
Compact lossy and all-but-one trapdoor functions
from lattice H

Leixiao Cheng1, Quanshui Wu1, Yunlei Zhao2,∗

1School of Mathematical Sciences, Fudan University, Shanghai (200433), China
2School of Computer Science, Fudan University, Shanghai (201203), China

Abstract

Lossy trapdoor functions (LTDF) and all-but-one trapdoor functions (ABO-TDF) are fundamental
cryptographic primitives. And given the recent advances in quantum computing, it would be much desirable
to develop new and improved lattice-based LTDF and ABO-TDF. In this work, we provide more compact
constructions of LTDF and ABO-TDF based on the learning with errors (LWE) problem. In addition, our LWE-
based ABO-TDF can allow smaller system parameters to support super-polynomially many injective branches
in the construction of CCA secure public key encryption. As a core building tool, we provide a more compact
homomorphic symmetric encryption schemes based on LWE, which might be of independent interest. To
further optimize the ABO-TDF construction, we employ the full rank difference encoding technique. As a
consequence, the results presented in this work can substantially improve the performance of all the previous
LWE-based cryptographic constructions based upon LTDF and ABO-TDF.

Keywords: All-but-one trapdoor functions, Homomorphic symmetric encryption, Lattice, Learning with errors, Lossy
trapdoor functions

1. Introduction
It is well known that trapdoor functions (TDFs)
and security under chosen ciphertext attack (CCA
security)[1–3] are very important notions in public-key
cryptosystem.
Injective one-way trapdoor function F specifies, for

each public key pk, a deterministic map Fpk that can be
inverted given an associated trapdoor. It was one of the
first abstract cryptographic primitives, allowing us to
go back to the seminal paper of Diffie and Hellman [4].
TDFs had been constructed only from problems related
to factoring [5–7] prior to the seminal work [8].
Adaptive chosen ciphertext attack deals with active

attacks. Given an encryption of the target message, we
want to guarantee that the adversary cannot obtain
any partial information about the message, even in
the presence of “decryption oracle". Obliviously, the
adversary is not allowed to submit the target ciphertext

HThis research was supported in part by NSFC (Grant Nos.
61472084 and U1536205), National Key R&D Program of China
(No.2017YFB0802000), Shanghai innovation action project No.
16DZ1100200, and Shanghai science and technology development
funds No.16JC1400801.
∗Corresponding author. Email: ylzhao@fudan.edu.cn

itself to the oracle. If the adversary has access to the
decryption oracle only prior to obtaining the target
ciphertext, and the goal of the adversary is to obtain
partial information about the encrypted message, then
this type of attack is called a chosen ciphertext attack.
CCA-secure cryptosystems had been realized based on
problems related to factoring and discrete logs [1, 3, 9–
11] using NIZK proofs but not lattices prior to the work
[8].

The notion of lossy trapdoor functions (LTDF)
was proposed by Peikert and Waters at STOC 2008
[8], which can be viewed as a strictly stronger
powerful primitive than TDF. Informally speaking,
a family of lossy trapdoor functions contains two
computationally indistinguishable types of functions:
injective functions with a trapdoor, and lossy functions
that statistically lose information about their input.
Furthermore, Lossiness implies one-wayness [8]. They
imply many cryptographic primitives such as one-
way trapdoor function [4], collision resistant hash
function [12], oblivious transfer protocol [13], chosen
ciphertext secure public key encryption scheme [1,
3, 8, 14], deterministic public key encryption scheme
[15], OAEP based public key encryption scheme [16],
and selective opening secure public key encryption

1

Research Article
EAI Endorsed Transactions
on Security and Safety

Received on 21 December 2017; accepted on 26 December 2017; published on 28 December 2017

Copyright © 2017 Leixiao Cheng et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.28-12-2017.153517

EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

scheme [17]. LTDF can be constructed based on many
assumptions [8, 16, 18–20] and, in particular, lattice-
based assumption (specifically, the LWE assumption)
[8]. The learning with errors (LWE) problem was
defined by Regev [21], which is a generalization of
the well-known learning parity with noise problem to
moduli larger than 2 [22]. Regev [21] showed that LWE
is hard if the standard lattice problems are hard in
the worst case for quantum algorithms. In fact, lattice-
based constructions are especially desirable in the post-
quantum era, since lattice-based cryptosystems are
commonly believed to be resistant to quantum attacks.
In order to construct CCA-secure cryptosystem

from LTDF, it is more convenient to consider a new
notion called all-but-one trapdoor functions (ABO-
TDF) [8]. In an ABO-TDF collection, each function
has a lot of branches: only a single branch is lossy,
while super-polynomially many branches are injective
trapdoor functions owning the same trapdoor. In the
construction of CCA-secure cryptosystems from ABO-
TDF [8], an injective branch of ABO-TDF corresponds
to the verification key of a one-time signature that
is, in turn, used in forming the ciphertext. As a
consequence, we expect to allow smaller parameters
to support enough branches since super-polynomially
many branches are needed in construction of CCA
secure PKE. The basic relation between the two notions
is revealed in [8]: lossy and ABO trapdoor functions are
equivalent on appropriately chosen parameters. In this
work, following the general paradigm proposed in [8]
we provide improved and more compact constructions
of LTDF and ABO-TDF based on the LWE problem.
As a core building tool we provide a more compact
homomorphic symmetric encryption schemes based
on LWE, which might be of independent interest. To
further reduce the size of the encrypted matrix of
function indices of ABO-TDF, we make use of the
full rank difference encoding (FRD) proposed in [23]
(instead of the pairwise independent hash function
originally used in [8]); The FRD technique not only
reduces the matrix size, but also can allow smaller
system parameters to support super-polynomially
many injective branches in the construction of CCA
secure public key encryption, which further optimize
the construction of ABO-TDF. As a consequence,
the results presented in this work can substantially
improve the performance of all the previous LWE-
based cryptographic constructions based upon LTDF
and ABO-TDF.

2. Preliminaries
For a vector x, x[i] denotes its i-th coordinate. For x ∈ R,
let ⌈x⌉ denote the smallest integer greater than or equal
to x, let ⌊x⌋ denote the largest integer less than or equal
to x, let ⌊x⌉ = ⌊x + 1/2⌋ denotes the nearest integer to

x. For any x, y ∈ R with y > 0 we define x mod y to be
x − ⌊x/y⌋y.
The (i, j)-th entry of a 2 dimensional matrix M is

denoted by mi,j . For any i, j ∈ Z such that i < j, denote
by [i, j] the set of integers {i, i + 1, · · · j − 1, j}. For any
positive integer a, denote by [a] the set of integers
{1, · · · , a}, let Za denote Z/aZ, the elements of which are
represented, by default, as [0, a − 1]. We define T = R/Z,
i.e., the group of reals [0, 1) with modulo 1 addition.
If S is a finite set then |S | is its cardinality, and x← S

is the operation of choosing an element randomly from
S. For any random variable X over R, denote supp(X) =
{x ∈ R|Pr[X = x] > 0}. We use standard notations and
conventions below for writing probabilistic algorithms
and experiments. For a probability distribution D,
x← D denotes the operation of choosing an element
according to D.
We use standard asymptotic (O, o,Ω, ω) notation to

denote the growth of positive functions. We say that
f (n) = Õ(g(n)) if f (n) = O(g(n) logc n) for some constant
c. Let λ denote the security parameter (for constructions
and analyses of LWE-based scheme, we also use the
dimension, denoted l, of the underlying matrix as the
security parameter). We say that a function f (λ) is
negligible, if for every c > 0, there exists a λc, such
that f (λ) < 1/λc for all λ > λc. For two distribution
ensembles {X(λ, z)}λ∈N,z∈{0,1}∗ and {Y (λ, z)}λ∈N,z∈{0,1}∗ , we
say that they are computationally indistinguishable,
denoted {X(λ, z)} c≈ {Y (λ, z)}, if for any probabilistic
polynomial-time (PPT) algorithmD, and for sufficiently
large λ and any z ∈ {0, 1}∗, it holds |Pr [D(λ, z, X)] = 1 −
Pr [D(λ, z, Y)] = 1| is negligible in λ.

2.1. Definitions
In this section, we recall the definitions of crypto-
graphic primitives and cryptosystems, lossy trapdoor
functions (LTDF) and all-but-one trapdoor functions
(ABO-TDF). Then we sketch out and summarize in
Section 8 the constructions of these primitives and
cryptosystems from LTDF and ABO-TDF according to
the results in [8].

Definitions of Cryptographic Primitives and Cryptosys-
tems. We recall the definitions of injective trapdoor
functions, collision resistant and universal one-way
hash functions, strongly unforgeable one-time signa-
ture, and public-key encryption (including security
under chosen-plaintext attack (CPA) and under chosen-
ciphertext attack(CCA)). Let n = n(λ) = poly(λ) denote
the input length of the trapdoor functions.

Definition 1. A collection of injective trapdoor functions
is described by a tuple of PPT algorithms (S, F, F−1),
having the following properties:

1. Easy to sample, compute, and invert with trapdoor: S
outputs (s, t) where s is a function index and t is

2
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

its trapdoor, F(s, ·) computes an injective function
fs(·) over the domain {0, 1}n, and F−1(t, ·) computes
f −1s (·).

2. Hard to invert without trapdoor: for any PPT
inverter A, the probability that A(s, fs(x)) outputs
x is negligible, where the probability is taken
over the choice of (s, t)← S, x← {0, 1}n, and A’s
randomness.

Definition 2. A collection of collision-resistant hash
functions (CRHFs) from length ℓ(λ) to length ℓ′(λ) <
ℓ(λ) is given by a pair of PPT algorithms (Scrh, Fcrh),
where

1. Scrh outputs a function index i;

2. Fcrh(i, ·) computes a function Hi : {0, 1}ℓ(λ) →
{0, 1}ℓ′(λ);

3. for every PPT adversary A, the probability over
the choice of i and the randomness of A that A(i)
outputs distinct x, x′ ∈ {0, 1}ℓ(λ) such that Hi(x) =
Hi(x′) is negligible in λ.

Definition 3. A collection of universal one-way hash
functions (UOWHFs) from length ℓ(λ) to length ℓ′(λ) <
ℓ(λ) is given by a pair of PPT algorithms (Suowhf, Fuowhf),
where

1. Suowhf outputs a function index i;

2. Fuowhf(i, ·) computes a function Hi : {0, 1}ℓ(λ) →
{0, 1}ℓ′(λ);

3. for every PPT adversary A, the probability over
the choice of i and the randomness of A that A(i)
outputs some x′ ∈ {0, 1}ℓ(λ) such that x′ , x and
Hi(x) = Hi(x′) is negligible in λ.

Definition 4. A signature scheme is described by a tuple
of PPT algorithms (Gen,Sign,Ver), which is modeled as
follows:

• Gen outputs a signing key skσ and a verification
key vk.

• Sign(skσ , m) takes as input a signing key skσ and a
message m ∈ M (whereM is some fixed message
space) and outputs a signature σ .

• Ver(vk,m, σ) takes as input a verification key vk,
a message m ∈ M and a signature σ , and outputs
either 0 or 1.

For any (skσ , vk)← Gen and any m ∈ M, we require
Ver(vk,m,Sign(skσ , m)) = 1 for completeness. We can also
relax this notion to require that Ver outputs 1 with
overwhelming probability over all the randomness of
the experiment.
We define the security notion of strong existential

unforgeability under a one-time chosen message attack

by describing an experiment between a challenger and
a PPT adversary algorithm A as follows: First, the
challenger generates a key pair (skσ , vk)← Gen, and
gives vk to A. Then A may query an oracle that
computes Sign(skσ , ·) on a single message m ∈ M of its
choice, receiving a signature σ . Finally,A outputs a pair
(m′ , σ ′). If Ver(vk,m′ , σ ′) = 1, thenAwins. If a signature
query was made by A, we restrict (m′ , σ ′) , (m, σ).
The advantage of A is the probability (over all the
randomness of the experiment) thatAwins. We say that
a signature scheme is strongly unforgeable under a one-
time chosen message attack if no PPT adversary A can
win the above game with non-negligible probability.

Definition 5. A cryptosystem is described by a tuple of
PPT algorithms (G, E ,D) that are modeled as follows:

• G outputs a public key pk and a secret key sk.

• E(pk,m) on input a public key pk and a message
m ∈ M (where M is some message space), and
outputs a ciphertext c.

• D(sk, c) on input a secret key sk and a ciphertext
c, and outputs a message m ∈ M∪ {⊥}, where ⊥
is a distinguished symbol indicating decryption
failure.

For any (pk, sk)← G and any m ∈ M, we require
D(sk, E(pk,m)) = m for completeness. We can also relax
this notion to require that decryption is correct with
overwhelming probability over all the randomness of
the experiment.
We say that a public key cryptosystem is CPA security,

if it is indistinguishability under a chosen plaintext
attack. That is, the views of any PPT adversary A in
the following two experiments indexed by a bit b ∈
{0, 1} are computationally indistinguishable: a key pair
(pk, sk)← G is generated and pk is given to A. Then
A outputs two messages m0, m1 ∈ M, and is given a
ciphertext c∗ ← E(pk,mb), i.e., an encryption of message
mb.
We say that a public key cryptosystem isCCA security,

if it is indistinguishability under an adaptive chosen
ciphertext attack. This notion is similarly defined by
two experiments as described above, the difference is
that the adversary A is additionally given access to an
oracle O that computes D(sk, ·) during part or all of the
game. If the adversary A can only access to the oracle
O before the ciphertext c∗ is given to A, we call it CCA1
security. If the oracleO computesD(sk, ·) throughout the
entire experiment, with the exception that it returns ⊥
if queried on the particular challenge ciphertext c∗, we
call it CCA2 security.

Definitions of LTDF and ABO-TDF. Here we describe the
notions of lossy trapdoor functions (LTDF), and all-but-
one trapdoor functions (ABO-TDF).

3
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

Let n(λ) = poly(λ) denote the input length of the
function, and let k(λ) ≤ n(λ) denote the lossiness of the
collection. For presentation simplicity, we usually omit
the dependence on λ for convenience.

Definition 6. A collection of (n, k)-lossy trapdoor functions
is described by a tuple of (possibly probabilistic)
polynomial-time algorithms (Sltdf, Fltdf, F

−1
ltdf), having

the properties below.

1. Easy to sample an injective function with trapdoor:
Sinj(1λ) outputs (s, t) where s is a function
index and t is its trapdoor. Fltdf(s, ·) computes
a (deterministic) injective function fs(·) over the
domain {0, 1}n, and F−1ltdf(t, ·) computes f −1s (·). If a
value y is not in the image fs({0, 1}n), i.e., if f −1s (y)
does not exist, then the behavior of F−1ltdf(t, y)
is unspecified. Note that some applications may
need to check the output of F−1ltdf for correctness.

2. Easy to sample a lossy function: Sloss(1λ) outputs
(s,⊥) where s is a function index, and Fltdf(s, ·)
computes a (deterministic) function fs(·) over the
domain {0, 1}n whose image has size at most 2n−k .

3. Hard to distinguish injective from lossy: the first
outputs of Sinj(1λ) and Sloss(1λ) are computational
indistinguishable. More formally, letting Xλ
denote the distribution of s from Sinj(1λ), and
letting Yλ denote the distribution of s from
Sloss(1λ), then {Xλ}

c≈ {Yλ}.

As shown in [8], for constructing lattice-based LTDF,
a slightly relaxed definition of lossy TDF is considered,
which is called almost-always lossy TDF. That is, the
output of Sinj describes an injective function fs that F

−1
ltdf

inverts correctly on all values in the image of fs with
overwhelming probability. Namely, the probability (over
the choice of s) that fs is not injective or that F−1ltdf(t, ·)
computes f −1s (·) on some input incorrectly is negligible.
Moreover, the image size of the lossy function fs
generated by Sloss is required to be, with overwhelming
probability, at most 2n−k . In general, the function
sampler cannot check these conditions (i.e., whether
fs(·) is injective , or whether F−1ltdf(t, ·) correctly computes
f −1s (·) for all input), because they are associated with
global probabilities of the generated function. Since
the generation of trapdoor/lossy functions does not
under the control of the adversary, we may make use
of almost-always lossy TDF without affecting security
of all the applications (e.g., CCA-secure encryption),
and the potential advantage of the adversary due
to sampling an improper function is bounded by a
negligible quantity.
The combination of the lossiness and indistinguisha-

bility properties implies that the injective function is
one-wayness, as shown in the following lemma given
in [8].

Lemma 1. Let (Sltdf, Fltdf, F
−1
ltdf) give a collection of

(n, k)-LTDF with k ≥ ω(logλ). Then (Sinj, Fltdf, F
−1
ltdf)

gives a collection of injective trapdoor function. (The
analogous result applies for almost-always collections.)

In order to construct CCA-secure cryptosystem
from LTDF, it is more convenient to consider a new
notion called all-but-one trapdoor function (ABO-TDF)
[8]. In an ABO-TDF collection, each function has
multiple branches. One branch is lossy, while (super-
polynomially) many others are injective trapdoor
functions owning the same trapdoor.

Definition 7. Let B = {Bλ}λ∈N denote a collection of sets
whose elements represent the branches. A collection of
(n, k)-all-but-one trapdoor functions with branch collec-
tion B is described by a tuple of (possible probabilistic)
polynomial-time algorithms (Sabo, Gabo, G

−1
abo), having

the following properties:

1. Sampling a trapdoor function with given lossy
branch: for any b∗ ∈ Bλ, Sabo(1λ, b∗) outputs (s, t),
where s is a function index and t is its trapdoor.

For any b ∈ Bλ distinct from b∗, Gabo(s, b, ·) com-
putes a (deterministic) injective function gs,b(·)
over the domain {0, 1}n, G−1abo(t, b, ·) computes
g−1s,b (·). As above, the behavior of G−1abo(t, b, y) is
unspecified if g−1s,b (y) does not exist.

Additionally, Gabo(s, b∗, ·) computes a function
gs,b∗(·) on the domain {0, 1}n whose image has size
at most 2n−k .

2. Hidden lossy branch: for any b∗0, b
∗
1 ∈ Bλ, the

first output s0 of Sabo(1λ, b∗0) and the first
output s1 of Sabo(1λ, b∗1) are computationally
indistinguishable.

Similar to LTDF, for lattice-based constructions we
consider almost-always ABO-TDF [8], i.e., the injective,
invertible, and lossy properties are required to hold
only with overwhelming probability over the choice of
the function index s.

Remark 1. The basic relation between the two notions is
revealed in [8]: lossy and ABO trapdoor functions are
equivalent if we choose parameters appropriately. The
reader is referred to [8] for more details.

2.2. Probability Distributions
We present the notions of normal distribution over R,
the discrete distribution over Zq, and a standard tail
inequality. Given a positive real number σ > 0, the
normal distribution with mean 0 and variance σ2 (or
standard deviation σ) is the distribution having density
function ρσ (x) = exp(−x2/2σ2)/

√
2πσ2 for x ∈ R. In fact,

the sum of two independent normal variables with

4
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

mean 0 and variances σ2
1 and σ2

2 , respectively, is a
normal variable with mean 0 and variance σ2

1 + σ2
2 .

For a positive real number α > 0, we define Ψα to be
the distribution on T of a normal variable with mean 0
and standard deviation α/

√
2π, reduced modulo 1. For

any probability distribution ϕ : T→ R>0 and a positive
integer q > 0, we define its discretization ϕ̄ : Zq → R>0
to be the discrete distribution over Zq of the random
variable ⌊q · Xϕ⌉ mod q, where Xϕ has distribution ϕ.
For a positive real number σ > 0 and t ≥ 1, let X

be a normal variable with variance σ2, a standard tail
inequality tells that Pr[|X | < tσ] ≥ 1 − exp(−t2).

2.3. The Learning with Errors Problem
The learning with errors (LWE) problem is a classic hard
lattice problem proposed in [21] . The LWE problem
can be viewed as an average-case “unique encoding”
on a certain family of random lattices under a natural
error distribution, and is believed to be hard on the
average even against quantum computer. The following
is almost verbatim from [21] and [8].
On input security parameter λ, for positive integers l

and q, a vector s ∈ Zl
q and some probability distribution

χ on Zq, let Aq,s,χ be the distribution over Zl
q × Zq,

obtained by choosing a ∈ Zl
q uniformly at random

as well as e← χ independently, outputting the pair
(a, ⟨a, s⟩ + e), where all the above are operated in Zq.
The error distribution χ is taken to be the discrete
distribution as specified in Section 2.2.
The goal of the (decisional) learning with errors

problem LWEq,χ in dimension l is to distinguish
the distribution Aq,s,χ for some secret random s←
Zl
q from the uniform distribution over Zl

q × Zq with
non-negligible probability, even if the adversary sees
polynomially many samples and even if the secret
vector s is drawn randomly from χl [24].
The dimension l is the main parameter for the

hardness of LWE. In the rest of this paper, for the
constructions and analysis of LWE-based schemes we
simply let l instead of λ be the security parameter, and
let other parameters like q, α, n, etc., be function of l.
When αq ≥ 2

√
l, this decision problem is at least as hard

as approximating several problems on l-dimensional
lattices in the worst-case to within Õ(l/α) factors with
a quantum algorithm [21] , or via a classical algorithm
for a subset of these problems [25]. We state a fact from
[21] below:

Proposition 1. Let α = α(l) ∈ (0, 1) and let q = q(l) be
a prime such that α · q > 2

√
l. If there exists an

efficient (possibly quantum) algorithm such that solves
LWEq,Ψ̄α

, then there exists an efficient quantum
algorithm for solving the following worst-case lattice
problems:

• SIVP: In any lattice Λ of dimension l, find a set
of l linearly independent lattice vectors of length
within at most Õ(l/α) of optimal.

• GapSVP: In any lattice Λ of dimension l,
approximate the length of a shortest nonzero
lattice vector to within a Õ(l/α) factor.

In fact, to obtain a poly(l) approximate factor,
known algorithms require time and space that are
exponential in l [26], while known polynomial-time
algorithms obtain approximation factors that are
slightly subexponential in l [27, 28]. Thus SIVP and
GapSVP problems appear to be quite hard in the worst
case even for quantum algorithms.
According to [29], for lattice problem in any ℓp

norm, where 2 < p ≤ ∞, the proposition still holds for
substantially the same Õ(l/α) approximation factors
[30]. Moreover, there is a classical reduction from a
variant of the GapSVP problem to LWE for αq ≥

√
l log l

[25].
In the following, we construct our compact lossy

trapdoor functions in terms of LWE problem, without
considering the connection to lattices or the restrictions
of the parameters. Later in Section 6, we will instantiate
the parameters properly to invoke Proposition 1 to
guarantee security, assuming the quantum worst-case
hardness of lattice problems.

3. Compact (Homomorphic) Symmetric Encryption
Scheme Based on LWE
We now construct compact symmetric encryption
scheme based on the hardness of the LWE problem.
This basic scheme has certain limited homomorphic
properties over a small message space, which is enough
for the purpose of constructing LTDF.

3.1. Encrypting Elements.
The message space is Zp for some p ≥ 2. For every
message m ∈ Zp, define cm = m

p ∈ T. Let q > p and g ≥
2 be integers, and let χ denote an unspecified error
distribution that we will instantiate later. The scheme
is as follows:

• Gen(1l): The secret key is a uniform s← Zl
q.

• Enc(m ∈ Zp): It chooses uniform a← Zl
q and

an error term e← χ. Denote ĉm = ⟨a, s⟩ + e +
⌊qcm⌉ mod q ∈ Zq. Define the rounding errors:
u = ⌊qcm⌉ − qcm ∈ [−1/2, 1/2] and u′ = ⌊gĉm/q⌉ −
gĉm/q ∈ [−1/2, 1/2]. The ciphertext is

Es(m, u, u′;a, e):=(a, g(⟨a, s⟩+e+qcm+u)/q+u′) (1)

Here Es(m, u, u′ ; a, e) ∈ Zl
q × Zg . The reason that

we treat u and u′ as explicit input to the

5
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

encryption algorithm, even though they are
usually determined by m, is that we can treat
Es(m, u, u′ ; a, e) as a well-defined expression even
for either u < [−1/2, 1/2] or u′ < [−1/2, 1/2]. We
can also omit them and denote the ciphertext as

Es(m; a, e) := (a, ⌊g(⟨a, s⟩ + e + ⌊qcm⌉)/q⌉). (2)

• Dec(s, c): For c = (a, c′), compute

m′ = ⌊p(c′/g − ⟨a, s⟩/q)⌉ mod p. (3)

Proposition 2. The above encryption scheme is correct.

Proof. For any ciphertext c = Es(m, u, u′ ; a, e), we have

m′ =
⌊
p(c′/g − ⟨a, s⟩/q)

⌉
mod p (4)

=
⌊
m +

p

q
(⟨a, s⟩ + e − ⟨a, s⟩) +

p

q
u +

p

g
u′

⌉
mod p (5)

=
⌊
m +

p

q
e +

p

q
u +

p

g
u′

⌉
mod p. (6)

As long as the absolute |pe/q + pu/q + pu′/g | ≤ p|e|/q +
p/2q + p/2g < 1/2, i.e., (2|e| + 1)p < q(1 − p

g), the decryp-
tion Dec(c, s) is correct.

Proposition 3. The above scheme is homomorphic.

Proof. By a simple calculation, we have

Es(m1, u1, u
′
1; a1, e1) + Es(m2, u2, u

′
2; a2, e2) (7)

=Es(m1 +m2, u1 + u2, u
′
1 + u′2; a1 + a2, e1 + e2). (8)

Furthermore, even without knowing the secret key
under which a ciphertext was created, one can
add any scalar value v ∈ Zp to its plaintext. Let
c = (a, c′) = Es(m, u, u′ ; a, e), define u′′ = ⌊qcv⌉ − qcv ∈
[−1/2, 1/2] and u′′′ = ⌊g⌊qcv⌉/q⌉ − g⌊qcv⌉/q ∈ [−1/2, 1/2],
then

c � v := (a, c′ + ⌊g⌊qcv⌉/q⌉) (9)

= Es(m + v, u + u′′ , u′ + u′′′ ; a, e). (10)

3.2. Encrypting Matrices.
Themessage space isZh×w

p for arbitrary positive integers
h and w. For every message M = (mi,j) ∈ Zh×w

p , we
describe an extension of the symmetric encryption
scheme from encrypting elements to encrypting
matrices.

• Gen(1l): For every column j ∈ [w], choose inde-
pendently sj ∈ Zl

q. The secret key is the tuple S =
(s1, · · · , sw).

• Enc(M ∈ Zh×w
p): For every row i ∈ [h], choose

independently ai ← Zl
q, and forming a matrix

A ∈ Zh×l
q whose i-th row is ai . For every i ∈ [h] and

every j ∈ [w], choose independently error terms
ei,j ← χ, forming an error matrix E = (ei,j) ∈ Zh×w

q .
Denote ĉmi,j

= ⟨ai , sj⟩ + ei,j + ⌊qcmi,j
⌉ mod q ∈ Zq.

Define U = (ui,j) and U′ = (u′i,j) to be matrices
of rounding errors, where ui,j = ⌊qcmi,j

⌉ − qcmi,j
∈

[−1
2 ,

1
2] and u′i,j = ⌊gĉmi,j

/q⌉ − gĉmi,j
/q ∈ [−1

2 ,
1
2].

The encryption of M is

C = ES(M,U,U′ ;A,E), (11)

where ci,j = Esj (mi,j , ui,j , u
′
i,j ; ai , ei,j). Note that the

i-th row shares the same randomness ai , while
the j-th column shares the same secret key sj .
The ciphertext can be expressed as (A,C′), where
c′i,j = g(⟨ai , sj⟩ + ei,j + qcmi,j

+ ui,j)/q + u′i,j .

• Dec(S,C): For C = (ci,j), the decrypted matrix is
M = (mi,j) ∈ Zh×w

p , where mi,j = Dec(sj , ci,j).

Correctness: The correctness is direct from that of the
basic scheme for encrypting elements.
Homomorphism: All linear operations, including

addition of ciphertexts, multiplication and addition by
scalars, can be extended to encrypted matrices based
on the homomorphism of the underlying symmetric
encryption scheme of elements.
In particular, for any x ∈ Zh

p, for an encryption C =
ES(M,U,U′ ;A,E) of some M ∈ Zh×w

p , we have

xC = ES(xM, xU, xU′ ; xA, xE). (12)

Furthermore, for any matrix of scalars V ∈ Zh×w
p

inducing two matrices of rounding errors U′′ and U′′′ ,
we have

C�V = ES(M +V,U +U′′ ,U′ +U′′′ ;A,E). (13)

Lemma 2. For any height and width h,w = poly(l), the
matrix encryption scheme described above produces
indistinguishable ciphertexts under the assumption
that LWEq,χ is hard.

Proof. The proof is almost the same as Lemma 6.2 in [8],
and we omit details here.

Lemma 3. For some positive integer r and α, let E =
(ei,j) ∈ Zn×w

q be an error matrix generated by choosing
independent error terms ei,j ← Ψ̄α . Then except with
probability at most w · 2−r over the choice of E, every
entry of xE has absolute value less than (n + r)αq + n/2
for all x ∈ {0, 1}n.

Proof. The proof is easily extended from that in [29], so
we omit it.

6
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

Remark 2. With our compact encryption scheme,
when encrypting an element m, the resulting cipher-
text is Es(m; a, e) = (a, ⌊g(⟨a, s⟩ + e + ⌊qcm⌉)/q⌉)) ∈ Zl

q ×
Zg , while the ciphertext is Es(m; a, e) = (a, ⟨a, s⟩ + e +
⌊qcm⌉) ∈ Zl

q × Zq in [8], where q ≈ gO(nc), c > 0 is a
constant. The length of our compact LTDF ciphertext is
log q − log g bits shorter than that of the scheme given
in [8].
Similarly, when encrypting an matrix M ∈ Zn×m

p , the
ciphertext in this paper is ES(M;A,E) ∈ Zn×l

q × Zn×m
g ,

which reduces nm log(q/g)-bit length than that of
ES(M;A,E) ∈ Zn×l

q × Zn×m
q in [8], where q ≈ gO(nc), c > 0

is a constant and m = n/⌊log p⌋.

4. Compact LTDF Based on LWE
Let a = ⌊lg p⌋, assume without loss of generality that n is
divisible by a, and letm = n/a. Define amatrixG ∈ Zn×m

p
as follows: in column j ∈ [m], the ((j − 1)a + k)th entry
is 2k−1 ∈ [1, p] for k ∈ [a]. All other entries are zero.
Formally, G is the tensor product Im ⊗ g, where Im is
the identity matrix and g = (1, 2, · · · , 2a−1)T ∈ Za×1

p (we
can also use other integer base b ≥ 2).
For any input vector x ∈ {0, 1}n, we may correspond

x to an unique vector v = (v1, · · · , vm) ∈ Zm
p using the

matrix G; That is, xG = v, and vice versa.
Evaluating the function on x ∈ {0, 1}n involves

homomorphically computing an encrypted linear
product xM, whereM is somematrix being encrypted in
the sampling algorithm. In the injective case, letM = G,
then xG = v, which allows us to recover the entire input
by decrypting v and producing the corresponding x. In
the lossy case, we haveM = 0, then xM = 0 ∈ Zm

p , which
means the output contains only m = n/a ciphertexts,
i.e., less information is leaked via the error terms.
In order to obtain a lossy TDF, we need to ensure that

each decrypted plaintext contains more information
than what might be carried by the error terms of the
corresponding ciphertext. In the following, we describe
our lossy TDF generation, evaluation, and inversion
algorithms formally.

• Sampling an injective/lossy function. The genera-
tor of injective function Sinj(1l) outputs a matrix
encryption

C = ES(G,U,U′ ;A,E), (14)

where S, U, U′ , A, E are chosen as described in
Section 3.2. The function index s is the encryption
C, and the trapdoor information t consists of the
tuple of secret keys S = (s1, · · · , sm).
The generator of lossy function Sloss(1l) generates
a matrix encryption

C = ES(0,U,U
′ ;A,E), (15)

which is the encryption of the all-zeros matrix
0 ∈ Zn×m

p . The function index s is C, and there is
no trapdoor output.

• Evaluation algorithm. On input (C, x) where C
is the function index (an encryption of either
M = G or M = 0) and x ∈ {0, 1}n is an n-bit input
interpreted as a vector, the evaluation function
Fltdf outputs the vector of ciphertexts y = xC.
By the properties of homomorphism, the output y
is

y = ES(xM, xU, xU′ ; xA, xE), (16)

where every ciphertext yj is of the form (xA, y′j) ∈
Zl
q × Zg .

• Inversion algorithm. On input (S, y) where S is the
trapdoor, the inversion function F−1ltdf computes
v = Dec(S, y) ∈ Zm

p , and outputs the unique x ∈
{0, 1}n such that xG = v.

Similar to [8, 29], we now instantiate the parameters
of the above scheme to prove that, conditioned on the
assumption LWEq,χ is hard, our construction describe
a collection of almost-always (n, k)-lossy TDF. For
simplicity, we assume modulus p ≥ 2 is a power of 2 in
the following theorem.

Theorem 1. Let m = n/ lg p, let q ≥ 4pn = 4mp lg p, let g ∈
[4pn, q], where p ≥ 2 is a power of 2, and let χ = Ψ̄α
where α ≤ 1/(16pn) = 1/(16mp lg p).
Then the algorithms described above give a collection

of almost-always (n,k)-lossy TDF under the assumption
that LWEq,χ is hard, where the residual leakage n − k is

n − k ≤ n ·
(
l
m

+ (
l
m

+ 1) logp(
q

p
)
)
. (17)

Note that in order for the residual leakage rate to be
less than 1, we need both m > l and q < p2.

Proof. First we claim that the inversion algorithm F−1ltdf
satisfies, with overwhelming probability over the choice
of C by Sinj, the correctness requirement on all inputs
y = Fltdf(C, x). We note that

y = ES(xM, xU, xU′ ; xA, xE), (18)

by the homomorphic properties.
Letting r = n in Lemma 3, we have |(xE)j | < (n +

r)αq + n/2 ≤ q/4p for every x and j ∈ [m], except with
probability at most m · 2n = negl(l) over the choice of E.
Moreover, note that |(xU)j | ≤ n/2 ≤ q/8p and |(xU′)j | ≤
n/2 ≤ q/8p for all j ∈ [m] by the size of U’s and U′’s
entries. Therefore we have

|
p

q
(xE)j +

p

q
(xU)j +

p

g
(xU′)j | (19)

<
p

q
·
q

4p
+
p

q
·
q

8p
+
p

g
· n
2

(20)

≤1
4
+
1
8
+
1
8
=

1
2
. (21)

7
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

The correctness requirement is satisfied.
We now analyze the lossiness of a lossy function. For

any input x ∈ {0, 1}n, we have

y = ES(0 = x0, xU, xU′ ; xA, xE). (22)

For every j ∈ [m], yj is a ciphertext (xA, y′j) ∈ Z
l
q × Zg ,

where xA is the same randomness for all j and y′j =
g(⟨xA, sj⟩ + (xE)j + 0 + 0)/q + (xU′)j). FixingA, x and j ∈
[m], we have

|
g

q
(xE)j + (xU′)j | <

g

q
·
q

4p
+
n
2
≤

q

4p
+

q

8p
=

q

2p
. (23)

Obviously, the total number of outputs of the lossy
function is at most ql(q/p)m, the logarithm of which
gives an upper bound on the residual leakage n − k:

n − k ≤ l · lg q +m · lg(
q

p
) (24)

= n ·
l lg q
m lg p

+
n
lg p
· lg(

q

p
) (25)

= n ·
(
l
m

+ (
l
m

+ 1) logp(
q

p
)
)
. (26)

(27)

Finally, note that C = ES(G,U,U′ ;A,E) is indistin-
guishable from C = ES(0,U,U′ ;A,E) by Lemma 2 on
the security of matrix encryption; That is, we can not
distinguish lossy function from injective one.

5. Compact ABO-TDF
In order to yield enough branches, the construction
of ABO-TDF in [8] makes use of a family of
pairwise independent hash functions H = {h : Zl

p →
Zm×w
p }, where w = m + 2l, to generate the matrix M =
−h(b∗) ⊗ g for the desired branch b∗. The properties
of the pairwise independent function h ensure that
H = h(b) − h(b∗) have full row rank for any b , b∗,
which suffices for recovering v from the product vH.
The branch set is B = Bl = Zl

p. Note that, with this
approach, the encrypted matrix of function indices
of ABO-TDF is larger than that of LTDF in [8]. We
are wondering whether we can further reduce it? The
answer is yes. To solve this problem, we make use of
the full rank difference (FRD) encoding [23] (instead
of the pairwise independent hash function originally
used in [8]), which not only reduces the matrix size
in our ABO-TDF to get equal to that of our compact
LTDF, but also can allow smaller system parameters to
support super-polynomially many injective branches in
the construction of CCA secure public key encryption.
We first briefly review the full rank difference encoding
technique proposed in [23].

5.1. Full Rank Difference Encoding GFRD of Zm
p to

Zm×m
p

In fact, Cramer and Damgård [23] introduced an
encoding function maps a superpolynomially-sized
domain Fm to matrices in Fm×m with some strongly
injective properties. This encoding notion has then been
updated by [31] to the name “Full-Rank Difference
Encoding". We uses FRD in a similar way to [29] .

Definition 8. Let p be a prime andm a positive integer. We
say that a function GFRD : Zm

p → Zm×m
p is an encoding

with full-rank difference (FRD) if:

1. for all distinct x, y ∈ Zm
p , the matrix GFRD(x) −

GFRD(y) is full rank.

2. GFRD is computable in polynomial time.

The goal in designing GFRD is to construct an additive
subgroup G of Zm×m

p of size pm with all non-zero
matrices in G of full rank. Since for all distinct A,B ∈ G,
the difference A-B is also in G, it follows that A-B is full
rank.
For a polynomial g ∈ Zp[X] of degree at most m − 1,

let coeff(g) ∈ Z1×m
p be the m-row of the coefficient of g.

If g is of degree less than m − 1 we pad the coefficients
vector with zeroes on the right to make it am-vector. Let
f be some polynomial of degreem, irreducible in Zp[X].
Note that for a polynomial g ∈ Zp[X], the polynomial
(g mod f) has degree less thanm, thus coeff(g mod f) ∈
Zm
p .
For any integer m ≥ 2, any input h = (h0, · · · , hm−1) ∈

Zm
p , define gh(X) =

∑m−1
i=0 hix

i ∈ Zp[X], then define
GFRD(h) as

GFRD(h) :=

coeff(gh mod f)
coeff(X · gh mod f)
coeff(X2 · gh mod f)

...
coeff(X(m−1) · gh mod f)

∈ Zm×m

p . (28)

The following theorem in [23] proves that the above
function GFRD is an FRD.

Theorem 2. Let F be a field and f a polynomial in F[X]. If
f is irreducible in F[X] then the function GFRD defined
above is an encoding with full-rank differences.

Moreover, the function GFRD has the following
properties:

1. (GFRD is linear) GFRD(ah1 + bh2) = a · GFRD(h1) +
b · GFRD(h2) for any a, b ∈ Zp,h1,h2 ∈ Zm

p .

2. (The image of GFRD is invertible or zero) For any
vector h , 0, GFRD(h) is invertible, and GFRD(0) =
0.

8
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

5.2. Construction and Analysis of Compact ABO-TDF
As above, let a = ⌊lg p⌋, assume without loss of
generality that n is divisible by a, and let m = n/a.
Define a matrix G := Im ⊗ g, where Im is the identity
matrix and g = (1, 2, · · · , 2a−1)T ∈ Za×1

p (we can also use
other integer base b ≥ 2). Using matrix G allows us to
correspond each the input vector x ∈ {0, 1}n to a unique
vector v = (v1, · · · , vm) ∈ Zm

p by xG = v.
In our construction, instead of using the family of

pairwise independent hash functions, we consider the
full rank difference encoding function GFRD described
in Section 5.1, to generate the matrix M = −GFRD(b∗) ⊗
g for the desired branch b∗. The properties of the
FRD function guarantees that H = GFRD(b) − GFRD(b∗)
is invertible for all b∗ , b, which is enough for the
purpose of recovering v from vH. It turns out to be a
larger branch set B = Zm

p if we fix parameter p, where
m = n/⌊lg p⌋ > l, according to the following instantiated
parameters.This means that we can choose smaller p
in order to support super-polynomially many injective
branches in the construction of CCA secure public key
encryption.
Evaluating the ABO function on an input x ∈ {0, 1}n

involves computing an encrypted linear product vM,
where M is some matrix deciding by the branch
b∗ of the function being evaluated. The explicit
fact that x(M ⊗ g) = vM for any M ∈ Zm×m

p plays an
important role in our construction of ABO-TDF. Let
M = −GFRD(b∗) ⊗ g, then x((GFRD(b) − GFRD(b∗)) ⊗ g) =
v(GFRD(b) − GFRD(b∗)), which allows us to recover the
entire input by decrypting v(GFRD(b) − GFRD(b∗)) and
recovering v, then producing the corresponding x.
Let the branch set B = Zm

p . Let GFRD denote a full rank
difference encoding from B = Zm

p to Zm×m
p as introduced

in Section 5.1. In the following, we describe our ABO-
TDF generation, evaluation, and inversion algorithms
formally.

• Sampling an ABO function. The function genera-
tor Sabo(1l , b∗ ∈ B) outputs a matrix encryption

C = ES(−GFRD(b
∗) ⊗ g,U,U′ ;A,E), (29)

where S, U, U′ , A, E are chosen as described in
Section 3.2. The function index s is the encryption
C, and the trapdoor information t consists of the
tuple of secret keys S = (s1, · · · , sm) and the lossy
branch value b∗.

• Evaluation algorithm. On input (C, b, x) where C
is the function index, b ∈ B is the desired branch,
and x ∈ {0, 1}n is an n-bit input interpreted as a
vector, the evaluation function Gabo outputs the
vector of ciphertexts

y = x(C� (GFRD(b) ⊗ g)). (30)

Let H = GFRD(b) − GFRD(b∗). Then by the proper-
ties of homomorphism, the output y is

y =ES(x(H ⊗ g), x(U+U′′), x(U′+U′′′); xA, xE) (31)

=ES(vH, x(U +U′′), x(U′ +U′′′); xA, xE) (32)

where U′′ and U′′′ are the matrices of rounding
errors induced by the scalar matrix.

• Inversion algorithm. The function G−1abo takes as
input ((S, b∗), b, y), where (S, b∗) is the trapdoor
information, b is the evaluated branch, and y is the
function output. It first computesm = Dec(S, y) ∈
Zm
p . It then computes H = GFRD(b) − GFRD(b∗), if

H is invertible, it computes v = mH−1. Finally, it
outputs the unique x ∈ {0, 1}n such that xG = v.

Theorem 3. Let m = n/⌊lg p⌋, let q ≥ 20pn/3, and let g ∈
[20pn/3, q], where p ≥ 2 is a prime. Let χ = Ψ̄α where
α ≤ 1/(16pn) = 1/(16mp⌊lg p⌋).
Then the algorithms described above give a collection

of almost-always (n,k)-ABO-TDF with branch set Zm
p ,

under the assumption that LWEq,χ is hard, where the
residual leakage n − k is

n − k ≤ n ·
(
l
m
·

lg p
lg p − 1

+ (
l
m

+ 1) log p
2
(
q

p
)
)
. (33)

Proof. The proof is similar to that of Theorem 1. First
we claim that the inversion algorithm G−1abo satisfies,
with overwhelming probability over the choice of C by
Sabo(1l , b∗), the correctness requirement for all branches
b , b∗ and on all inputs y = Gabo(C, b, x). We note that

y=ES(vH=x(H⊗g), x(U+U′′), x(U′+U′′′); xA, xE), (34)

by the homomorphic properties. For every j ∈ [m],
yj is a ciphertext (xA, y′j) ∈ Z

l
q × Zg , where xA is the

same randomness for all j and y′j = g(⟨xA, sj⟩ + (xE)j +
q(vH)j /p + (xU)j + (xU′′)j)/q + (xU′)j + (xU′′′)j .
Letting r = n in Lemma 3, we have |(xE)j | < (n +

r)αq + n/2 ≤ q/5p for every x and j ∈ [m], except with
probability at most m · 2n = negl(l) over the choice of
E. Moreover, note that |(xU)j | ≤ n/2 ≤ 3q/40p and so do
|(xU′)j |,|(xU′′)j |,|(xU′′′)j |, for all j ∈ [m] by the size of
their entries. Therefore we have

|
p

q
(xE)j+

p

q
((xU)j+(xU

′′)j)+
p

g
((xU′)j + (xU′′′)j)| (35)

<
p

q
·
q

5p
+
p

q
· (

3q
40p

+
3q
40p

) +
p

g
· (n
2
+
n
2
) (36)

≤1
5
+

3
20

+
3
20

=
1
2
. (37)

Hence the decryption Dec(S, y) outputs m = vH.
We have v = mH−1, since H = GFRD(b) − GFRD(b∗) is
invertible for all b , b∗. The input vector x ∈ {0, 1}n can
be recover correctly from the vector v.

9
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

We now analyze the lossiness. For any input x ∈
{0, 1}n, we have

y = ES(0 = x(0 ⊗ g), x(U+U′′), x(U′+U′′′); xA, xE). (38)

For every j ∈ [m], yj is a ciphertext (xA, y′j) ∈ Z
l
q × Zg ,

where xA is the same randomness for all j and y′j =
g(⟨xA, sj⟩ + (xE)j + 0 + 0)/q + (xU′)j + (xU′′′)j). FixingA,
x and j ∈ [m], we have

|
g

q
(xE)j + (xU′)j + (xU′′′)j | (39)

<
g

q
·
q

5p
+ n ≤

q

5p
+

3q
20p

<
q

2p
. (40)

Obviously, the total number of outputs of the lossy
function is at most ql(q/p)m, the logarithm of which
gives an upper bound on the residual leakage

n − k ≤ l · lg q +m · lg(
q

p
) (41)

= n ·
l lg q

m⌊lg p⌋
+

n
⌊lg p⌋

· lg(
q

p
) (42)

≤ n ·
(
l
m
·

lg q
lg p − 1

+
1

lg p − 1
· lg(

q

p
)
)

(43)

= n ·
(
l
m
·

lg q
lg p − 1

+ log p
2
(
q

p
)
)

(44)

= n ·
(
l
m
·

lg p
lg p − 1

+ (
l
m

+ 1) log p
2
(
q

p
)
)
. (45)

Finally, note that the hidden lossy branch property
follows from Lemma 2 on the security of matrix
encryption.

6. Parameter Instantiation and Worst-Case
Connection
We now associate the security of our constructions
with the worst-case quantum hardness of lattice
problems [21, 25] in a black box manner, by properly
instantiating all the parameters n, p, q, etc., and by
invoking Proposition 1. The relationship between any
desired constant lossiness rate K ∈ (0, 1), where larger K
means more information is lost, and the corresponding
approximation factor of the lattice problems is what we
are interested in.
The following theorem is similar to the one in [8],

except that the parameters we choose might not be
the same as that of [8]. For completeness, the proof is
presented here.

Theorem 4. For any constant K ∈ (0, 1), the construction
of Section 4 with prime q gives a family of almost-
always (n, Kn)-lossy TDF for all sufficiently large n,
assuming that SIVP and GapSVP are hard for quantum
algorithms to approximate to within Õ(lc) factors,
where c = 2 + 3

2(1−K) + δ for any desired δ > 0.

The same applies for the construction in Section 5.2,
with prime q and p, of almost-always (n, Kn)-all-but-one
TDF.
In particular, by Proposition 1, the constructions

are secure assuming that either SIVP or GapSVP are
hard for quantum algorithms to approximate to within
Õ(l2+c) factors.

Proof. Using the notation from Theorem 1 (likewise
Theorem 3), we let p = nc1(p ∈ [nc1 , (n + 1)c1] is a
prime) and let n = lc3 for some constant c1 > 1, c3 > 1
respectively that we will be set later, and let r = n, α =
1/(16pn). In order to invoke Proposition 1 (connecting
LWE to lattice problems), we need to use some

q > 2
√
l/α = 64pn

√
l = 64pn1+1/(2c3). (46)

Therefore we set c2 = 1 + 1/(2c3), so we may take q =
O(pnc2).
Now invoking Theorem 1 (likewise Theorem 3), we

get that the lossy function has n − k at most

n ·
(
c2
c1

+ ϵ

)
= n ·

(
1 + 2c3
2c1c3

+ ϵ

)
, (47)

for any ϵ > 0 and sufficiently large n. By Proposition
1, LWE is hard for our choice of parameters, assuming
the lattice problems are hard to approximate within
Õ(l/α) = Õ(l1+c3(c1+1)) factors for quantum algorithms.
With the constraint on the residual leakage as 1+2c3

2c1c3
<

1 − K , we get that c1 > 1+2c3
2c3(1−K) . This implies that the

exponent in the lattice approximation factor may be
brought arbitrarily close to 1 + c3 +

1+2c3
2(1−K) . Then under

the constraint that c3 > 1, the exponent may be brought
arbitrarily close to 2 + 3

2(1−K) .

7. Comparison
Let the parameters n, p, q, g, r, α be chosen as
above. Compared to the LWE-based LTDF and ABO-
TDF proposed in [8], our compact LTDF and ABO-
TDF constructions reduce both the size of public key
(i.e.the function index matrices) and that the vector
of ciphertexts. Furthermore, the number of branches
in our ABO-TDF is larger that of [8] if we fix p,
which means that we can choose smaller p in order to
support super-polynomially many injective branches in
the construction of CCA secure public key encryption.
The comparison is summarized in Table 1, where D-
value stands for the corresponding difference value.

In [8], the construction of LWE-based LTDF yields
public key C ∈ Zn×l

q × Zn×m
q and m-dimension vector of

ciphertexts y where yj ∈ Zl
q × Zq. While the construc-

tion of LWE-based ABO-TDF in [8] yields public keyC ∈
Zn×l
q × Zn×w

q , where w = m + 2l, and w-dimension vector

10
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

Table 1. <Comparison between LTDF/ABO-TDF in [PW08] and those in this paper.>

[PW08] this paper D-value

size of pk (LTDF) (nl + nm) log q nl log q + nm log g nm log(q/g)

size of pk (ABO-TDF) (nl + nw) log q nl log q + nm log g 2nl log q + nm log(q/g)

size of ciphertexts (LTDF) m(l + 1) log q m(l log q + log g) m log(q/g)

size of ciphertexts (ABO-TDF) w(l + 1) log q m(l log q + log g) (2l2 + 2l) log q +m log(q/g)

number of branches (ABO-TDF) pl pm pm − pl

of ciphertexts y where yj ∈ Zl
q × Zq. The branch set is

B = Zl
p.

In this paper, the construction of LTDF yields
public key C ∈ Zn×l

q × Zn×m
g and m-dimension vector

of ciphertexts y = xC where yj ∈ Zl
q × Zg . While the

construction of ABO-TDF yields public key C ∈ Zn×l
q ×

Zn×m
g and m-dimension vector of ciphertexts y where

yj ∈ Zl
q × Zg . The branch set is B = Zm

p .
Take the size of public key as example, the difference

value (D-value) between [PW08] and this paper is
nm log(q/g) bits. When p = nc1 , q = O(pnc2), g = 4pn
and m = n/⌊lg p⌋, we have nm log(q/g) > n logO(nc2−1),
which can substantially improve the performance. As
for the number of branches, under the same choice of
p, the difference value between ABO-TDF in [8] and
that in this paper is pm − pl . When prime p ∈ [nc1 , (n +
1)c1], n = lc3 for some constants c1 > 1 and c3 > 1, we
have m = n

⌊log p⌋ ≈
lc3

c3c1 log l
= l · lc3−1

c3c1 log l
> l, which means

more branches under the same p. Alternatively, we only
need smaller p (in turn smaller l since p ∈ [lc3c1 , (lc3 +
1)c1]) to support enough branches.

8. The Applications of LTDF and ABO-TDF
In this section, for the completeness of this paper,
we show that LTDF and ABO-TDF can be used
for black-box constructions of many primitives and
cryptosystems (including those in Section 2.1), by
summarizing the facts in [8] without proofs. It needs to
be emphasized that the performance of primitives and
cryptosystems constructed from LTDF and ABO-TDF in
this paper is much better that in [8] according to the
results in Section 7.

8.1. Injective Trapdoor Functions and Hard-Core
Functions
Lemma 1 says that we can construct injective trapdoor
functions from LTDF in the standard sense, that is, easy
to invert with a trapdoor but hard to invert otherwise.
A family of functions H = {h : D → R} from a

domain D to range R is said to be universal if, for
every distinct x, x′ ∈ D, Prh←H[h(x) = h(x′)] = 1/ |R|. Let
(Sltdf, Fltdf, F

−1
ltdf) give a collection of (n, k)-LTDF. Let H

be an universal family of hash functions from {0, 1}n
to {0, 1}ℓ, where ℓ ≤ k − 2 lg(1/ϵ) for some negligible ϵ =
negl(λ). Define the following distributions:

• X0: choose (s, t)← Sinj, h←H, and x← {0, 1}n.
Output (s, h, Fltdf(s, x), h(x)).

• X1: choose (s, t)← Sloss, h←H, and x← {0, 1}n.
Output (s, h, Fltdf(s, x), h(x)).

• X2: choose (s, t)← Sloss, h←H, x← {0, 1}n, and
r ← {0, 1}ℓ. Output (s, h, Fltdf(s, x), r).

• X3: choose (s, t)← Sinj, h←H, x← {0, 1}n, and
r ← {0, 1}ℓ. Output (s, h, Fltdf(s, x), r).

Lemma 4. Let X0, X1, X2, X3 be as defined above, then

{X0}
s≈ {X1}

s≈ {X2}
s≈ {X3}. (48)

In particular, H is a family of hard-core functions for
the lossy collection.

8.2. Universal One-Way and Collision Resistant
Hashing
Note that a collection of CRHFs is also a collection
of UOWHFs. Assume that the input length n(λ) =
λ equals the security parameter. Let (Sltdf, Fltdf, F

−1
ltdf)

give a collection of (n, k)-LTDF {fs : {0, 1}n → R} having
arbitrary range R and residual leakage n − k ≤ n/2 − d
for some d = ω(logλ). Let H = {h : R → {0, 1}ℓ} be an
universal family of hash functions, where n − d ≤ ℓ < n.
We describe the algorithms for the collection of

CRHFs as follows:

• Scrh chooses (s, t)← Sinj and disposes of t. It also
chooses h←H. The index of the hash function is
i = (s, h).

• Fcrh(i, x) on input index i = (s, h) and x ∈ {0, 1}n,
outputs h(Fltdf(s, x)) ∈ {0, 1}ℓ.

Lemma 5. The algorithms (Scrh, Fcrh) described above give
a collection of collision-resistant hash functions from
{0, 1}n to {0, 1}ℓ.

11
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

L. Cheng, Q. Wu, Y. Zhao

8.3. Cryptosystems and Oblivious Transfer
In fact, CPA-secure cryptosystem implies oblivious
transfer and multiparty computation protocol. We omit
the details here and only describe the results of CPA-
and CCA-secure construction. Reader may refer to [29]
for more information.

CPA-Secure Construction. Let (Sltdf, Fltdf, F
−1
ltdf) give a

collection of (n, k)-LTDF (or almost always LTDF). Let
H = {h : {0, 1}n → {0, 1}ℓ} be an universal family of hash
functions, where ℓ ≤ k − 2 log(1/ϵ) for some ϵ = negl(λ).
The message space is {0, 1}ℓ and the construction is as
follows.

• Key generation. G generates an injective trapdoor
function as (s, t)← Sinj, and chooses a hash
function h←H. The public key pk = (s, h), and
the secret key sk = (t, h).

• Encryption. E on input a public key pk = (s, h)
and a message m ∈ {0, 1}ℓ. It chooses x← {0, 1}n
uniformly at random. The ciphertext is c = (c1, c2),
where

c1 = Fltdf(s, x), c2 = m ⊕ h(x). (49)

• Decryption.D on input a secret key sk = (t, h) and
a ciphertext c = (c1, c2). It computes x = F−1ltdf(t, c1)
and outputs c2 ⊕ h(x).

Theorem 5. The algorithms (G, E ,D) described above give
a CPA-secure cryptosystem.

CCA-Secure Construction. First, let (Gen,Sign,Ver) be
a strongly unforgeable one-time signature scheme,
where the public verification keys are in {0, 1}ν . Let
(Sltdf, Fltdf, F

−1
ltdf) give a collection of (n, k)-LTDF (or

almost always LTDF). Let (Sabo, Gabo, G
−1
abo) give a

collection of (n, k′)-ABO trapdoor functions (or almost
always ABO-TDF) with the branch set B = {0, 1}ν , which
contains the set of signature verification keys. Let H =
{h : {0, 1}n → {0, 1}ℓ} be an universal family of hash
functions, where 0 < ℓ ≤ k − 2 log(1/ϵ) for some ϵ =
negl(λ).
Next, we require that the total residual leakage of the

lossy and ABO collections is

r + r ′ = (n − k) + (n − k′) ≤ n − κ, (50)

where κ = κ(n) = ω(logn). The message space is {0, 1}ℓ
and the construction is as follows.

• Key generation. G generates an injective trapdoor
function as (s, t)← Sinj, an ABO-TDF having
lossy branch 0ν via (s′ , t′)← Sabo(0ν), and chooses
a hash function h←H. The public key pk =
(s, s′ , h), and the secret key sk = (t, t′ , pk).

• Encryption. E on input a public key pk =
(s, s′ , h) and a message m ∈ {0, 1}ℓ. It generates
one-time signature keypair (vk, skσ)← Gen, then
chooses x← {0, 1}n uniformly at random. Next it
computes

c1=Fltdf(s, x), c2=Gabo(s
′,vk, x), c3=m⊕h(x). (51)

Finally, it signs the above tuple (c1, c2, c3) as σ ←
Sign(skσ , (c1, c2, c3)).
The output ciphertext is

c = (vk, c1, c2, c3, σ). (52)

• Decryption. algorithm D on input a secret
key sk = (t, t′ , pk = (s, s′ , h)) and a ciphertext c =
(vk, c1, c2, c3, σ). First, it checks that whether
Ver(vk, (c1, c2, c3), σ) = 1; if not, it outputs ⊥. It
then computes x = F−1ltdf(t, c1) and checks that
whether c1 = Fltdf(s, x) and c2 = Gabo(s′ , vk, x); if
not, it outputs ⊥. Finally, it outputs m = c3 ⊕ h(x).

Theorem 6. The algorithms (G, E,D) described above give
a CCA-secure cryptosystem.

References
[1] Naor, M. and Yung, M. (1990) Public-key cryptosystems

provably secure against chosen ciphertext attacks. In
Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, STOC ’90 (New York, NY,
USA: ACM): 427–437. doi:10.1145/100216.100273, URL
http://doi.acm.org/10.1145/100216.100273.

[2] Rackoff, C. and Simon, D.R. (1992) Non-interactive
zero-knowledge proof of knowledge and chosen cipher-
text attack. In Proceedings of the 11th Annual Inter-
national Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’91 (London, UK, UK: Springer-
Verlag): 433–444. URL http://dl.acm.org/citation.

cfm?id=646756.705376.
[3] Dolev, D., Dwork, C. and Naor, M. (2000) Nonmal-

leable cryptography. SIAM J. Comput. 30(2): 391–437.
doi:10.1137/S0097539795291562, URL https://doi.

org/10.1137/S0097539795291562.
[4] Diffie, W. and Hellman, M.E. (1976) New directions in

cryptography. IEEE Transactions on Information Theory
22(6): 644–654.

[5] Rivest, R.L., Shamir, A. and Adleman, L. (1978) A
method for obtaining digital signatures and public-key
cryptosystems. In Communications of the ACM: 120–126.

[6] Rabin, M.O. (1979) DIGITALIZED SIGNATURES AND
PUBLIC-KEY FUNCTIONS AS INTRACTABLE AS FAC-
TORIZATION (Massachusetts Institute of Technology).

[7] Paillier, P. (1999) Public-key cryptosystems based on
composite degree residuosity classes. In International
Conference on Theory and Application of Cryptographic
Techniques: 223–238.

[8] Peikert, C. and Waters, B. (2008) Lossy trapdoor
functions and their applications. In Fortieth ACM
Symposium on Theory of Computing: 187–196.

12
EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

Compact LTDF and ABO-TDF from lattice

[9] Sahai, A. (1999) Non-malleable non-interactive zero
knowledge and adaptive chosen-ciphertext security. In
Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, FOCS ’99 (Washington, DC, USA:
IEEE Computer Society): 543–553. URL http://dl.

acm.org/citation.cfm?id=795665.796535.
[10] Cramer, R. and Shoup, V. (1998) A practical public

key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Proceedings of the 18th
Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’98 (London, UK, UK: Springer-
Verlag): 13–25. URL http://dl.acm.org/citation.

cfm?id=646763.706340.
[11] Cramer, R. and Shoup, V. (2002) Universal hash proofs

and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In Proceedings of the International
Conference on the Theory and Applications of Cryptographic
Techniques: Advances in Cryptology, EUROCRYPT ’02
(London, UK, UK: Springer-Verlag): 45–64. URL http://

dl.acm.org/citation.cfm?id=647087.715842.
[12] Goldreich, O. (2001) The Foundations of Cryptography -

Volume 1, Basic Techniques (DBLP).
[13] Goldreich, O. (2004) Foundations of Cryptography:

Volume 2, Basic Applications (Cambridge University
Press).

[14] Rackoff, C. and Simon, D.R. (1991) Non-interactive
zero-knowledge proof of knowledge and chosen cipher-
text attack. In International Cryptology Conference on
Advances in Cryptology: 433–444.

[15] Boldyreva, A., Fehr, S. and O’Neill, A. (2008) On
notions of security for deterministic encryption, and
efficient constructions without random oracles. In
Conference on Cryptology: Advances in Cryptology: 335–
359.

[16] Kiltz, E. and OąŕNeill, A. (2010) Instantiability of RSA-
OAEP under Chosen-Plaintext Attack (Springer Berlin
Heidelberg).

[17] Hofheinz, D. (2011) Possibility and impossibility results
for selective decommitments. Journal of Cryptology 24(3):
470–516.

[18] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A.

and Segev, G. (2010) More constructions of lossy and
correlation-secure trapdoor functions. In International
Workshop on Public Key Cryptography: 279–295.

[19] Xue, H., Li, B., Lu, X., Jia, D. and Liu, Y. (2013)
Efficient lossy trapdoor functions based on subgroup
membership assumptions. (Berlin: Springer), 235–250.
doi:10.1007/978-3-319-02937-5_13.

[20] Seurin, Y. (2014) On the Lossiness of the Rabin Trapdoor
Function (Springer Berlin Heidelberg).

[21] Regev, O. (2005) On lattices, learning with errors,
random linear codes, and cryptography. In Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC ’05 (New York, NY, USA: ACM): 84–93.
doi:10.1145/1060590.1060603, URL http://doi.acm.

org/10.1145/1060590.1060603.
[22] Blum, A., Kalai, A. and Wasserman, H. (2000) Noise-

tolerant learning, the parity problem, and the statistical
query model. CoRR cs.LG/0010022. URL http://

arxiv.org/abs/cs.LG/0010022.
[23] Cramer, R. and Damgård, I. (2009) On the

amortized complexity of zero-knowledge protocols.
In Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings: 177–191.
doi:10.1007/978-3-642-03356-8_11, URL https://

doi.org/10.1007/978-3-642-03356-8_11.
[24] Applebaum, B., Cash, D., Peikert, C. and Sahai,

A. (2009) Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In
Advances in Cryptology - CRYPTO 2009, International
Cryptology Conference, Santa Barbara, Ca, Usa, August 16-
20, 2009. Proceedings: 595–618.

[25] Peikert, C. (2009) Public-key cryptosystems from the
worst-case shortest vector problem: extended abstract. In
ACM Symposium on Theory of Computing: 333–342.

[26] Ajtai, M., Kumar, R. and Sivakumar, D. (2001) A sieve
algorithm for the shortest lattice vector problem. In
Proceedings of the Thirty-third Annual ACM Symposium
on Theory of Computing, STOC ’01 (New York, NY,
USA: ACM): 601–610. doi:10.1145/380752.380857, URL
http://doi.acm.org/10.1145/380752.380857.

[27] Lenstra, H.W., Lenstra, A.K. and Lovfiasz, L. (1982)
Factoring polynomials with rational coeficients: 515–
534.

[28] Schnorr, C. (1987) A hierarchy of polynomial time
lattice basis reduction algorithms. Theor. Comput. Sci.
53: 201–224. doi:10.1016/0304-3975(87)90064-8, URL
https://doi.org/10.1016/0304-3975(87)90064-8.

[29] Peikert, C. and Waters, B. (2011) Lossy trapdoor
functions and their applications. SIAM J. Comput. 40(6):
1803–1844. doi:10.1137/080733954, URL https://

doi.org/10.1137/080733954.
[30] Peikert, C. (2007) Limits on the hardness of lattice prob-

lems in ℓp norms. In IEEE Conference on Computational
Complexity: 333–346.

[31] Agrawal, S., Dan, B. and Boyen, X. (2010) Efficient
Lattice (H)IBE in the Standard Model (DBLP).

13 EAI Endorsed Transactions

 2017 - 1 2017 | Volume 4 | Issue 12 | e4

