δ] ≤ 2e−2δ2N , (2)

where δ is the difference between average rating E(Λ)
and app’s true quality τ .

To confidently ensure that δ is very small, the number
of ratings N has to be relatively large. Therefore, we
have the following theorem:

Theorem 1. For a relatively large number of ratingsN and
each rating is independent from others, average rating
σ = τ + ε, where τ is the true quality of an app, and ε is
the deviation constant.

Rating is time sensitive. On the one hand, rating
may change as an app’s true quality changes. Version
changes, OS updates and device update usually lead
to rating changes. On the other hand, in some cases,
even an app’s true quality remains the same, its rating
may change if similar apps come out later but provide
more features and better user interface. Here, we give
the definition of environment factor:

Definition 2. Environment factor is an factor that could
affect users’ ratings for an app without any intention
to manipulate that app’s average rating. Those factors
include but are not restricted to version update, OS
update, device update and release of similar apps.

According to the discussion above, we give our
definition of abused app:

Definition 3. Let an app’s true quality be τ and its
average rating σ . During a period of time t, when no
environment factors are present, if |τ − σ | > ε, where ε
is deviation constant, then we say this app is an abused
app.

2.2. Characteristics of Abused App and Malicious
User

While users might be biased, when a large amount of
benign users rate an app, the average rating will be close
to its true quality. The definitions of benign user and
malicious user are:

Definition 4. A user who rates apps only based on his/her
own experience is a benign user.

Definition 5. A user is a malicious user if he/she rates
apps not based on his/her own experience and his/her
rating deviates from the true quality of app by η, where
|η| > 0.

To effectively manipulate the ratings, it has to
involve many malicious users who appear in a relatively
short period of time. If only a small number of
malicious users rate an app, its average rating may not
change abruptly. Theoretically, presence of extremely
biased ratings in a very short period time is not a
necessary condition for rating manipulation. However,
by observation, we find that it is a normal case for
rating manipulation. Figure 1 plots the number of raters
for each star of the app with app ID 445798230 and
version 2.1. What makes this app suspicious (we will
later confirm that this app is abused) are: 1) there is a
huge spike of number of 5-star ratings in week 2; 2) The
spike only occurred on 5-star rating.
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Figure 1. Number of Each Star (App ID: 399363156, Version:
2.1)

3 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 01 2019 | Volume 5 | Issue 18 | e3



Y. Song, C. Wu, S. Zhu, H. Wang

Mohammad, et al.[8] proposes the idea of collusion
group in rating manipulation. For app’s rating manipu-
lation, [6] modifies the definition of collusion group and
gives the following definition:

Definition 6. Collusion group is an attacking group
where all the members are malicious users and there
exist a set of apps whose ratings have been manipulated
by some of them. To be more generic, collusion group is
a set of adjacent subgroups where each subgroup works
as an unit to attack an app each time. To be considered
as adjacent, two subgroups must share some raters.

Essentially, one collusion group is formed by several
bi-clique communities[6, 9]. It’s shown that the
existence of collusion group is a necessary condition
for rating manipulation. Another feature of collusion
group is that the rating histories of group members
are similar, which means group members usually rate
apps on the same day or in the same week. This
feature conceptually matches the conditions of app
rating manipulation — large number of malicious users
and in a short period of time.

According to Definition 3, 6 and Theorem 1, we have
the following theorem:

Theorem 2. In a period of time t, an app is an abused app
if it satisfies all the following conditions:

1. No environment factors are present.

2. There exists at least one collusion group.

3. Number of ratings N is relatively large.

4. Let the current average rating be σ̂ , and average
rating without the effect of collusion group be τ .
|σ̂ − τ | > ε.

In fact, we are capable of estimating N by using
Hoeffding inequality. Assume that we want to be sure
that δ is 0.1, then we can have the following calculation:

P [|E(Λ) − τ | > 0.1] ≤ 2e−2(0.1)2N (3)

WhenN = 100, P [|E(Λ) − τ | ≤ 0.1] ≥ 0.7293. WhenN =
200, P [|E(Λ) − τ | ≤ 0.1] ≥ 0.9634. It means, for an app,
if the number of total raters is larger than 100, we have
more than 72.93% confidence to claim that its current
average rating is close to its true quality; if the number
of total raters is larger than 200, we have more than
96.34% confidence to claim that its current average
rating is close to its true quality.

Note that one of Hoeffding inequality’s assumptions
is that ratings are independent from each other. If there
exist multiple collusion groups, theorem 1 will not hold.
But consider these three situations:

1. If no collusion group exists, we are safe to assume
that all the ratings are independent (it’s possible

that only few ratings are not). In this case, given
a large number of ratings, we could precisely
estimate τ ;

2. If collusion groups exist and the number of
ratings is small, we cannot even confidently
estimate τ . Therefore, we should not label this app
as an abused one;

3. If collusion groups exist and the number
of ratings is large, practically, compared with
number of ratings, the size of collusion groups
only takes a very small fraction. In this case, if we
remove collusion groups from ratings, we will still
be able to estimate τ .

Assume no environment factors are present. In order
to archive the manipulated average rating σ̂ = τ +
ε0(ε0 > ε), the size of collusion group has to be:

S =
ε0N
η − ε0

, (4)

where η = λ − τ and λ is the rating that each malicious
user gives.

To significantly manipulate app average rating with a
small collusion group, η should be as large as possible,
which means collusion group members usually always
give 5-star ratings. For app A with rating user
population N = 10000 and average rating τ = 3.5, in
order to reach σ̂ = 3.8, the size of collusion group S ≈
834, assuming that every collusion group member gives
5-star ratings (λ = 5). If every collusion group member
gives 4-star rating(λ = 4), the collusion group size will
be S = 5000. This also explains the reason that collusion
group usually rates an app at a relatively short time
window: if N increases by time, S has to increase as
well.

Therefore, we have the following theorem for
malicious users:

Theorem 3. A user is a malicious user if the following
conditions are satisfied:

1. He is a member of at least one collusion group.

2. In all malicious events he participates, most of
ratings are he gives are either 4-stars or 5-stars.

2.3. Threat Models
We have known that to manipulate an app’s average
rating, collusion groups have to exist. But how are
collusion groups formed? We found two possible ways
for malicious users to form a collusion group.

1. Direct Formation means someone directly hires a
group of malicious users or fakes a large number
of IDs to launch attacks. For iTunes app store,
this kind of collusion groups sometimes have
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consecutive user IDs. That is because attackers
may use some tools to generate those fake user IDs
and iTunes generates user IDs incrementally. But
this characteristic cannot be found in other app
stores as they may use hash code as user IDs.

2. Indirect Formation means someone indirectly
hires a group of malicious users. For example, we
found that some websites welcome volunteers to
purchase apps and leave comments. Volunteers
will get total refund and bonus after that. No fake
IDs are needed in this attack, so consecutive IDs
usually will not be found.

3. A Machine Learning Approach

3.1. Why Use Machine Learning?
Even we know the characteristics of abused apps, it’s
still very difficult to find out them due to the following
reasons:

1. Defining a threshold number of ratingsN is hard.

2. Finding the exact value of ε is difficult.

3. Detecting a collusion group in a malicious app
is unreachable by human. To verify a group is
a collusion group, we have to make sure it has
attacked at least two apps. This process is time-
consuming. It is possible that a collusion group
only attack one app, but we will lose it since
we could not verify its existence. Therefore, we
need to find other features that could reflect the
existence of collusion group.

4. It’s nearly impossible to rule out all environment
factors.

The above reasons motivate us to use machine
learning to overcome the difficulties we face. The goal
of machine learning is to find a hypothesis h from
hypothesis set H that is closest to the function f , which
is a function mapping a vector x to y[10]. For this
problem, vector x denotes the values of features for
each app and y is a binary value indicates if this app
is abused or not.

With the help of machine learning, we do not have
to worry about finding exact values of N , ε and exact
values of features describing the existence of collusion
group, because we can leverage machine learning
algorithms to find the best h from a training dataset.

The way we decide the best training model h is to
minimize both Etrain and Etest given a dataset, where
Etrain is the error rate that h has in training set and
Etest is the error rate that h has in the complete data set,
no matter what evaluation method we use to calculate
error rates. However, measuring Etest is tricky since

there is no way to know Etest . That is why cross-
validation[11] is important — only use a part of original
training data as new training data and use the rest
to measure Etest . While we may not be able to find a
training model h that minimizes both Etrain and Etest ,
it is feasible to find a training model h that minimize
Etest and has relative small Etrain using cross-validation
method. In this way, we can avoid both overfitting and
under-fitting problem.

In machine learning, factors that we cannot control
or expect are noises. In this problem, environment
factors can be treated as noises. However, not all
environment factors are uncontrollable. iTunes App
Store provides version information for each comment,
therefore, we may generate some features based on
version. By avoiding fitting training data perfectly
(overfitting), the effects of noise to training data will be
minimized[12]. This is another advantage we want to
take from machine learning.

3.2. Features
Feature is a numeric value describing data from one
or more aspects. We transform the data we crawled
from app stores into different features so that learning
algorithms are able to learn from the data. In this
section, we will discuss all the features we select.

Primary Features. We define primary features as the
features that can be collected from the raw data itself
without further processing and transformation. For bet-
ter understanding, we will use some space to elaborate
them in the pattern f eature_name(f eature_ID).

average_rating(1) : average of all ratings.

total_rater(2) : number of all ratings.

1star_num(3) : number of all 1 star ratings.

2star_num(4) : number of all 2 star ratings.

3star_num(5) : number of all 3 star ratings.

4star_num(6) : number of all 4 star ratings.

5star_num(7) : number of all 5 star ratings.

price(8) : 1 if this is a paid app; otherwise 0.

Readers may be curious about the motivation of
including feature 3–8 because it does not seem to make
much sense to put them into feature set. In section
4.4, we will see that the learning algorithm we use is
able to rank these features based on their importance.
Therefore, we are safe to put all the features that could
describe the app data into our feature set.
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Advanced Features. Besides the primary features that
are ready to be used without any pre-processing, we
want to transform the comment and reviewer data into
more advanced features.

num_dev(9) : a developer may develop more than one
apps. This feature describes how many apps a
developer has developed.

To describe the reviewers’ behavior, we define the
following terms:

Definition 7. If a reviewer gives 4 or 5 stars for all the apps
that he/she has rated, he/she is a positive reviewer; if
a reviewer gives 1 or 2 stars for all the apps that he/she
has rated, he/she is a negative reviewer.

Many reviewers only rate app once, so it might be
risky to label those reviewers as positive reviewers or
negative reviewers. To avoid this potential pitfalls, we
define the following terms:

Definition 8. If a positive reviewer rates 3 or more
apps, he/she is extremely positive reviewer; if a
negative reviewer rates 3 or more apps, he/she is
extremely negative reviewer.

num_pos_reviewer(10) : number of positive reviewers
of this app.

perc_pos_reviewer(11) : percentage of positive
reviewers, or num_pos_reviewer

total_number_of _reviewer . Note that
total_number_of _reviewer is not total_rater,
because reviewers leaves comments in addition
but raters do not.

num_neg_reviewer(12) : number of negative review-
ers of this app.

perc_neg_reviewer(13) : percentage of negative
reviewers, or num_neg_reviewer

total_number_of _reviewer .

num_extr_pos_reviewer(14) : number of extremely
positive reviewers of this app.

perc_extr_pos_reviewer(15) : percentage of
extremely positive reviewers of this app, or
num_extr_pos_reviewer
total_number_of _reviewer .

num_extr_neg_reviewer(16) : number of extremely
negative reviewers of this app.

perc_extr_neg_reviewer(17) : percentage of
extremely positive reviewers of this app, or
num_extr_pos_reviewer
total_number_of _reviewer .

Helpfulness might be useful as well.

helpfulness_ratio_avg(18) : helpfulness ratio is
number_of _people_agree

number_of _people_agree+number_of _people_disagree .
This is the average of helpfulness ratio, or∑

helpf ulness_ratio
number_of _comment .

num_helpfulness(19) : number of comments whose
helpfulness ratios are greater than 0.

perc_helpfulenss(20) : percentage of comments
whose helpfulness ratios are greater than 0, or
num_helpf ulness

number_of _comment .

Variance is able to describe how much fluctuation
a feature has. We aggregate comment data by week.
We think it is an appropriate granularity since we
only have data divided in days and usually rating
manipulation spans weeks. The term “rating” in the
following paragraphs is only the rating with comments,
since only comments have date information.

var_num_comment_by_week(21) : variance of num-
ber of comments by week.

var_avg_rating_by_week(22) : variance of average
ratings by week.

var_perc_rating_by_week(23, 24, 25, 26, 27) :
variance of percentage of 1, 2, 3, 4 and 5
star ratings by week.

var_perc_pos_reviewer_by_week (28): variance of
percentage of positive reviewers by week.

var_perc_neg_reviewer_by_week (29): variance of
percentage of negative reviewers by week.

We notice that when an app is just released, or there
is a version update, there will be some spike in terms of
number of ratings. Poisson distribution is often used to
describe those spikes. To let user know about new apps,
app stores usually put them into a new category, which
is located in an obvious place on the front page. A few
days or weeks later, other new apps come and replace
those old ones. Another case is, when an app is updated,
people who have used it tend to download and rate it or
leave comment on it again. Commercials and ads may
attract users’ attention too. All these factors could lead
to spikes of reviews, and number of reviewers usually
follow the Poisson distribution.

Figures 2 and 3 depict the Poisson distributions
that we use to fit the data. Readers may see that
Poisson distributions we found out does not fit the data
perfectly. Since we want to use Poisson distribution
to find the locations of spikes, so it does not matter.
However, the tricky part of the fitting is on the
granularity we choose. If we choose a very fine
granularity, then it may end up with plentiful spikes.
If we choose a coarse granularity, we may miss some
spikes. To mitigate this problem, we choose 20% largest
values from the dataset and use them as initial values
to find Poisson distributions that fit the data with least
square error measurement. That is the reason that there
are only two Poisson distributions in Figure 2. After
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Figure 2. Poisson Fitting(app ID: 460351323; Store: iTunes
China)
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Figure 3. Poisson Fitting(app ID: 521134765; Store: iTunes
China)

locating all the Poisson distributions, we are able to use
those data as features.

poisson_num_peaks(30) : number of Poisson distribu-
tions we find.

poisson_first_peaks(31) : relative position of first
Poisson distribution (the one with smallest λ), or

min(λ)
number_of _weeks .

poisson_last_peaks(32) : relative position of last
Poisson distribution (the one with largest λ) or

max(λ)
number_of _weeks .

We define the following terms to capture special
weeks:

Definition 9. If during one week, all the ratings are 4 or 5
stars, this week is a positive week; if all the ratings are
1 or 2 stars, this week is a negative week.

Then we select the following features:

num_week(33) : number of weeks of this app’s lifespan
(or till now).

num_pos_week(34) : number of positive weeks.

num_neg_week(35) : number of negative weeks.

perc_pos_week(36) : percentage of positive weeks, or
num_pos_week
num_week .

perc_neg_week(37) : percentage of negative weeks, or
num_neg_week
num_week .

max_pos_week(38) : largest number of continuous
weeks that all of them are positive weeks.

perc_max_pos_week(39) : percentage of largest num-
ber of continuous weeks that all of them are
positive weeks, or max_pos_week

num_week .

max_neg_week(40) : largest number of continuous
weeks that all of them are negative weeks.

perc_max_neg_week(41) : percentage of largest num-
ber of continuous weeks that all of them are
negative weeks, or max_neg_week

num_week .

Even though app version is an environment factor, we
want to capture its affect. We firstly treat each version
of app as an individual app, then normalize it.

var_perc_pos_reviewer_by_week_by_version(42) :
summation of variances of percentage of positive
reviewers by week, then normalized by number

of versions, or

n∑
i=1

var_perc_pos_revieweri

n , where n is
number of versions.

var_perc_pos_reviewer_by_week_by_version(43) :
summation of variances of percentage of negative
reviewers by week, then normalized by number

of versions, or

n∑
i=1

var_perc_pos_revieweri

n , where n is
number of versions.

var_num_reviewer_by_week_by_version(44) : sum-
mation of variances of number of reviewers by
week, then normalized by number of versions, or
n∑
i=1

var_num_revieweri

n , where n is number of versions.

var_avg_rating_by_week_by_version(45) :
summation of variance of average ratings by
week, then normalized by number of versions, or
n∑
i=1

var_avg_ratingi

n .
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var_perc_1_star_rating_by_week_by_version(46)
: summation of variance of percentage of 1 star
ratings by week, then normalized by number of

versions, or

n∑
i=1

var_perc_1_star_ratingsi

n , where n is
number of versions.

var_perc_2_star_rating_by_week_by_version(47)
: summation of variance of percentage of 2 star
ratings by week, then normalized by number of

versions, or

n∑
i=1

var_perc_2_star_ratingsi

n , where n is
number of versions.

var_perc_3_star_rating_by_week_by_version(48)
: summation of variance of percentage of 3 star
ratings by week, then normalized by number of

versions, or

n∑
i=1

var_perc_3_star_ratingsi

n , where n is
number of versions.

var_perc_4_star_rating_by_week_by_version(49)
: summation of variance of percentage of 4 star
ratings by week, then normalized by number of

versions, or

n∑
i=1

var_perc_4_star_ratingsi

n , where n is
number of versions.

var_perc_5_star_rating_by_week_by_version(50)
: summation of variance of percentage of 5 star
ratings by week, then normalized by number of

versions, or

n∑
i=1

var_perc_5_star_ratingsi

n , where n is
number of versions.

We found that in normal apps, the increment of
number of reviewers will lead to increment of number
of each star. Xie and Zhu [13] point out that, in
normal apps, correlation coefficient between number of
reviewers and average rating in each week should be
close to 0, which means these two factors should have
no apparent relation and should have no effect to each
other. Therefore, we could have the following features:

coef_pos_neg_rating_by_week(51) : correlation coef-
ficient between numbers of 1, 2 star ratings and 4,
5 star ratings by week.

coef_1_5_num_rating_by_week(52) : correlation
coefficient between numbers of 1 star ratings and
5 star ratings by week.

coef_2_5_num_rating_by_week(53) : correlation
coefficient between numbers of 2 star ratings and
5 star ratings by week.

coef_3_5_num_rating_by_week(54) : correlation
coefficient between numbers of 3 star ratings and
5 star ratings by week.

coef_avg_num_rating_by_week(55) : correlation
coefficient between average rating and number of
raters by week.

Summary. In this section, we basically elaborate all the
features that we collect and build from our data. Two
kinds of features are included: 1) app’s primary features
and 2) app’s advanced features describing its ratings,
comments and reviewers information. In Section 4.5,
we will discuss features’ rankings by importance and
how we use machine learning algorithms to generate
training model from training data and those features.

4. Training
4.1. Dataset Collection
We built a multi-threaded crawler to collect app
information from three iTunes App Stores located in
US, China and UK, respectively. We crawl three kinds of
webpages in app stores: app overview pages, comment
pages and user profile pages. App overview page
usually contains number of ratings, average ratings,
general description, app permissions, etc.. Comment
page contains the names and IDs of reviewers and
comments’ dates and contents. iTunes(Apple App
Store) also provides the corresponding app version for
each comment. User profile page contains all comments
that each user leaves.

Our data crawling was performed in 2013. Table 1
lists the data size we have for these three app stores.

4.2. App Discrimination For Training Set
Training set is required for any machine learning
problems, because our final hypothesis function f has
to learn from it. To guarantee the performance of our
training model, our training set has two following
requirements:

1. The size of our training set should be large
enough.

2. Training set should be not be biased.

4.3. Abused App Detection For Training Set With
Confirmation Of Existence Of Collusion Groups
We use an algorithm proposed by Xie and Zhu [6] to
detect abused apps for our training set. This algorithm
has the following features:

1. Threshold constants such as number of ratings
N , correlation coefficients between different
attributes, threshold of collusion group size, etc.
are pre-defined.

2. Collusion groups are discovered and confirmed
in order to label abused apps correctly.
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Table 1. Data Size Table. Here Completeness is approximated percentage of apps we have crawled in an app store. Since no data
could be found to show the actual sizes of iTunes App Stores in China and UK, we assume 1 million (the same as the U.S market, as
of 2013) in calculating completeness.

App store Apps Comments Reviewers Total Apps Completeness
iTunes(U.S) 23,616 18,925,438 10,328,118 1 million 2.36%

iTunes(China) 21,831 9,320,807 5,568,424 1 million 2.18%
iTunes(U.K) 10,579 11,761,493 6,413,303 1 million 1.06%

3. Other constraints that could indicate rating
manipulation are considered.

The most important advantage of this algorithm is
that it will confirm the existence of collusion groups.
Therefore the true positive rate of this algorithm is
very high. However, confirmation can be made only
if the collusion group has attacked at least two apps,
presuming that those apps have been crawled by us.
Therefore, if collusion groups that have only attacked
one app, or only one of apps that has been attacked by
collusion groups in our dataset, we will not be able to
detect neither collusion groups and abused apps. Even
this is a problem, with the help of this algorithm, our
training model is still able to know what abused apps
look like and figure out the distinctions between abused
apps and benign(normal) apps.

Picking Apps For Training Set Manually. Section 4.3 only
detects abused apps for training set. In order to both
increase the size of training set and keep training set as
unbiased as possible, we also manually detect abused
apps and pick normal apps from our data set.

The method of manually detecting abused apps is: 1)
looking for rating spikes that are similar to one shown
figure 1 in one version of app; 2) confirming that there
is at least one collusion group that has attacked at least
two apps; 3) taking a look at the content of reviews
left by the members of collusion groups. The usual case
is that malicious users tend to leave short comments
containing less valuable information.

This method has both pros and cons:

Pros the algorithm we use to automatically find abused
apps uses very strong constraints. Our method
could find some abused apps that this algorithm
missed.

Cons we could possibly missed some abused apps since
the review data is too large for human being to
process.

We only label abused apps and put them into
training set and ignore the rests. Therefore, training
set only contains abused apps that can be theoretically
confirmed.

To pick benign apps for training set, we use the
following four methods:
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Figure 4. Number of Each Star (App ID: 585027354, Version:
2.0)

1. Almost all ratings are 4 stars or 5 stars. Figure 4
falls into this case. This app turns out to be Google
Map. Although there is a huge spike in this graph,
it is normal as this app’s numbers of total ratings
by week could be fitted to Poisson distribution
nicely, which indicates that this spike is created
by a normal user behavior. Moreover, the numbers
of 1 stars and 2 stars increase or decrease as the
numbers of 4 and 5 stars go up or down.

2. Apps that are publicly known due to their
good qualities and their high average ratings
(between 4-star and 5-star). It seems very risky to
label those apps as benign ones, but is actually
understandable. If an app’s rating is very high,
such as 4.5 and is always that high, even if
collusion groups exist, it’s unlikely that ε could be
larger than deviation threshold. If the deviation
threshold is ε = 0.5, then it’s impossible for this
app to reach this threshold. “Publicly known”
means the number of ratings N is relatively
large, so it’s extremely difficult to manipulate the
average rating, as shown in equation 4.

3. Apps that are developed by some companies
that have gained public trust. We select the apps
developed by Apple, Google, Microsoft, Facebook,
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Amazon, etc.. Those companies have been playing
with software and its market for a long time
and users usually will download their apps just
because they rely on the services these companies
provide, such as Google Map, Facebook, Pages and
so forth.

4. Apps whose numbers of reviews are less than 100.
As we shown in Section 2.2, we only have 72.93%
confidence to claim that app’s current average
rating is close to its true quality within 0.1. We
select some of those apps and put them into our
training set.

These four methods basically cover popular apps,
unpopular apps, high average rating and low average
rating apps, aiming to reduce the bias of training set.
Readers may question us about the correctness of our
methods, especially method 3. In Section 4.3, we will
justify them.

Training Set Overview. By applying the methods we
proposed above to pick our training set, we have the
following data as our training sets.

We would like to mention that in machine learning
theory, picking training data is very tricky, specially
when we are able to pick data by ourselves. If the
training data are biased, our training model will be
biased as well. To mitigate these potential issues, when
we are picking benign apps, not only did we try to
make sure the apps are benign, but also, from the
whole training set’s perspective, make sure that we are
building a mini version of iTunes app store. That’s why
we put popular apps, unpopular apps, high average
rating apps and low average rating apps, high ranking
apps, low ranking apps, apps that have been published
for a very long time and newly released apps into our
training set.

Ground Truth. Readers may question us about the
absence of ground truth for training set and we do have
the following explanations:

1. Ground truth is not a necessary condition
for machine learning problems. Ground truth
refers to the correctness (accuracy) of a test set’s
classification for supervised learning. However,
many supervised learning do not have ground
truth in the first place. Some banks use machine
learning to decide whether their applicants are
qualified for credit cards or not. The training
set they use is gathered from historical decisions
made by credit officers. However, whether an
applicant is truly qualified for credit cards are
unknown since banks could not have the complete
information about applicants and applicants
could lie about their annual income and other
financial information. In this case, the decision

sometimes is based on how much trust credit
officers have for applicants.

2. Asking ground truth for an opinion based
behavior is difficult. Rating manipulation is
similar to credit card application, whether an app
is abused or not is basically based on how much
trust we have for ratings (or users themselves).
From app market providers’ perspective, if they
trust all the ratings, no app is abused; if they
don’t trust any ratings, all apps are abused. If
some organizations or authorities could possibly
give us the ground truth, it is still based on
their opinions. For any online rating system
research, no researchers have claimed that they
have ground truth[14][15]. Theorem 2 and lemma
1 are our baselines for discriminating abused apps
from benign ones.

3. The goal of using machine learning in this
problem is not ruling out human’s intervention.
Since whether an app is abused or not is
subjective, using machine learning aims to narrow
down the scope of the highly suspicious apps
instead of replacing human’s work, especially
when highly sensitive decisions have to be made.

4. To avoid the arguable discrimination, we only
label abused apps that we are confident with.
High accuracy is good for any machine learning
problems. But for abused app detection, it is
more safe to assume a suspicious app as benign
one than an abused one. Therefore, we also
expect a higher precision (the percentage of
labeling an app as an abused one correctly) in
cross-validation. Readers may question us about
method 2 and 3 we use to pick benign apps
in Section 4.3. But both methods show that
we tend to draw a line between companies
that the public trust and companies who need
rating manipulation to promote their apps.
Including trustworthy companies’ apps into
training data has another advantage: both abused
apps and benign apps’ rating can be affected
by environment factors(defined in definition
2). By doing so, we could indirectly tell the
learning algorithm that some data influenced by
environment factors are noise and should not be
taken into consideration while it is learning the
training data and making classification.

4.4. Training With Random Forest
Random Forest [16] is an ensemble[17] machine
learning algorithm proposed by Leo Breiman. Generally
speaking, random forest is a meta estimator that
fits a number of decision tree classifiers on various
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Table 2. Training Set Table

App store Abused Apps Normal(benign) Apps Total Apps
iTunes US 134 779 913

iTunes China 206 659 865
iTunes UK 91 803 894

sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-
fitting. “Forest” refers to decision tree[18], where each
node corresponds to one of the input variables; each leaf
represents the target variable’s value. “Random” refers
to the method of choosing m variables from total M
variables randomly for each node of the tree and sample
training set for each tree randomly [19]. The algorithm
of how each tree is grown as follows:

1. Sample N training cases randomly from original
training set as new localized training set for
growing the tree, where N is the size of original
training set.

2. For each node in the tree, m input variables are
selected from total M variables and m�M.

3. Each tree is grown to the largest extent possible.

The number of estimators(trees) is not specified.
Increasing number of estimators does not always
guarantee better accuracy [20], so we will try different
numbers of trees when we are training our models.

Among many popular machine learning algorithms
such as SVM [21], neural network [22], deep learn-
ing [23], etc., we choose random forest as our learning
algorithm due to the following several reasons:

1. It runs efficiently on large data set.

2. It gives estimates of what variables are important
in the classification. We will use this advantage to
analyze our features in Section 4.5.

3. The algorithm itself does not overfit when
increasing the number of trees in the forest.
Random forest use “bagging”[24] to select a
subset of training data to grow a tree and use the
rest of them to do internal validation.

To improve our training model [25], we do not use the
training model generated by random forest(a). Instead,
we use feature filter to work with random forest(b)
to select top n features – n is chosen by comparing the
evaluations performed with 5-fold cross-validation. We
use algorithm 1 to select the best top n features.

The inner loop will iterate over different number of
trees(n_estimator) in random forest algorithm to find
the best number of trees for it, as we mentioned in the
beginning of Section 4. n_estimator is always an odd

1 f _score← list()
2 for n← (len(f eature_ranking), 10,−1) do
3 f eature_list ← top_n(f eature_ranking)
4 f _score_local ← list()
5 for n_estimator ← (61, 101, 2) do
6 rf c← RandomForest(n_estimator)
7 avg_f _score← 5_fold_CV(rf c,

f eature_list)
8 Insert avg_f _score into f _score_local
9 end

10 max_f _score← max(f_score_local)
11 Inserts (max_f _score, n) into f _score
12 end
13 Returns best f _score and its n

Algorithm 1: Feature Filter

number in order to make sure classification results are
deterministic since each tree takes a vote for the target
value. The outer loop will select top n (n from 10 to 55 in
this case) and pick the best f-score from the inner loop.

There is a theory behind the feature filtering step. VC-
dimension[26] is introduced to measure the complexity
of the size of hypothesis set H, denoted by |H|. The
more features that we use to training our model,
the larger |H| is, so is the VC-dimension. However,
practically speaking, the smaller VC-dimension will
result in under-fitting and the larger VC-dimension will
result in over-fitting. From random forest’s perspective,
the more features we introduce, the more complicated
each decision tree is. In this case, we might end up
with using too many features to learn training set and
these features will form a very specific concept, which
has poor generalization. If we do not include enough
number of features, the decision tree is very simple. In
this case, those features will form a very board concept
that will cover many negative instances. Feature filter
can solve this problem by iterating all the topN features
and find a training model that is neither under-fitting
nor over-fitting.

When we get the best testing results (highest f-score
in this case), we select this training model as our final
hypothesis h, as we discussed in Section 3.1, and we use
h to classify new abused apps from residual data. The
whole training is done with scikit-learn[27].
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4.5. Feature Importance
As we mentioned in Section 4.4, random forest could
estimates the importance of each feature. Feature
importances are generated during the training process.
Therefore, it is not a separated procedure from training.
But analyzing features can be very helpful when we
want to know more about the data and figure out which
features contribute more in the training model.

A popular feature importance measuring method
was proposed by Leo Breiman[16]. The essence of this
method is to rank the error rate of each forest grown
with different composition of features by calculating
gini index [28].
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Figure 5. US iTunes app store feature ranking by importance

US iTunes App Store Feature Ranking. Figure 5 shows the
feature ranking by importance in US iTunes app store.
All the importance values of features are normalized.
The higher ranking the feature has, the more error
the training model will generate without this feature.
By depicting the feature ranking, we are able to see
which features play important role during abused

app detection and we can also give some reasonable
explanations over the ranks of first 10 features.

1. num_dev: in US iTunes app store, abused apps
are usually developed by small companies who
developed a few apps. We manually inspect the
developer websites of some abused apps in the
training set and find that usually those websites
are ill-designed and have poor user interface.
Those companies are not well-known and are
recognized as small companies.

2. perc_helpfulness: users in U.S app store usually
like to give feedback on other users’ comments.
Helpfulness is a very effective way to reflect
the usefulness of comments. To speed up their
attacking process, attackers usually leave some
simple and uninformative comments, which draw
little attention of normal users. Moreover, iTunes
ranks the comments not only by comment dates,
but also by helpfulness ratio. Therefore, the more
informative comments will gain more feedbacks.

3. perc_pos_reviewer: as we suggested in Section
2.2, to manipulate the average rating as effective
as possible, malicious users tend to give high
ratings(4 or 5) each time. This feature is a strong
indication of existence of malicious users and
collusion groups.

4. helpfulness_ratio_avg: besides perc_helpfulness,
this feature describes the percentage of agrees. An
uninformative comments even though gain some
feedback, but they are usually negative feedback.
In other words, informative and genuine com-
ments will have higher average helpfulness ratio
but fake comments left by attackers will have
lower value.

5. var_num_rating_by_week_by_version: apps
with low value of this feature will be in safe area.
High value of this feature could be suspicious as
the existence of collusion groups could result in
this, even we still need other features to confirm
our suspicion because environment factors are
strong noises. Advertising or dropping price
could also lead to this high variance.

6. var_num_rating_by_week_by_version: similar
to var_num_rating_by_
week_by_version but ignore the app version
factor.

7. num_extr_pos_reviewer: similar to
perc_pos_reviewer. These two features together
indicate the high number of reviewers, which is a
necessary condition of abused app.
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8. perc_extr_pos_reviewer: similar to
perc_pos_reviewer, but this feature is a stronger
indication of existence of malicious users and
collusion groups since extreme positve reivewer is
a reviewer who has given 4 or 5 stars at least 3
times.

9. total_rater: usually large number of total raters
leads to large number of reviewers, which is a
necessary condition of abused app.

10. perc_neg_reviewer: lower value of this feature
makes apps more suspicious. We found that,
in most cases, malicious users and collusion
groups promote apps instead of demoting other
developers’ apps. Lower value of this feature
suggests the larger number of normal users
(neither negative users nor positive users) and
positive users.
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Figure 6. China iTunes app store feature ranking by importance

China iTunes App Store Feature Ranking. Figure 6 shows
normalized feature ranking by importance in China

iTunes app store. We next give explanations for top 10
features.

1. perc_pos_reviewer: as discussed in Section 4.5,
high value of this feature strongly indicates the
existence of malicious users and collusion groups.

2. var_num_rating_by_week_by_version: apps
whose numbers of ratings by week are stable are
usually benign ones.

3. perc_extr_pos_reviewer: similar to
perc_pos_reviewer.

4. var_num_rating_by_week: Usually both popular
apps and abused apps share this feature if this
value is relatively large. But apps with low value
of this feature are normal ones.

5. total_rater: identical to that in Section 4.5.

6. num_pos_reviewer: similar to
perc_pos_reviewer.

7. num_extr_pos_reviewer: similar to
num_pos_reviewer.

8. coef_avg_rating_num_by_week: as suggested
in [13], the value of this feature should be
close to 0. High correlation between average
rating and number of reviewers indicates that
there are malicious users and collusion groups
manipulating average rating.

9. coef_pos_neg_rating_by_week: similar to
coef_1_5_rating_by_week.

10. perc_helpfulness: identical to this feature in
Section 4.5.

UK iTunes App Store Feature Ranking. Figure 7 shows
normalized feature ranking by importance in UK iTunes
app store. We will give explanations for top 10 features.

1. perc_helpfulness: same as this feature in Section
4.5.

2. num_dev: same as this feature in Section 4.5.

3. helpfulness_ratio_avg: similar to
perc_helpfulness.

4. perc_pos_reviewer: same as this feature in
Section 4.5 and Section 4.5.

5. num_extr_pos_reviewer: identical to this feature
in Section 4.5.

6. var_num_rating_by_week: even high value of
this feature cannot increase the possibility of
labeling an app as abused app, low value of this
feature could rule out some benign apps and
narrow down our scope.
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Figure 7. UK iTunes app store feature ranking by importance

7. var_num_rating_by_week_by_version: same as
this feature in Section 4.5.

8. num_helpfulness: the more helpfulness, the
more useful comments an app has, because a
large number of useful comments indicates a large
portion of benign users.

9. total_rater: identical to this feature in Section 4.5
and 4.5

10. poisson_first_peak: most apps have one peak
of number of downloads during the first few
weeks. However, if this peak occurs later, this app
becomes suspicious.

Feature Analysis. When we put feature ranking from
those three countries together, we are able to find both
similarities and differences. In this section, we will dive
into those feature and analyze those similarities and
differences.

Similarities: Even though we create training sets
from each dataset separately, we still find that some

features always rank higher than others, which means
those features play significant roles in abused app
detection. The followings are the common features.

1. High values of num_pos_reviewer,
perc_pos_reviewer, num_extr_pos_ reviewer
and perc_extr_pos_reviewer strongly indicate
the existence of malicious users and collusion
group. And this can been seen from all three
datasets. This also confirms our analysis in
Section 2.2 that to effective manipulate an app’s
average rating, malicious users tend to give 5 star,
or at least 4 star and their group size should be
large enough so that their rating could go against
the rest of benign users.

2. As we suggest in theorem 2, only with large
number of total_rater (ranks 9 in iTunes US app
store, 5 in iTunes China app store, 9 in iTunes UK
app store), we could possibly label those apps as
abused ones. If number of total_rater of one app
is too small, we lose our confidence in estimating
app’s true quality, therefore we shall label this app
as normal app.

3. Correlation coefficient related features,
such as coef_1_5_rating_by_week, etc.
and variance related features, such as
var_num_rating_by_week, etc. rank in top 15
in each country. Outlier values of these features
directly indicate the existence of collusion
groups, as by definition, members of collusion
group manipulate average rating during a short
period of time in order to effectively change
average rating and reduce financial cost.

4. Helpfulness related features are important in
abused app detection. Normal users will read
the comments and possibly leave some feedbacks,
while malicious users tend to publish new reviews
in order to manipulate the average ratings.

Differences: Differences seem very obvious. Each
dataset has its own data and we create different training
sets from each of them. Therefore, feature rankings are
different. But feature num_dev draws our attention. As
we described in Section 3.2, num_dev is the number of
applications that a developer develops. Big companies
such as Google, Gameloft, EA, have published many
apps. Therefore they have higher values of num_dev.

However, this feature is critical only in US and UK
iTunes stores but it ranks the 43rd in China app store.
Our guess is that in US and UK app stores, it is more
likely that small companies abuse their apps instead
of big companies; in China app store, even some big
technology companies manipulate their apps’ average
ratings. This guess is confirmed by our abused app data
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in the training set as we found several abused apps are
developed by biggest technology companies in China.

5. Testing
5.1. Performance Metrics
For every machine learning problem, the ultimate goals
are:

1. High precision and recall for training set.

2. Accurate prediction in out-of-sample data.

Usually item 1 is reasonable to reach if the training
model is good enough. But item 2 is relatively difficult
due to the lack of out-of-sample data. Sometimes, even
if we do have out-of-sample data, evaluation is still
impossible as, for supervised learning, those data are
not labeled. In this specific training problem, our goals
are:

1. while pushing precision and recall, precision is
supposed to be better than recall. Precision is
defined as

precision =
∑
true_positive∑

test_outcome_positive
. (5)

In this problem, precision indicates the confi-
dence on classified abused apps. Recall is defined
as

recall =
∑
true_positive∑
total_positive

. (6)

In this problem, recall indicates coverage of our
results. Usually, higher precision will lead to
lower recall, and vice versa [29]. For abused
app detection, we emphasize on higher precision
since we want to make sure we minimize the
probability of labeling benign apps as abused
apps and we may tolerate missing several abused
apps.

2. narrowing down the scope of abused app
detection instead of declaring abused apps. For
app market providers, labeling an abused app
is very serious and sensitive and it always
involves business level decisions. We hope that
our machine learning results could help app
market providers narrow down the scope of
investigation – only have to inspect abused apps
we classify.

5.2. Results
Figure 8 depicts that the precision, recall and f-score
vary from top 10 features to top 55 features (all
features) in iTunes US app store. We have the following
observations:
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Figure 8. iTunes US App Store: Evaluation for Top n Features
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Figure 9. iTunes China App Store: Evaluation for Top n Features
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Figure 10. iTunes UK App Store: Evaluation for Top n Features

1. Generally, as we increase the number of top
features, precision increases slowly while recall
and f-score decrease relatively fast.

2. Precision is always better than recall, which
meets our requirement.

3. When n = 18, both f-score and recall reach their
peaks.

Figure 9 and Figure 10 are our evaluations for iTunes
China app store and iTunes UK app store, respectively.
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Even though the plot is very spiky for iTunes China app
store, we still have the same observations for both UK
and China app stores as for US app store. For Figure
10, even though f-score(n = 10) is slightly better than
f-score(n = 15), we are still willing to choose the latter
one as we refer high precision to high recall. Therefore,
from both figures, we choose top 25 features for iTunes
China app store and top 14 features for iTunes UK app
store.

Table 3 summarizes our results.
After we get our final training models h for each

app store, we can use these training model to classify
apps in residual data. We call the newly found ‘abused
app’ as suspicious app as we have no evidence to prove
those apps are abused ones. Table 4 summarizes our
results. From the table we can see that our coverage in
iTunes UK is relatively larger than other app stores with
9.51% apps labelled as abused app (suspicious) while
the other two stores have around 5% suspicious apps.
These observations are however specific to the datasets
we use.

Classification Result Validation. The question may be
asked after we label some abused(suspicious) apps in
residual data is that how to validate those apps or
how suspicious those apps could be. Though direct
validation is difficult as we have no evidence to show
if those apps are abused or not, here, we present two
additional features to evaluate our results.

Consecutive Reviewer IDs: In Section 2.3, we point
out that some abused apps may contain consecutive
IDs. Here we define consecutive user IDs as if two IDs
rate one app in the same day and the difference between
IDs is less than 1000.
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Figure 11. Consecutive User IDs in iTunes US App Store

Figure 11, 12 and 13 depict the situations of existence
of consecutive IDs in iTunes US, iTunes China and
iTunes UK app stores, respectively. In each figure, x-
axis represents the coverage of consecutive IDs, which
is defined as percentage of consecutive user IDs over
number of users who leave comments for this app. For
instance, ‘<10%’ means that coverage of consecutive
IDs is less than 10%. Y-axis represents the percentage
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Figure 12. Consecutive User IDs in iTunes China App Store
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Figure 13. Consecutive User IDs in iTunes UK App Store

of those apps over the number of apps in residual data.
In the legend, ‘suspicious’ refers to the abused apps
we classified by our training model; ‘abused’ refers to
the abused app in our training set; ’benign’ means the
normal apps in our training data.

We can easily see that some apps contain more
consecutive user IDs than normal apps do. This is
because when we are picking abused apps for our
training set, the algorithm we use will explicitly find
collusion groups that have attacked more than one
apps. It is conceivable that attackers will use same fake
user IDs to launch another attack, which is much easier
and more feasible than finding the same group of real
users to attack another app. A group of fake users often
have consecutive IDs, so those abused apps attacked by
fake users can be more easily detected by our algorithm
and put them into our training set and those abused
apps attacked by real users remain undetected and
discovered by our training models later.

Put these three figures together, we discover that,
in iTunes US and UK, most abused apps are attacked
by indirect formation groups, while in iTunes China,
we are safe to draw conclusion that more than 50% of
abused apps are attacked by direct formation groups
(defined in Section 2.3).

Review Density: Another feature we use to evaluate
our classification results is review density, which is the
percentage of review area. Figure 14 is the number of
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Table 3. Training Model Evaluation Table

App Store Precision Recall F-score Top n Features
iTunes US 91.43% 72.38% 80.52% 18

iTunes China 88.82% 82.94% 85.58% 25
iTunes UK 85.37% 80.28% 82.27% 14

Table 4. Classified Suspicious Apps In Each App Store

App Store # Suspicious Apps # Residual Apps Coverage(%)
iTunes US 1103 22703 4.86%

iTunes China 1123 21056 5.33%
iTunes UK 930 9777 9.51%

reviews vs. week, where blue area is defined as review
area and total area is represented by the square.
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Figure 14. Review Density Example

Usually, abused apps should have low review density.
However, we notice that most apps, no matter they are
benign or abused, will gain lots of reviews in the first
several weeks. That is because usually app stores will
put new apps in a specific section in the front page so
that users may be able to notice them. To mitigate this
issue, we remove the first 5 weeks data for each app.
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Figure 15. Review Density for iTunes US, China, UK App Store

Figure 15 depicts box plots of review density for
iTunes US, China and UK app stores. We can see that,

compared with benign apps, abused apps usually have
lower review density. The suspicious apps that we
classified have similar review density distribution to
that of abused apps. Review densities of benign apps in
China and UK are higher than those in US, which means
US benign apps’ review distributions are less spiky, in
general.

There are some outliers in both suspicious and
abused apps, whose review densities are relatively
large. Nevertheless, it is superficial to say these outliers
are false positive. As we cut out the first 5-week data for
each app, there might be attacking behavior hidden in
the first 5 weeks, which will greatly reduce the review
density if we put those data back. Another possible case
is, if abused apps are successfully promoted, users will
easily find these apps in app store, which leads to many
reviews.

We also randomly picked some suspicious apps
we found and manually investigated their rating
distributions. Even theoretically, it is very difficult for
human being to process those large amount of data and
find useful information from it, we did notice some
skeptical data and figure 16 depicts one of them.
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Figure 16. Suspicious App (app ID: 593313544)
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6. Data Analysis
We have done some data analysis during our training
and result evaluation, but it is worth analyzing the data
we have from different perspectives.

Categories of Abused App. Figure 17 depicts the
percentage of apps of each category in three app stores.
Note that abused apps here include abused apps in
our training set and suspicious apps classified by our
training models.
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Figure 17. iTunes Abused Apps Categories

Though we use different training sets to train our
models, in different countries, game apps are more
likely to be abused than any other categories. In
iTunes US and UK app store, game apps take up more
than 70% and 50%, respectively. Either because there
are more games than other apps or games in iTunes
app store always draw more attention than any other
categories simply because games have more varieties
and many users would like to explore new games and
spend money on them. In this case, promoting a game
app could attract more users’ attention than promoting
a sport app. In China, more (in terms of percentage)
lifestyle apps are abused. It might be because many
coupon companies and e-commerce companies are
competing for market shares.

6.1. Review Content Analysis
If collusion groups focus on manipulating average
scores, to reduce the cost, malicious users usually leave
simple and short reviews. Abused apps here include
both abused apps in the training set and suspicious
apps we classified with our training model. Benign
apps are the rest of apps. Figure 18 depicts the average
length(number of tokens) of review contents for abused
apps and benign apps in iTunes US, UK and China
app stores. The method used to calculate review length
is to tokenize each review content and title without
punctuation. For English, number of tokens is number
of words, while for Chinese, it is the number of
characters. Some comments contain several languages,

US UK China
0

5

10

15

20

25

30

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

T
o
ke

n
s

Abused App
Benign App

Figure 18. Average Review Content Lenght in iTunes US, UK
and China App Store

but with Lucene’s[30] help, our tool is still able to count
the number of tokens correctly.

We have the following three takeaways from this
figure:

1. US and UK users tend to write longer reviews
than users in China. Even English and Chinese
are quite different, by manually inspecting review
contents, we found that US and UK users tend to
describe the apps they purchased in great detail
and share more personal experience. But China
users tend to give a brief judgment and usually
do not share user experience.

2. In iTunes US and UK app stores, compared
with benign apps, the average length (number
of tokens) of comments for abused apps is
nearly half of that for benign apps, which means
malicious users do tend to leave simple and short
comments.

3. In iTunes China app store, we can see that the
average lengths are same for both of abused and
benign apps. That’s because even benign users in
China leave short and simple reviews.

We also calculate the average review lengths of each
star in these three app stores. By inspecting Figures 19,
20 and 21, we have the following observations:

1. The average review lengths of higher rating levels
(4 and 5 stars) are lower than those of lower rating
levels(1 and 2 stars). The higher rating level, the
shorter its reviews are. This is because the higher
rating apps get, the less bugs they have and users
usually use more words to complain and report
bugs in lower level reviews.

2. For iTunes US and UK app stores, average review
lengths for abused apps are always lower than
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Figure 19. Average Review Content Lengths in iTunes US App
Store
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Figure 20. Average Review Content Lengths in iTunes China App
Store
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Figure 21. Average Review Content Lengths in iTunes UK App
Store

benign apps. Our explanation is that there are

some app-promoting websites2 and apps3 are
made for recruiting users to review apps and
pay them. Intuitively, if users are paid to review
an app, their reviews’ quality usually is low,
which means review contents are short, simple,
sometimes meaningless. Those websites do not
require users to leave high ratings, therefore, we
can see that the average lengths of each rating
level for abused apps are always lower. However,
this observation does not fit iTunes China app
store. First of all, we have not found any similar
app-promoting websites in China. Secondly, those
websites use Paypal to refund users, but Paypal is
not popular in China. Therefore, we think users in
China may find difficulty to get paid from those
websites.

7. Related Work
Fake reviews or review spams in traditional online
stores like Amazon, Yelp have been studied a lot.
Jindal et al. [31] investigated fake reviews based on
three typical ones: untruthful opinions which aim at
misleading other users deliberately, reviews on brand
only instead of on product quality and non-reviews
including advertisement, questions, etc. Later, they
further proposed an approach [32] to identify atypical
review patterns by way of finding unexpected rules
and rule group. Li et al. [33] used machine learning
techniques and semi-supervised method, on the basis of
manually labeled fake reviews, to detect unlabeled fake
reviews. Ott et al. [34] emphasized psycholinguistic
methods and text analysis. Their approach takes
standard word and part of speech as the training
data for supervised learning. These researches focus
on discovering individual fake reviews in traditional
market.

However, in app store, since most reviews are short,
it is difficult to differentiate whether a single review
is faked or not. Moreover, individual attack to an app
will not work considering the large number of reviews
toward a single app.

Xie and Zhu [35] studied the underground market of
trading mobile app reviews and proposed an abused
app tracer, which starts from known abused app set
and detects related unknown abused apps by following
commonly reviewed apps and shared reviewers in an
iterative way. In [36], the authors proposed an approach
to identifying attackers of collusive promotion groups
in an app store. Different from our work, their idea is to
exploit the abnormal change of app rankings to identify
promoted apps, and measures their pairwise similarity
to finally identifies the collusive group members,

2https://promodispenser.com/, https://giftmeapps.com/, etc.
3https://itunes.apple.com/app/id688637547?mt=8
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assuming multiple promoted apps have similar ranking
change patterns. Our dataset does not have app daily
ranking change information.

In [13], Xie and Zhu proposed a collusion group
detection algorithm named GroupTie, which measures
the tie strength (similarity) of raters based on their
common rating behavior. The more apps two raters have
commonly rated and the more similar their ratings are,
the more likely they belong to the same collusion group.
They build a relation graph named tie graph and detect
collusion groups by applying graph clustering. In [37],
the authors proposed a system called PADetective to
detect miscreants who are likely to be conducting
promotional attacks. PADetective adopts supervised
learning to characterize promotion attackers with 15
features (e.g., day intervals, semantic similarity), and
then applies the trained model to detect other attackers.
The differences between our work and PADetective
are two-fold. First, PADetective is designed to detect
attackers whereas our approach is to detect promoted
apps. Second, PADetective uses more user features
whereas our approach uses more app features.

8. Conclusion And Future Work
In this paper, we proposed a machine learning based
approach to detecting app rating manipulation. We
extracted 55 features from our data and use random
forest algorithm to rank their importance, so that we are
able to figure out which features are critical in abused
app detection. It turned out that the feature rankings we
get match our definitions and characteristics of abused
app and collusion group, which means our features can
be used to separate abused apps from benign apps well.
To improve training performance in terms of speed and
accuracy, we selected top n features for each app store
and applied our trained models to the data that we
crawled but are not used during the learning procedure,
in order to discover more abused apps. Even though
we lack evidences to prove that average ratings of the
newly discovered abused apps have been manipulated,
by using two more features(consecutive user IDs and
review density), it is reasonable to believe that our
training models have practical merits.

Our future work includes the following.

1. Use unsupervised learning[38] to detect collusion
groups. Since we found that app rating manipula-
tion is always done by large number of malicious
users in a relatively short period of time, unsu-
pervised learning is able to divide all reviews into
different clusters. Therefore, we may find useful
information from those clusters.

2. Nature language processing could be introduced
to analyze the review contents. We could
use sentimental analysis to judge if reviewer’s

comment matches its rating score, which might
be a good way to classify review as malicious
one or benign one. Also, by removing stop
words, we will be able to analyze important
word frequencies and other stuffs. Although
some researchers have done similar researches
before[34][39][31], analyzing review contents
along is less convincing.
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