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Abstract

Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network
infrastructure comes across nowadays. Poor network management, low-priced Internet subscriptions, and
readily available attack tools can be attributed to their rise. The recently emerged software-defined networking
(SDN) and deep learning (DL) concepts promise to revolutionize their respective domains. SDN keeps the
global view of the entire managed the network from a single point, i.e., the controller, thus making the network
management easier. DL-based approaches improve feature extraction/reduction from a high-dimensional
dataset such as network traffic headers. This work proposes a deep learning based multi-vector DDoS
detection system in an SDN environment. The detection system is implemented as a network application
on top of the SDN controller and can monitor the managed network traffic. Performance evaluation is based
on different metrics by applying the system on traffic traces collected from different scenarios. A high accuracy
with low false-positive rate is observed in attack detection for the proposed system.
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1. Introduction
Distributed denial of service (DDoS) attacks results
in unavailability of network services by continuously
flooding its servers with undesirable traffic. Low-
price Internet subscriptions and readily available
attack tools led to a vast increase in volume, size,
and complexity of these attacks in the recent past.
According to the forecast of Cisco Visual Networking
Index (VNI) [1], DDoS incidents will reach up to
17 million in 2020, a threefold increment compared
to 2015. The nature of attacks has also changed to
being multi-vector rather than having a single type of
flooding. A study reported that 64% attacks until mid-
2016 were multi-vectors that include TCP SYN floods
and DNS/NTP amplification combined together [2].
Adversaries or hacktivists use DDoS attacks for
extortion, revenge, misguided marketing, and online
protest. Many financial, public sector, media, and
social entertainment sites are recent victims [3–5]
and suffered from monetary and reputation damages.
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Therefore, detection and mitigation of these attacks
in real-time have become a prime concern for large
organizations. However, detection of DDoS attacks is
a challenging task nowadays due to the following
reasons: i) it is difficult to distinguish the attack traffic
from the legitimate traffic as the attackers craft the
packet headers to make them appear legitimate, ii) a
voluminous traffic due to flash-crowd event is not a
DDoS attack, therefore a detection system should be
able to distinguish it from the attack. iii) to distinguish
a flash-crowd attack from an actual flash-crowd [6].

Recently, both software-defined networking (SDN)
and deep learning (DL) have found several useful
and interesting applications in the industry as well
as the research community. SDN provides centralized
management, global view of the entire network, and
programmable control plane; makes network devices
flexible for different applications. These features of
SDN offer better network monitoring and enhanced
the security of the managed network compared to
traditional networks [7, 8]. On the other hand, DL based
approaches outperformed existing machine learning
techniques when applied to various classification

1

EAI Endorsed Transactions  
on  Security and Safety 

EAI Endorsed Transactions  

 2017 - 1  2017 | Volume 4 | Issue 12 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<ahmad.javaid@utoledo.edu>


Q. Niyaz, W. Sun, and A. Y. Javaid

problems. They improve feature extraction/reduction
from a high-dimensional dataset in an unsupervised
manner by inheriting the non-linearity of neural
networks [9]. Researchers have also started to apply DL
for the implementation of various intrusion detection
systems and observed desirable results discussed in
Section 2. In this work, we implement a DDoS detection
system that incorporates stacked autoencoder (SAE)
based DL approach in an SDN environment and
evaluate its performance on a dataset that consists
of normal Internet traffic and various DDoS attacks.
The motivation behind using DL is to overcome the
above-mentioned challenges in DDoS detection. The DL
model attempts to reduce a large set of features into an
optimal feature set by self-learning and enhances the
detection rate.

The organization of this paper is as follows. Section 2
discusses related work on DDoS detection in an SDN
environment and use of DL for network intrusion
detection. Section 3 gives an overview of SDN and SAE.
In Section 4, we discuss the architecture of our proposed
system. Section 5 presents experimental set-up and
performance evaluation of the system. Finally, Section 6
concludes the paper with future work directions.

2. Related Work
Although a lot of research has been performed in the
implementation of network intrusion detection system
using machine learning techniques [10], we discuss
the related work from two perspectives. First, where
DL has been used for network intrusion detection and
second where DDoS detection is addressed in an SDN
environment.
2.1. Intrusion detection using DL
In [11], Mostafa et al. used deep belief network
(DBN) based on restricted Boltzmann machine (RBM)
for feature reduction with support vector machine
(SVM) as a classifier to implement a network intrusion
detection system (NIDS) on NSL-KDD [12] intrusion
dataset. NSL-KDD is a benchmark network intrusion
dataset to evaluate the performance of an NIDS and
eliminates some of the issues observed in KDD Cup-
99 dataset [13]. In [14], Ugo et al. used discriminative
RBM (DRBM) to develop a semi-supervised learning
based network anomaly detection and evaluated its
performance in an environment where network traffic
for training and test scenarios were different. They
used real-world traffic traces and KDD Cup-99 [13]
intrusion dataset in their implementation. In [15], Gao
et al. used RBM based DBN with a neural network
as a classifier to implement an NIDS on KDD-Cup
99 dataset. In [16], Kang et al. proposed an NIDS
for the security of in-vehicular networks using DBN
and improved detection accuracy compared to previous
approaches. In [17], we implemented a deep learning

based NIDS using NSL-KDD dataset. We employed
self-taught learning [18] that uses sparse autoencoder
instead of RBM for feature reduction and evaluated
our model separately on training and test datasets.
In [19], Ma et al. proposed a system that combines
spectral clustering (SC) and sparse autoencoder based
deep neural network (DNN). They used KDD-Cup99,
NSL-KDD, and a sensor network dataset to evaluate the
performance of their model.

2.2. DDoS detection in SDN environment
In [20], Braga et al. proposed a light-weight DDoS
detection system using self-organized map (SOM) in
SDN. Their implementation uses features extracted
from flow-table statistics collected at a certain interval
to make the system light-weight. However, it has
limitation in handling traffic that does not have any
flow rules installed. In [21], Giotis et al. combined
an OpenFlow (OF) and sFlow for anomaly detection
to reduce processing overhead in native OF statistics
collection. As the implementation was based on flow
sampling using sFlow, false-positive was quite high in
attack detection. In [22], Lim et al. proposed a DDoS
blocking application (DBA) using SDN to efficiently
block legitimately looking DDoS attacks. The system
works in collaboration with the targeted servers for
attack detection. The prototype was demonstrated
to detect HTTP flooding attack. In [23], Mousavi
et al. proposed a system to detect DDoS attacks
in the controller using entropy calculation. Their
implementation depends on a threshold value for
entropy to detect attacks which they select after
performing several experiments. The approach may
not be reliable since threshold value will vary in
different scenarios. In [24], Wang et al. proposed an
entropy based light-weight DDoS detection system
by exporting the flow statistics process to switches.
Although the approach reduces the overhead of flow
statistics collection in the controller, it attempts to
bring back the intelligence in network devices. Another
recent work [25] used DL for intrusion detection in
SDN environment. However, it used NSL-KDD dataset
with only six features for the DL model development
and provided an insight in the integration of the
model within an SDN environment, without an actual
implementation.

Time-series based detection is another approach
towards this direction. Some of the works used this
approach instead of machine learning where detection
takes place by observing changes in traffic parameters
for consecutive time windows. However, this approach
may lead to increased false-positive rate as a small
change or fluctuation may trigger alarms[26, 27].

In contrast to the discussed work, we use SAE based
DL model to detect multi-vector DDoS attacks in SDN.
We use a set of a large number of features extracted
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from network packet headers and then use DL to reduce
this set in an unsupervised manner. We apply our model
to traffic dataset collected in different environments.
The proposed system attempts to detect attacks on
both the SDN control plane and the data plane and is
implemented completely on the SDN controller.

3. Background Overview
We discuss SDN and SAE before describing our DDoS
detection system.
3.1. Software-Defined Networking (SDN)
As discussed earlier, the SDN architecture decouples
the control plane and data plane from network devices,
also termed as ‘switches’, and makes them simple packet
forwarding elements. The decoupling of control logic
and its unification to a centralized controller offers
several advantages compared to the current network
architecture that integrates both the planes tightly.
Administrators can implement policies from a single
point, i.e. controller, and observe their effects on the
entire network that makes management simple, less
error-prone, and enhances security. Switches become
generic and vendor-agnostic. Applications that run
inside a controller can program these switches for
different purposes such as layer 2/3 switch, firewall,
IDS, load balancer using API offered by a controller to
them [29].

Figure 1a shows the SDN architecture with its
different planes and applications. Switches, end hosts,
and communication between them form the data
plane. The controller is either a single server or
a group of logically centralized distributed servers.
The controller can run on commodity hardware and
communicates with switches using standard APIs
called southbound interfaces. One of the de facto
standards for southbound interfaces is OpenFlow (OF)
protocol [30]. The controller servers communicate with
each other using east-westbound interfaces. Network
applications communicate with the controller using
northbound interfaces.

The controller and switches exchange various types
of messages using OF protocol over either a TLS/SSL
encrypted or open channel. These messages set-up
switch connection with the controller, inquire network
status or manage traffic flows in the network. Switches
have flow tables for flow rules that contain match-
fields, counters, and actions to handle traffic flows in
the network. SDN defines flow as a group of network
packets that have same values for certain packet header
fields. The controller installs flow rules for traffic
flows based on the policies dictated by the network
applications.

Flow rule installation takes place in switches either
in reactive mode or proactive mode. The reactive mode
works as follows. When a packet enters a switch, it

looks up for a flow rule inside its flow tables that
matches with the packet headers. If a rule exists for
the packet, the switch takes an action that may involve
packet forwarding, drop or header modification. If
a table-miss happens, i.e., there are no flow rules
for an incoming flow, the switch sends a packet_in
message to the controller that encapsulates packet
headers for the incoming flow. The controller extracts
packet headers from the received message and sends
a packet_out or flow_mod message to switches for the
received packet’s flow. The controller installs flow
rules inside switches using flow_mod messages and
switches perform actions on subsequent packets of
the installed flow, without forwarding them to the
controller. Figure 1b demonstrates the reactive mode
set-up in SDN. Flow rules may expire after a certain
time to manage the limited memory size of switches.
The controller does not install rules in switches.
Instead, it instructs them to forward the packet from
a single or multiple port(s) using packet_out messages.
In contrast, the controller pre-installs flow rules into
switches in proactive mode.
3.2. Stacked Autoencoder (SAE)
Stacked Autoencoder (SAE) is a DL approach that
consists of stacked sparse autoencoders and soft-
max classifier for unsupervised feature learning
and classification, respectively. We discuss sparse
autoencoder before SAE. A sparse autoencoder is a
neural network that consists of three layers in which
the input and output layers contain M nodes, and
the hidden layer contains N nodes. The M nodes at
the input represent a record with M features, i.e., X =
{x1, x2, ..., xm}. For the training purpose, the output layer
is made an identity function of the input layer, i.e., X̂ =
X shown in Figure 2a. The sparse autoencoder network
finds optimal values of weight matrices, U ∈ <N×M

andU ′ ∈ <M×N , and bias vectors, b1 ∈ <N×1 and b1
′ ∈

<M×1 while trying to learn an approximation of the
identity function, i.e. X̂ ≈ X using back-propagation
algorithm [31]. Many different functions are used for
activation of hidden and output nodes, we use Sigmoid
function, g(z) = 1

1+e−z , for the activation of gU,b1
shown

in Eqn. 1:

gU,b1
(X) = g(UX + b1) =

1
1 + e−(UX+b1)

(1)

J =
1
2r

r∑
i=1

‖Xi − X̂i‖2 +
λ
2

(
∑
n,m

U2 +
∑
m,n

U ′2

+
∑
n

b1
2 +

∑
n

b1
′2) + β

N∑
j=1

KL(ρ‖ρ̂j ) (2)

Eqn. 2 represents the cost function for optimal weight
learning in sparse autoencoder. It is minimized using
back-propagation. The first term in the RHS represents
an average of sum-of-square errors for all the input
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(a) Different planes and network applications
in SDN

(b) Reactive traffic flow set-up in SDN [28]

Figure 1. An SDN architecture and basic traffic flow in SDN

Figure 2. A stacked autoencoder based deep learning model

values and their corresponding output values for all
r records in the dataset. The second term is a weight
decay term with λ as the decay parameter to avoid over-
fitting. The last term is a sparsity penalty term that puts
a constraint on the hidden layer to maintain low average
activation values and expressed using Kullback-Leibler
(KL) divergence shown in Eqn. 3:

KL(ρ‖ρ̂j ) = ρlog
ρ

ρ̂j
+ (1 − ρ)log

1 − ρ
1 − ρ̂j

(3)

where ρ ∈ {0, 1} is a sparsity constraint parameter
and β controls the sparsity penalty term. The KL(ρ‖ρ̂j )
becomes minimum when ρ = ρ̂j , where ρ̂j is the average

activation value of a hidden unit j over all the training
inputs.

Multiple sparse autoencoders are stacked with each
other in a way that the outputs of each layer is fed into
the inputs of the next layer to create an SAE. Greedy-
wise training is used to obtain optimal values of the
weight matrices and bias vectors for each layer. For
illustration, the first layer, g, on raw input x is trained to
obtain U , U ′ , b1, b1

′ . The layer g encodes the raw input,
X, using U and b1. Then, the encoded values are used
as inputs to train the second layer to obtain parameters
V , V ′ , b2, b2

′ shown in Figure 2b. This process goes
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further until the last hidden layer is trained. The output
of last hidden layer is fed into a classifier. Finally, all
layers of SAE are treated as a single model and fine-
tuned to improve the performance of the model shown
in Figure 2c.

4. Implementation of DDoS Detection System
In an SDN, attacks can occur either on the data plane
or control plane. Attacks on the former are similar
to traditional attacks and affect a few hosts. However,
attacks on the latter attempt to bring down the entire
network. In this second kind of attack, adversaries
fingerprint an SDN for flow installation rules and
then send new traffic flows, resulting in flow table-
misses in the switch [32]. This phenomenon forces the
controller to handle every packet and install new flow
rules in switches that consume system resources on the
controller and switches. In our previous work [28], we
empirically evaluated the impact of SDN adversarial
attacks on network services. In the current work, we
implement a DDoS detection system as a network
application in SDN to handle attacks for both cases.

Figure 3. A DDoS detection system implemented in SDN

The detection system consists of three modules
as shown in Figure 3: i) Traffic Collector and Flow
installer (TCFI), ii) Feature Extractor (FE), and iii)
Traffic Classifier (TC). It should be emphasized here
that to minimize false-positives, our system relies on
every packet for flow computation and attack detection
instead of sampling flows using some tools such as
sFlow.
4.1. Traffic Collector and Flow Installer (TCFI)
The TCFI module runs concurrently with the FE and TC
modules which are triggered using a timer function. It
examines OF message type for an incoming packet at

TCP UDP ICMP
Src IP Window Src IP Src IP
Dst IP SYN Dst IP Dst IP
Src Port ACK Src Port ICMP Type
Dst Port URG Dst Port ICMP Code
Protocol FIN Protocol Protocol
Data Size RST Data Size Data Size
TTL PUSH TTL TTL

Table 1. Different headers extracted from TCP, UDP, and ICMP
packets

Algorithm 1: TCFI Module
Data: Incoming network packets at the controller
Result: List of extracted packet headers for TCP,

UDP, and ICMP
begin

packets_list ←− ∅
f lows_list ←− ∅
while T imer for the FE is not triggered do

Receive a packet from switch
Store headers in packets_list
if Packet arrives due to flow table miss then

Compute f low for the packet
Compute symmetric flow, symf low, for
f low

if symf low ∈ f lows_list then
Remove symf low from f lows_list
Install flow rule for symf low in
switch(es)

Install flow rule for f low in
switch(es)

else if f low < f lows_list then
Add f low in f lows_list
Output the packet to desired port

else
Output the packet to desired port

the controller. A message type determines the reason
for a packet’s arrival which is either due to a flow
table-miss or an installed flow rule that forwards a
packet towards the controller and desired physical
ports. The TCFI extracts various header fields from
a packet to identify its flow. A flow in TCP or UDP
traffic is a group of packets having same values for
protocol type, source, and destination IP addresses, and
source and destination port numbers. An ICMP flow
has similar header fields, except for port numbers it
has ICMP message type and code. The TCFI extracts
few more header fields from a packet that help in
features extraction from flows. It stores all of these
extracted headers in a list for every packet coming to the
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controller. Table 1 shows the headers for TCP, UDP, and
ICMP traffic that the TCFI extracts. It performs this task
when a packet arrives due to pre-installed flow rules.

However, when a packet arrives due to a flow table-
miss, it performs following tasks in addition to the
one mentioned above. It looks up a symmetric flow
corresponding to the packet’s flow in the flow list.
Two flows are symmetric for TCP or UDP traffic if
the source IP address and port number of one flow
are similar to the destination IP and port number
of the other, and vice-versa. For ICMP traffic, two
flows are symmetric if they are request and response
types. If a symmetric flow exists for an incoming flow,
then it installs forwarding rules for both of them in
SDN switches and removes the symmetric one from
the list. The rules include an action that forwards
packets to desired physical ports and the controller
for the incoming and its symmetric flows. The reason
for installing rules only for symmetric flows is built
on the assumption that attackers, in general, spoof
their IP addresses to prevent responses towards them
from victims. Therefore, the TCFI installs flow rules for
legitimate traffic and avoids any flow table saturation
attacks in switches. If it does not find any symmetric
flow for an incoming packet, it looks up whether a flow
already exists in the list for the same. If a flow exists,
it forwards the packet from switches without installing
any rules. Otherwise, it adds the packet’s flow in the
list and then forwards it. Algorithm 1 shows various
steps involved in the TCFI. Although the algorithm
appears similar to maximum entropy detector in [33],
i) it considers flow in general instead of flags based ii)
a packet arrives at the controller either due to a table-
miss or a forwarding rule towards the controller. iii)
it stores packet headers for each packet arrives at the
controller.

4.2. Feature Extractor (FE) and Traffic Classifier (TC)
The detection system triggers the FE module using a
timer function. The FE takes packet headers from the
packets list populated by the TCFI and extracts features
from them for a set interval and resets the packet list
to store headers for the next interval. Table 2, 3, and 4
show the list of 68 features that the FE extracts for
TCP (34), UDP (20), and ICMP (14) flows, respectively.
We derived this feature set after detailed literature
survey and use SAE to reduce it. The FE computes these
features for all hosts in a network which has incoming
traffic flows for that particular interval. Although we
perform computations on all packets in the network,
we extract features by grouping them in flows. The FE
computes median for a number of bytes and packets per
flow in feature # 9-12, 43-46, and 63-67. It computes the
entropy, H(F), for feature # 8, 14, 16, 18, 20, 42, 48, 50,

# Feature Description
1 # of incoming TCP flows
2 Ratio of TCP flows over total incoming flows
3 # of outgoing TCP flows
4 Ratio of TCP flows over total outgoing flows
5 Ratio of symmetric incoming TCP flows
6 Ratio of asymmetric incoming TCP flows
7 # of distinct src IP for incoming TCP flows
8 Entropy of src IP for incoming TCP flows
9 Bytes per incoming TCP flow
10 Bytes per outgoing TCP flow
11 # of packets per incoming TCP flow
12 # of packets per outgoing TCP flow
13 # of distinct window size for incoming TCP flows
14 Entropy of window size for incoming TCP flows
15 # of distinct TTL values for incoming TCP flows
16 Entropy of TTL values for incoming TCP flows
17 # of distinct src ports for incoming TCP flows
18 Entropy of src port for incoming TCP flows
19 # of distinct dst ports for incoming TCP flows
20 Entropy of dst ports for incoming TCP flows
21 Ratio of dst ports ≤ 1024 for incoming TCP flows
22 Ratio of dst port > 1024 for incoming TCP flows
23 Ratio of TCP incoming flows with SYN flag set
24 Ratio of TCP outgoing flows with SYN flag set
25 Ratio of TCP incoming flows with ACK flag set
26 Ratio of TCP outgoing flows with ACK flag set
27 Ratio of TCP incoming flows with URG flag set
28 Ratio of TCP outgoing flows with URG flag set
29 Ratio of TCP incoming flows with FIN flag set
30 Ratio of TCP outgoing flows with FIN flag set
31 Ratio of TCP incoming flows with RST flag set
32 Ratio of TCP outgoing flows with RST flag set
33 Ratio of TCP incoming flows with PUSH flag set
34 Ratio of TCP outgoing flows with PUSH flag set

Table 2. Features extracted for TCP flows

54, 62, and 68 which is defined as follows:

H(F) = −
n∑
i=1

fi∑n
j=1 fj

× log2
fi∑n
j=1 fj

(4)

where set F={f1, f2, ..., fn} denotes the frequency of each
distinct value. Once the FE extracts these features,
it invokes the TC module implemented using SAE.
It classifies traffic in one of the eight classes which
includes one normal and seven types of DDoS attack
classes based on TCP, UDP or ICMP vectors that
adversaries launch either separately or in combinations.

5. Experimental Set-up, Results, and Discussion
To evaluate our system, we collected network traffic
from a real network and a private network testbed. We
discuss them along with the performance evaluation
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# Feature Description
35 # of incoming UDP flows
36 Ratio of UDP flows over total incoming flows
37 # of outgoing UDP flows
38 Ratio of UDP flows over total outgoing flows
39 Ratio of symmetric incoming UDP flows
40 Ratio of asymmetric incoming UDP flows
41 # of distinct src IP for incoming UDP flows
42 Entropy of src IP for incoming UDP flows
43 Bytes per incoming UDP flow
44 Bytes per outgoing UDP flow
45 # of packets per incoming UDP flow
46 # of packets per outgoing UDP flow
47 # of distinct src ports for incoming UDP flows
48 Entropy of src ports for incoming UDP flows
49 # of distinct dst ports for incoming UDP flows
50 Entropy of dst ports for incoming UDP flows
51 Ratio of dst port ≤ 1024 for incoming UDP flows
52 Ratio of dst port > 1024 for incoming UDP flows
53 # of distinct TTL values for incoming UDP flows
54 Entropy of TTL values for incoming UDP flows

Table 3. Features extracted for UDP flows

# Feature Description
55 # of incoming ICMP flows
56 Ratio of ICMP flows over total incoming flows
57 # of outgoing ICMP flows
58 Ratio of ICMP flows over total outgoing flows
59 Ratio of symmetric incoming ICMP flows
60 # of asymmetric incoming ICMP flows
61 # of distinct src IP for incoming ICMP flows
62 Entropy of src IP for incoming ICMP flows
63 Bytes per incoming ICMP flow
64 Bytes per outgoing ICMP flow
65 # of packets per incoming ICMP flow
66 # of packets per outgoing ICMP flow
67 # of distinct TTL values for incoming ICMP flows
68 Entropy of TTL values for incoming ICMP flows

Table 4. Features extracted for ICMP flows

Figure 4. Home Wireless Network (HWN) for normal traffic
collection

Normal Normal with Attack
Incoming Outgoing Incoming Outgoing

TCP 2501685 6219236 2501685 24581489
UDP 1204789 2395943 1204852 23494744
ICMP 834 1147 834 26309690

Table 5. Number of incoming and outgoing packets for different
protocols in normal and normal along with attack traffic

Traffic class # of records
Training Test

Normal (N) 49179 21076

Attack

TCP (T) 5471 2344
UDP (U) 5273 2260
ICMP (I) 1602 686
TCP & UDP (TU) 4694 2011
TCP & ICMP (TI) 4739 2031
UDP & ICMP (UI) 4437 1902
All (A) 5615 2407

Table 6. Number of records in the training and test datasets for
normal and different attack traffic

results. It is known that the KDD Cup99 dataset
contains several types of attacks including the DDoS
and our system being DDoS focused, this dataset was
not chosen for system evaluation. Similarly, NSL-KDD
was also not selected as it is an improved version of
the KDD Cup99 dataset still having various attacks
including DDoS. In addition, both of these datasets
have a different feature set compared to our derived set
of features.
5.1. Experimental Set-up
We used a home wireless network (HWN) connected
to the Internet for normal traffic collection. The HWN
comprised of around 12 network users connected with
the Internet using their laptops and smart-phones
shown in Figure 4. These users were not uniformly
active for all the time which led to variation in the traffic
intensity. We saved HWN traffic of three days in a Linux
system using tcpdump [34] and port mirroring at a Wi-
Fi access point. The traffic of first two days were used
as normal flows. The traffic of the third day was mixed
with the attack data that we collected separately and it
was labeled as an attack. The motivation behind doing
this was to model scenarios where hosts/networks may
have attack traffic in presence of normal traffic, thus
making the detection task challenging for an IDS. To
mix traffic, we used bit-twist [35] that modifies packet
headers in a traffic trace file. We replaced some IP
addresses with those of found in the attack traffic
trace files. Finally, we replayed the normal and attack
traffic traces together described later in this section.
Table 5 shows the traffic mix for normal traffic along
with the attack traffic. The collected traffic comprises
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data from web browsing, audio/video streaming, real-
time messengers, and online gaming. To collect attack
traffic, we created a private network in a segregated
laboratory environment using VMWare ESXi host. The
private network consists of 10 DDoS attacker and 5
victim hosts. We used hping3 [36] to launch different
kinds of DDoS attacks with different packet frequencies
and sizes. We launched one class of attack at a time so
that it can be labeled easily while extracting features.
After traffic collection in trace files, we created an SDN
testbed on the same ESXi host similar to [37] that
consists of an SDN controller, an OF switch, and a
network host using Ubuntu Linux systems. We used
POX [38], a Python based controller, with our DDoS
detection application running on it in the controller
system and installed OpenvSwitch [39] in the switch
to use it as an OF switch. In the host system, we used
tcpreplay [40] to replay traffic traces for normal and
attack traffic one at a time. We saved features computed
by the FE for each interval in dataset files for the
training of TC module. We set the interval 60s in the
timer function to trigger the FE module for feature
extraction. We referred [20, 21, 41] to set the interval.
Braga et al. [20] used 3s for polling interval, we found
it too frequent for polling and invoking the FE. While
Giotis et al. and Jin et al. used interval of 30s and 20s,
respectively. We concluded that there was no standard
polling interval used in the literature and therefore,
selected a polling interval of 60s. We divided the dataset
files into training and test datasets. Table 6 shows the
distribution of records in the dataset. Traffic features
in the datasets are real-valued positive numbers. We
normalize them using max −min normalization shown
in Eqn. 5, before passing them to the TC module.

Xnorm =
xi − xmin
xmax − xmin

, ∀xi ∈ X (5)

xmin = smallest value in X

xmax = largest value in X

5.2. Results
We evaluated the performance of our system on
the datasets specified in Table 6 using parameters
including accuracy, precision, recall, f-measure, ROC. We
use confusion matrix to calculate precision, recall, and
f-measure. A confusion matrix, M, is an N ×N matrix
where N is the number of classes. Each column in the
matrix represents prediction for a particular class as
all possible classes including the correct class (itself).
Each row represents prediction of all possible classes
as a particular class including that class. The diagonal
elements of the matrix represent the true-positive (TP)
for each class, sum of the matrix elements along a
row excluding the diagonal element represents the
number of false-positive (FP) for a class corresponding
to that row, sum of the matrix elements along a

column excluding the diagonal element represents the
number of false-negative (FN) for a class corresponding
to that column. Following are definitions of various
performance parameters:

• Accuracy (A): percentage of accurately classified
records in a dataset

A =
Accurately classif ied records

T otal records
× 100 (6)

• Precision (P): number of accurately predicted
records over all predicted records for a particular
class. Using the confusion matrix,M, precision for
each class, j, can be defined as follows:

Pj =
T Pj

T Pj + FPj
× 100

=
Mj,j

Mj,j +
∑N
i=1
i,j
Mj,i

× 100 (7)

• Recall (R): number of accurately predicted records
over all the records available for a particular class
in the dataset. Using the confusion matrix, M,
recall for each class, j, can be defined as follows:

Rj =
T Pj

T Pj + FNj
× 100

=
Mj,j

Mj,j +
∑N
i=1
i,j
Mi,j

× 100 (8)

• F-measure (F): It uses precision and recall for the
holistic evaluation of a model and is represented
as the harmonic mean of them. For each class, j, it
is defined as follows:

Fj =
2 × Pj × Rj
Pj + Rj

× 100 (9)

• Receiver Operating Curve (ROC): It helps in
visualizing a classifier’s performance by plotting
the true-positive rate against false-positive rate
of the classifier. The area under the ROC
gives an estimate of an average performance of
the classifier. Higher the area, greater is the
performance.

We used the training dataset to develop the SAE
classification model for the TC module and test
dataset for performance evaluation. First, we developed
the model for 8-class traffic classification including
normal and seven kinds of DDoS attack that occur
in combination with TCP, UDP, and ICMP based
traffic. To make a better comparison, we also developed
separate attack detection models with soft-max and
neural network (NN) which are building blocks of
SAE. As observed from Table 7, the SAE model
achieved better performance compared to the soft-max
and neural network model in terms of accuracy. We
computed precision, recall, f-measure for each traffic
class. Figure 6 shows their values which are derived
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Figure 5. Confusion matrix for 8-class classification in the SAE
model

Figure 6. Precision, recall, and f-measure for 8-class

Figure 7. ROC curve for 8-class classification

from the confusion matrix shown in Figure 5. As seen
from the figure, the model has f-measure value above
90% for normal, TCP, UDP, and UDP with ICMP attacks
traffic. It has comparatively low values of f-measure for
TCP with ICMP and TCP with UDP attacks due to their
classification of other kinds of attacks as observed from

Method Accuracy (in %)
Soft-max 94.30
Neural Network 95.23
SAE 95.65

Table 7. Classification accuracy comparison among soft-max,
neural network, and SAE based models

Classification
Models

Accuracy False-positive
Rate

8-class 95.65% 0.5%
2-class 99.82% 0.3%

Table 8. Accuracy and False-positive Rate for 8-class and 2-
class SAE models

the Figure 5. However, it is observed from the same
figure that the fraction of their classification as normal
traffic is less than 0.2. Figure 7 shows the ROC curve for
8 different classes. From the figure, we observe that the
true positive rate is above 90% with a false-positive rate
of below 5% for all kinds of traffic that results in the
area under the ROC curve close to unity.

We evaluated our model for 2-class classification by
considering all kinds of DDoS attacks as a single attack
class to make a comparison with other works. Due to
the unique nature of this work involving deep learning
based attack detection in an SDN, and unavailability
of existing literature in this specific domain, it was
difficult to compare our work with other works. Figure 9
shows the performance for 2-class classification. The
model achieved detection accuracy of 99.82% with f-
measure values as 99.85% and 99.75% for normal and
attack classes, respectively, derived from the confusion
matrix shown in Figure 8. On the contrary, the two
closely related works [20] and [23], achieved a detection
accuracy of 99.11% in data plane and 96% in control
plane, respectively. It should be noted that both of these
works did not address attack detection in the other
plane. Table 8 shows the accuracy and false-positive
rate for 2-class and 8-class SAE models. The accuracy
and false-positive rate achieved for 2-class model
exceeded some of the multi-agent based computational
intelligence approaches for intrusion detection listed
in [10].

We also measured the computational time for
training and classification in our model using a machine
with Intel (R) Core i7 CPU @ 3.40 GHz processor and 16
GB RAM running Matlab 2016a on Windows 7. Table 9
shows computational time for the training of 81,010
records and classification of 34,717 records specified in
Table 6.
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Training time Classification time
524s .0835s

Table 9. Average computational time for the training and
classification in the SAE model

Figure 8. Confusion matrix for 2-class classification

Figure 9. Accuracy, precision, recall, and f-measure for 2-class
classification

5.3. Discussion
With our DDoS detection system, we identify individ-
ual DDoS attack class and also determine whether an
incoming traffic is normal or attack. A clear advan-
tage in identifying each attack traffic type separately
is enabling the mitigation technique to block only a
specific type of traffic causing the attack, instead of all
kinds of traffic coming towards the victim(s). Although
we implemented a detection system, we separately
extracted features for each host which has incoming
traffic for an interval. Therefore, we can identify the
hosts with normal traffic and the ones with attack
traffic. Accordingly, the controller can install flow rules
inside the switches to block the traffic for a particular
host if it undergoes an attack.

Our proposed system has a few limitations in
terms of processing capabilities. The TCFI and FE
modules collect every packet to extract features and

are implemented on the controller for low false-positive
in detection. However, this approach may limit the
controller’s performance in large networks. We can
overcome it by adopting a hybrid approach that can
either use flow sampling or individual packet capturing
based on the observed traffic in the organizational
network. Another approach that could be employed to
handle DDoS attacks in the data plane is to deploy
the TCFI and FE modules in another host, send all
packets to it instead of the controller for features
processing, and then periodically notify the controller
with extracted features for the TC module. To reduce
the time in feature extraction, we can also apply
distributed processing similar to our another previous
work [42].

6. Conclusion
In this work, we implemented a deep learning
based DDoS detection system for multi-vector attack
detection in an SDN environment. The proposed
system identifies individual DDoS attack class with an
accuracy of 95.65%. It classifies the traffic in normal
and attack classes with an accuracy of 99.82% with
very low false-positive compared to other works. In
the future, we aim to reduce the controller’s bottleneck
and implement an NIDS that can detect different kinds
of network attacks in addition to DDoS attacks such
as network scanning, malware propagation, application
layer attacks. We can use the ensemble-based approach
in distributed settings to efficiently detect various
attacks similar to the approaches discussed in [43–46].
We also plan to use deep learning for feature extraction
from raw bytes of packet headers instead of feature
reduction from the derived features in future NIDS
implementation.
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