
Binary Code Similarity Detection through LSTM and
Siamese Neural Network
Zhengping Luo1,∗, Tao Hou2, Xiangrong Zhou3, Hui Zeng3, Zhuo Lu2

1Department of Computer Science & Physics, Rider University, Lawrenceville, NJ 08648, USA.
2Computer Science Engineering and Electrical Engineering, University of South Florida, Tampa FL 33620, USA.
3Intelligent Automation Inc., Rockville MD 20855, USA.

Abstract

Given the fact that many software projects are closed-source, analyzing security-related vulnerabilities at the
binary level is quintessential to protect computer systems from attacks of malware. Binary code similarity
detection is a potential solution for detecting malware from the binaries generated by the processor. In this
paper, we proposed a malware detection mechanism based on the binaries using machine learning techniques.
Through utilizing the Recurrent Neural Network (RNN), more specifically Long Short-Term Memory (LSTM)
network, we generate the uniformed feature embedding of each binary file and further take advantage of the
Siamese Neural Network to compute the similarity measure of the extracted features. Therefore, the security
risks of the software projects can be evaluated through the similarity measure of the corresponding binaries
with existing trained malware. Our real-world experimental results demonstrate a convincing performance in
distinguishing out the outliers, and achieved slightly better performance compared with existing state-of-the-
art methods.

Received on 27 May 2021; accepted on 10 September 2021; published on 14 September 2021

Keywords: Malware detection, binary analysis, LSTM, Siamese Neural Network, similarity detection

Copyright © 2021 Zhengping Luo et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.14-9-2021.170956

1. Introduction

Identification of bugs or other security-related vul-
nerabilities in software projects still remains to be a
challenging problem in software security. Even though
intensive work has been conducted by both the research
and industry communities[1–3], the security of soft-
ware projects still poses great concerns given that many
software projects are used by millions or even billions of
users. A small bug, such as the failure of checking buffer
boundaries could lead to disastrous consequences [4, 5].

These kinds of vulnerabilities in software projects
could be resulted from mistakes of trusted program
developers, or from malicious attackers. Thanks to
the intellectual property or security concerns, many
of those software providers will not disclose their
source code to the public. Therefore, from the users’
perspective, analyzing the binary code when executing

∗Corresponding author. Email: zhengpingluo@mail.usf.edu

the software becomes their practical option to evaluate
the security of software projects.

Binary code similarity detection could be applied
to different scenarios, while malware detection is
one of them, other applications include plagiarism
detection[2] and vulnerability detection [6]. Extensive
efforts [1, 7, 8] have been given to detect similar
functions from binaries that generated from different
platforms, such as x86, ARM and MIPS.

The general working flow of binary code similarity
detection [7–9] focuses on extracting representative
local feature vectors for each node in the control
flow graphs (CFGs) that disassembled from binary
code. Various statistical features and block features
are proposed to represent the graph blocks [7, 9].
Then these local feature vectors are encoded into
embeddings such that further similarity comparison
techniques could be applied to perform the detection
or comparison. One important type of the similarity
comparison method is the graph-based matching

1

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<zhengpingluo@mail.usf.edu>

Z. Luo et al.

algorithms. For example, using bipartite matching
algorithm to calculate the similarity of two CFGs [7].

However, graph matching-based approaches have
two shortcomings according to [10]: (i) It is less
flexible for the similarity functions approximated
through graph matching techniques to adapt to other
applications; (ii) The graph matching algorithms suffer
from low efficiency, thus leads to the inefficiency of the
similarity detection process. These two shortcomings
make the graph matching-based method challenging
to be applied in a broader perspective. There are
also some deep neural network-based methods have
been proposed to embed the local features [1, 6, 10,
11]. However, most of them involves training a deep
graph neural network or sematic-aware neural network,
which usually complicates the problem especially in
terms of computation cost.

In binary code similarity detection, the first step is
to extract local features and encode them into embed-
dings. Given the shortcomings of graph matching-based
approaches and deep neural network-based methods, in
this paper, we propose a new embedding method based
on long short-term memory (LSTM) recurrent neural
network (RNN), which is widely applied to sequence
classification [12] and pattern-based feature selection/-
classification [13].

The sequence of local block features can be fed
into an LSTM recurrent neural network. Through
multiple rounds of training, the final cell state of the
LSTM recurrent neural network will learn much of
the information from all the previous trained input
and output pairs, which could be utilized as the
final embeddings for the binaries and be further
analyzed using classification techniques. As we found
in our experimental results that LSTM network-based
methods often could achieve similar performance with
less training and computation cost.

For the similarity comparison, the traditional meth-
ods including Euclidean distance comparison and clas-
sification methods focus on the statistical character-
istics of two inputs. However, the embedding we
extracted from graph-based embedding methods or
neural network-based methods often contain much
information that traditional methods fall short of cap-
turing. To overcome this weakness and fully capture
the information, we employ Siamese neural network
[14] to perform the similarity measurement. The main
advantage of the Siamese neural network is it employs a
unique structure to learn the embedding such that the
semantic similarity could be learned thus placing the
same classes of the input close together.

Our main contributions can be summarized as
follows:

• We proposed an LSTM recurrent neural network-
based model to embed local feature vectors of

CFGs disassembled from binaries, which captures
the general information of all the historical blocks
and the dependence information, also makes
the following similarity detection process more
efficient.

• We employed Siamese neural network to perform
the similarity measurement in binary code
similarity detection, which learns the embedded
semantic information and demonstrates multiple
advantages compared with existing traditional
similarity detection methods such as Euclidean
distance.

• Comprehensive experiments are conducted based
on real-world collected binary dataset and the
experimental results validated our mechanism
has a slightly better performance with existing
methods such as graph matching-based methods
in terms of detection accuracy and less compu-
tation cost compared with existing deep neural
network-based methods.

The related work are stated in Section 2. In
Section 3, we elaborate the details of our designed
framework of binary code similarity detection based on
LSTM recurrent neural networks and Siamese neural
networks. Experimental results and analysis are given
in Section 4 and Section 5 concludes the paper.

2. Background and Related Work
In this section, we give the background information of
the LSTM networks, Siamese neural networks and the
related works of binary code similarity detection.

2.1. LSTM Recurrent Neural Networks
One of the main advantages of recurrent neural
networks is they have loops within their structure
that allowing information to persist. However, ordinary
RNN models have vanishing gradients and exploding
gradients problems[15], LSTM offers a decent solution
to this two problems through using constant error
carousels, which could protect and control the cell state.
As a special kind of RNN, LSTM has the capability
of learning long-term dependencies. The basic form of
LSTM consists of a chain of repeated neural networks.
The structure of the repeated module is shown as in Fig.
1. In the module, xt is the input at time t and ht denotes
the corresponding output value. Ct−1 represents the cell
state, which runs straight down the entire LSTM model.

At the first part of the LSTM modules, it aims to
decide what kind of information in the cell state from
previous time will be deleted through a Sigmoid layer,
mathematically it is shown as:

2

ft = σ (Wf · [ht−1, xt] + bf), (1)

EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Binary Code Similarity Detection through LSTM and Siamese Neural Network

X +

X
X

tanh

tanh

Ct-1 Ct

ht-1 ht

ft it Ot

xt

ht

X +

X
X

tanh

tanh

Ct-1 Ct

ht-1 ht

ft it Ot

xt

ht

X Pointwise Operation Neural network layer

gt

Figure 1. The repeated module in a standard LSTM networks

in which Wf , bf is the parameters of the corresponding
neural network layer (consists of a bunch of Sigmoid
functions) and ht−1 is the previous output.

The following part of LSTM module is to decide what
kind of new information we need to add to the cell
state. The operations within the repeated model could
be shown mathematically as:

it = σ (Wi · [ht−1, xt] + bi),

gt = tanh(Wg · [ht−1, xt] + bg).
(2)

Similarly, Wi ,Wg , bi , bg are the corresponding neural
network layer parameters.

After the two operations on the cell state, the new
cell state is updated through a pointwise operation from
ft , it and gt through:

Ct = ft ∗ Ct−1 + it ∗ gt , (3)

which includes both the added information from
current time and also compromised some historical
information. The output of the LSTM is denoted as:

ht = σ (Wo · [ht−1, xt] + bo) ∗ tanh(Ct), (4)

in which tanh(Ct) is used to push the cell state values to
be between -1 and 1.

LSTM networks have been widely applied to various
real-world applications and achieved state-of-the-
art performances such as speech recognition [16],
handwriting recognition [17]. In [18], LSTM networks
are used to process localized features and perform the
classification to detect stealthy malware. In this paper,
we employed LSTM to extract general information from
local features of each block in disassembled CFGs of
binaries and further use the information for similarity
detection.

2.2. Siamese Neural Networks
Siamese neural networks were first introduced by
Bromley and LeCun in the early 1990s, in which

Siamese neural networks are designed for verification
of signatures written on a pen-input tablet [19]. It has
been successfully applied in image recognition [14], gait
recognition [20].

Siamese neural networks consist of a class of neural
network architectures, in which they have two or
more identical sub-networks, each of them has the
same configuration in terms of the parameters and
weights. In the training process, the parameter is
updated concurrently across all sub-networks. Their
values will be mirrored thus all the parameter values
across different sub-networks will still be the same.
This kind of architecture can be used to compare the
similarity of different inputs.

Siamese neural networks have some impressing
advantages compared to tradition neural networks
[21, 22]. For example, Siamese neural networks are
more robust to class imbalance as new classes of
data can be added to the network without training
the whole model again. Siamese networks focus on
learning embedding (in the deeper layer), further the
same classes/categories of the inputs are placed close
together, which we denote it as semantic similarity.
Another important advantage is that Siamese networks
can be easily trained using standard machine learning
techniques on pairs sampled from source data and
provide a competitive approach that does not rely upon
domain-specific knowledge.

The training process of Siamese neural networks
involves training a pairwise model, thus traditional
entropy loss cannot be used in this case. Triplet loss is
a usual loss function used in Siamese neural networks,
in which a baseline (anchor) input is compared to a
positive (truthy) input and a negative (false) input. The
optimization objective of the training is to minimize the
distance between the baseline input and the positive
input while maximizing the distance between the
baseline input and the negative input, as shown in Fig.2.

Baseline

Negative

Positive

Baseline

Negative

Positive

Training

Baseline

Negative

Positive

Baseline

Negative

Positive

Training

Figure 2. The Triplet loss minimizes the distance between
the baseline and positive inputs while maximizing the distance
between the baseline and the negative inputs.

Mathematically the triplet loss can be formulated as:

L(a, p, n) =
1
2
{max(0, m +D2(a, p) −D2(a, n))}, (5)

in which D(u, v) = |u − v|2, and m is the desirable
distance for dissimilar pair (p,n).

3 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Z. Luo et al.

Another typical type of loss function is the
contrastive loss. The logic behind contrastive loss is
similar to the triplet loss. Contrastive loss is used to
learn embedding in which two similar points have a
smaller Euclidean distance while two dissimilar points
have a large Euclidean distance. Given an input training
pair (x1, x2), we have the label: y = 0 if (x1, x2) is similar
and 1 if (x1,x2) is dissimilar pair. The optimization
objective in terms of contrastive loss can be written as:

min L(x1, x2) =
1
2

(1 − y)D2 +
1
2
y max{0, m −D}2, (6)

in whichD is the Euclidean distance of the outputs from
the two networks given inputs x1, x2.

Given the advantages of Siamese Neural Networks,
the embeddings we obtained through LSTM neural
networks could be fed into the Siamese Neural Network
to perform similarity measurement such that the
embedding information could be fully considered.

2.3. Binary Code Similarity Detection
Binary code similarity detection is quite challenging
while also rewarding. It is challenging because
the binaries generated from software projects could
vary enormously due to the diversity of processors,
compilers, optimization level options, and platforms.
It is rewarding because we could evaluate the security
of the software without the source code, which often is
unavailable.

Many of existing works regarding to binary code
similarity detection follows a similar logic [7, 10]. It
first recovers CFGs from the binaries and then based on
the statistical and structural information of the CFGs
to perform graph matching. To achieve scalability and
high accuracy concurrently, graph-embedding based
methods such as [9] focused on learning an indexable
feature representation from the CFGs. Based on the
embeddings of test binaries and the embeddings of
known bugs or benchmarks, a similarity score could
be measured, further paves the way for evaluating the
security vulnerabilities.

A basic block distance-based method, named as
discovRE, is proposed in [7]. The general idea behind
discovRE is to calculate similarity between functions
based on CFGs disassembled from binaries. However,
this process is computationally expensive if not being
processed appropriately. To minimize the computation
cost, discovRE employs an efficient pre-filter to identify
a small set of candidate functions and then use them to
search for similar functions in the binaries that need to
be evaluated.

Another type of methods is the Neural network-
based methods [9–11], which focuses on using neural
networks to embedd CFGs. The main advantage of this
type of methods is they could alleviate the limitations

of graph matching-based approaches, such as high
computation cost. Further the embeddings can be used
for malware detection or classification.

Grieco et al [6]. proposed a vulnerability discovery
tool, named VDiscover. They combined static and
dynamic analysis with machine learning techniques to
predict the vulnerabilities among binaries. The basic
idea of the approach is that it applies both static and
dynamic analysis to extract features from a large-scale
of binary programs. These features are further studied
and used to predict vulnerabilities by machine learning
techniques.

In this paper, we propose a new embedding method
based on LSTM networks, which has the advantage
of containing the general information of all the
previous inputs and the dependency information. Thus,
the feature vectors of each block within the CFGs
could be processed and embedded into an indexable
representation. Our experimental results show that this
method is computationally efficient compared with the
existing graph neural network-based methods[10].

In addition, our method of using Siamese Neural
Network to measure the similarity based on the cell
state of the LSTM network is different from existing
studies [14, 19, 20]. To the best of our knowledge,
we are the first to use the cell state of LSTM in
CFG embedding and use Siamese Neural Network to
measure the similarity of such embedding, which has
the advantage of measuring the semantic similarity of
the overall local feature information of CFGs.

3. Binary Code Similarity Detection based on
LSTM and Siamese Neural Network
We elaborate the motivation and the proposed binary
code similarity detection framework using LSTM and
Siamese neural network in this section.

3.1. Motivation
Existing methods of performing binary code similarity
detection mainly focused on two perspective: graph
matching-based methods and deep neural network-
based methods. Although graph matching-based meth-
ods are widely discussed in binary code similarity
detection[7, 9]. The shortcomings are also obvious [10]:
(i) It is less flexible for the similarity functions approx-
imated through graph matching techniques to adapt to
other applications; (ii) The graph matching algorithms
suffer from low efficiency, thus leads to the inefficiency
of the similarity detection process.

Another perspective is the deep neural network-
based methods [1, 6, 10, 11], which often involves
training a deep graph neural network or semantic-
aware neural network. This could complicate the
problem especially in terms of computation cost when
the input dimensions increase.

4 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Binary Code Similarity Detection through LSTM and Siamese Neural Network

In the similarity measurement stage, the traditional
methods including Euclidean distance comparison
and classification methods focus on the statistical
characteristics of two inputs. However, the embedding
we extracted from graph-based embedding methods
and neural network-based methods contain much
information that traditional methods fall short of
capturing. The embedding information of the binaries
requires a more effective method to perform the
similarity comparison.

Based on the above points identified, we propose
an LSTM network-based embedding methods in this
paper to improve the information representation in the
embedding process, and we employ Siamese Neural
Networks to compare the similarity between different
binaries. This strategy does not require graphs, which
avoids the computation cost concerns from graph
computation.

The detailed architecture design using LSTM net-
works to perform embedding and Siamese neural net-
works to conduct similarity comparison is described in
the following subsection.

3.2. Our Proposed Framework
Our proposed method includes three steps: local block
feature extraction, LSTM network-based embedding
and Siamese neural network-based similarity detection.

Local block feature extraction. To perform binary code
similarity detection, we need to first extract corre-
sponding characters from binary files and transform
these characters into a matrix or vector representation.
In this work, we use angr [23], a multi-architecture
binary analysis toolkit, to disassemble the binaries and
get the desired CFGs. Further we could perform embed-
ding based on the CFGs.

angr is capable of analyzing binaries in both static
and dynamic disassembling styles. Therefore there are
two types of CFGs that can be disassembled: static
CFGs (CFGFast) and dynamic CFGs (CFGEmulated).
CFGFast uses static analysis to generate the CFGs of
binaries. It is faster but might lose a small number of
control-flow transitions which can only be resolved at
execution time. CFGEmulated generates CFGs through
symbolic execution, which is usually slower, especially
for large binaries. In our experiment, we found that
usually CFGFast achieves better performance in terms
of computation cost.

The disassembled files recovered through the CFG-
Fast operation of an example binary is shown as in the
following, we disassembled the binary file in a depth-
first order:

<CFGNode _init [11]>

0x80489c4: push ebp

0x80489c5: mov ebp, esp

0x80489c7: sub esp, 8

0x80489ca: call 0x8048c90

offsprings: 1

betweenness: 2.0495163141498604e-05

<CFGNode call_gmon_start [27]>

0x8048c90: push ebp

0x8048c91: mov ebp, esp

0x8048c93: push ebx

0x8048c94: push eax

0x8048c95: call 0x8048c9a

0x8048c9a: pop ebx

0x8048c9b: add ebx, 0x404a

0x8048ca1: mov eax, dword ptr [ebx + 0xac]

0x8048ca7: test eax, eax

0x8048ca9: je 0x8048cad

offsprings: 2

betweenness: 3.415860523583101e-05

From the above disassembled information, we can
observe the detailed graph node, or block information
including the operations, offspring and betweenness
information, which can be used to describe the
characteristics of the binaries. As the results show,
we obtain the disassembled information of each CFG
basic block (in a depth-first order), including the
opcode and the statistic results of offspring number
and betweenness count, which combined can be used
to comprehensively describe the characteristics of the
binaries.

Given a binary function, the disassembled blocks
contain multiple attributes that could be utilized
to characterize the corresponding binary function.
The basic block attributes can be divided into two
types according to their level [7, 10]: block-level
attributes and inter-block level attributes. Block-level
attributes includes No. of String Constants, No. of
Numeric Constants, No. of Calls, No. of Transfer
Instructions, No. of Data Transfer Instructions, No. of
Logic Instructions, No. of Arithmetic Instructions, etc.
Inter-block level attributes includes No. of offsprings,
betweenness, etc.

Here we employ an intuitive statistical property, i.e.,
the total number of times a type of operation occurred,
together with two inter-block attributes, to describe the
block.

Given above statistical and structural attributes of the
block, we form them into a 9-dimension feature vector
for each block (a.k.a., graph node). In the following part
we’ll explain how to transform the local features of all
blocks from a binary file into an indexable embedding.

LSTM network-based embedding. There are dozens, if
not hundreds or thousands, of blocks could be
disassembled given a binary file. Correspondingly we
could obtain the same number of localized feature
vectors. However, how to learn an indexable embedding
that has the capability of reflecting the overall

5 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Z. Luo et al.

characteristics of the binary based on all these local
features?

Existing methods include graph-embedding methods
[7, 9] focuses on transform the CFGs into a graph,
and then using graph matching-based method such
as bipartite matching algorithm to calculate the
similarity of two CFGs. Deep graph neural network-
based methods [9–11] perform the embedding through
deep neural networks. However, LSTM networks offers
a practical mechanism to potentially store the related
information of all historical inputs. Given a sequence
of inputs, the input xt at each time slot t will update
the cell state Ct based on the learned parameters of the
neural network layer.

The update process at each time slot t includes
two steps: the first step is to decrease or delete some
unrelated information from the previous cell state
through a "forget gate layer". Mathematically it is
denoted as:

Ct = σ (Wf · [ht−1, xt] + bf) ∗ Ct−1 (7)

In our local feature embedding scenario, this operation
could be utilized to compromise the influence of
some extreme blocks, and also, we have the capability
of getting rid of redundant information through the
training of the neural network layers.

The second step of the update process is to add
information from each input to the cell state Ct , also
known as the "input gate layer", which is shown as:

Ct = Ct + σ (Wi · [ht−1, xt] + bi) ∗ tanh(Wg · [ht−1, xt] + bg).
(8)

After the two steps stated above, the information of
interest with regard to the binary embedded in the
features extracted at each local block will be able to
get filtered and reflected by the cell state if trained
appropriately. Therefore, after training the parameters
within the LSTM network with the training dataset, a
final cell state will be learned on each type of binaries.
This cell state is learned over the entire training blocks.
We use this cell state as the final indexable feature
embedding of the corresponding binary file.

Siamese Neural Network-based similarity detection. Given
the obtained indexable feature embeddings of binaries,
we could apply various traditional methods such as
Euclidean distance, neural networks to do similarity
measure or classification. However, most of these
traditional methods focus on the numeric features the
embeddings presented while falling short of denoting
the semantic information.

Provided with the multiple advantages of Siamese
neural network [14] including: a) More robust to
class imbalance; b) learning from semantic similarity
of the embeddings; c) easily to be trained using
standard optimization techniques. We design a Siamese

neural network-based similarity detection mechanism
to compare the embeddings from the test binaries
with embeddings of existing known malwares or other
trained binaries.

Our designed Siamese neural network-based binary
analysis framework is shown in Fig.3. The architecture
includes a sequence of convolutional layers, max pool
layers, fully connected layers. Each of the neural
network layer uses a single channel with filters of
varying size and the stride is fixed to 1. We employ
rectified linear Unit (ReLu) activation functions in each
layer. The max pooling operation is assigned with a
filter size of stride 2.

We have two inputs for the model, each of which is
an embedding we learned through LSTM networks. We
aim to minimize the distance of the outputs of each sub-
model in the training process if the two inputs are from
the same category, while maximizing the distance of the
outputs of each sub-model if the two inputs are from
different categories.

The units in the last convolutional layer are flattened
into a single vector. A fully connected layer is followed
after this convolutional layer. Then the induced
distance is computed based on the output (h1, h2) of the
previous fully connected layer, further it is given to a
single sigmoid activation function layer for prediction.
Mathematically, the prediction vector is shown as:

P(x1, x2) = σ (
∑
j

αj |h
(j)
1 − h

(j)
2 |), (9)

in which x1, x2 are the two input embeddings. σ denotes
the sigmoidal activation function. αj are parameters
learned by the model during the training process, which
is used to weight the importance of the component-
wise distance. The final layer induces a measure on the
learned feature space of the previous hidden layer and
scores the similarity between the two feature vectors.

Based on this architecture, we can first train the
model on our known training dataset, then when new
test binaries come in, we only need to compare the
test input with the reference input (which comes from
the trained dataset). Another big advantage of this
architecture is that when we have new samples, we only
require a very small number of samples to be stored in
the dataset, using it as a reference, we can calculate the
similarity for any new test instance with this type of
samples [14].

In the learning process, we use M to denote the
minibatch size and i is used to index the ith minibatch.
Let y(x(i)

1 , x
(i)
2) be a vector of length M that contains

the labels for the minibatch. We set y(x(i)
1 , x

(i)
2) = 1

whenever x1 and x2 are from the same category and

y(x(i)
1 , x

(i)
2) = 0 if they are from different categories. Then

the regularized cross-entropy objective on the binary

6 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Binary Code Similarity Detection through LSTM and Siamese Neural Network

|h1-h2| P(x1,x2)P(x1,x2)

Input x1

Input x2

Conv ReLu Max Pool Conv ReLu Fully Connected,
Sigmoid Layer

Fully Connected
Sigmoid Layer

Prediction Output

Figure 3. The architecture of Siamese Neural network-based binary code similarity detection.

classifier scenario takes the following form:

L(x(i)
1 , x

(i)
2) = y(x(i)

1 , x
(i)
2) log P(x(i)

1 , x
(i)
2) +

(1 − y(x(i)
1 , x

(i)
2)) log (1 − P(x(i)

1 , x
(i)
2)) +

λT |w|2,
(10)

in which λT |w|2 is the regularization term.
In terms of the update policy, we employ the

standard backpropagation algorithm to optimize the
parameter values. Let ηj denotes the learning rate and
µj the momentum. The update rule at epoch T can be
formularized as:

W(T)
kj (x(i)

1 , x
(i)
1) = W(T)

kj + ∆W(T)
kj (x(i)

1 , x
(i)
1) + 2λj |Wkj |,

∆W(T)
kj (x(i)

1 , x
(i)
1) = −ηj∇w

(T)
kj + µj∆w

(T−1)
kj .

(11)

In which ∇w(T)
kj denotes the partial derivative in terms

of the weight between the jth neuron in one layer and
kth neuron in the following layer.

In our following experiments, all the values of
parameters within the convolutional neural network is
assigned with a normal distribution of zero-mean and a
standard deviation of 0.01. Bias is initialized with also a
normal distribution of mean 0.5 and standard deviation
0.01. The initialization configuration is similar with
those in [14] due to their similarity in terms of objective.

4. Experimental Results and Analysis
To validate the performance of our proposed frame-
work, which using LSTM networks to embed the gen-
eral features of binary files based on the local features of
disassembled CFGs, and employing the Siamese neural
network to perform the similarity detection, we exper-
imented the framework on a dataset we collected by
ourselves from real-world systems. The dataset includes

4000+ ELF malware executables. It contains 560 cate-
gories of binaries, and each category contains multiple
binary files.

In the experiments, we implemented the framework
based on TensorFlow v2.4.1 and Keras 2.4.3. The
experiments are run on a Ubuntu 18.04 version. The
framework is implemented using Python 3.6.9.

Local feature vector extraction. We first perform the
disassembling operations on the binaries to obtain the
corresponding CFGs. Then based on the graphs, we
could extract the local block feature vectors, in our
experiments, we build the local feature vectors as the
following form:

[No. of string constants,

No. of numeric constants,

No. of arithmetic instructions,

No. of logic instructions,

No. of transfer instructions,

No. of calls,

No. of data transfer instructions,

No. of offspring,

the value of betweenness]ᵀ

This is intuitive and easy to obtain from the
disassembled CFGs, and also is widely used in existing
methods[7, 9].

Based on the assigned rule, we could easily obtain the
numerical forms of the local feature vectors for each
block in a binary file. An example numerical features
of a sequence of local blocks is shown as follows:

......

4 0 0 0 1 1 1 2.0495163141498604e-05

1 10 1 0 0 1 2 2 3.415860523583101e-05

1 3 0 0 0 0 1 1 6.968355468109526e-05

0 1 0 0 0 1 0 1 0.00012570366726785811

1 6 0 0 0 0 2 2 6.0119145215062575e-05

7 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Z. Luo et al.

0 2 0 0 0 0 0 1 4.9188391539596654e-05

0 1 0 0 0 1 0 1 0.00018172377985462097

1 8 0 0 0 0 3 2 6.968355468109526e-05

0 4 0 0 0 0 0 1 2.4594195769798327e-05

0 2 0 0 0 0 0 1 0.00011750560201125867

......

The local feature vectors extracted above represent both
the block-level attributes information and inter-block
level attributes information. As we can observe from
local feature vectors, they are changing at each block.
To obtain an indexable representation of the binary that
contains multiple blocks, we feed this sequence of local
feature vectors into the LSTM networks.

LSTM network-based embedding. To embed the obtained
local feature vectors, we first need to truncate the blocks
we have as we want to train each of the binary files on
the same number of local features. However, the real-
world binaries we collected are vary each other in terms
of the length. We employ a strategy of choosing a fixed
number of the blocks from each type of the binary file in
a random way but without disrupting the order of the
chosen sequence.

We form the embedding problem as a regression
problem, in which the input is the feature vector at
time t, while the output is the feature vector at time
t + 1. However, to make the prediction process could
take more of the past time slots into consideration,
we employ multiple previous time slots as the input
to predict the following feature vector of the block.
We found that if too many previous time slots are
considered, then the prediction output will be less
reflective regarding the variation and the number of
training samples will decrease dramatically. There is a
tradeoff balance between the flexibility and accuracy.

In the experiment, we employ 5 previous feature
vectors as the input to train the model, and we set
the dropout value as 0.1, and the training epoch is
set as 100. At each prediction. The LSTM blocks or
neurons we adopt is set as 16. In Fig. 4, we shown
the relationship of the averaged Mean Squared Error
(MSE) with the training epochs of three representative
binaries, from which we can observe that when the
training epochs approaching 70, the averaged MSEs for
all three binaries are become stable. Thus, we could
output the hidden cell state vectors as the embeddings
for those binary files.

Siamese neural network-based similarity detection. After we
obtained the embeddings of the binaries, we have the
indexable representation of each binary file. Thus, the
remaining work is to feed them into a Siamese neural
network and perform the similarity detection.

In this group of experiments, we focused on
classifying a test binary to the pre-trained binary
categories. We chose 10 categories of the binaries that

10 20 30 40 50 60 70 80 90 100

Training epochs

0

10

20

30

40

A
v
e

ra
g

e
d

 M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r binary-1

binary-2

binary-3

Figure 4. The relationship of the training epochs with the
averaged MSE.

have the largest number of binaries from our collected
dataset as the training categories. As some categories
include only a very small number of binaries, thus we
exclude them in our experiment such that we have
enough binaries under each category that could be
divided into a training set and a testing set. For the
testing binaries, we’ll include both the binaries from
the training categories and from those categories that
are not included in the training process except specially
specified.

Since in a Siamese neural network, the weights from
both sub-networks are supposed to be identical with
each other, thus we use only one model and feed
two inputs in succession. The optimization process or
the backpropagation is conducted after we calculate
the loss for two inputs. We build the Siamese neural
network includes 3 fully connected convolutional layers
with a structure of 16 × 32 × 16, and the dropout value
of 0.1.

We first show the experimental results of the training
performance using only test data from the categories
that we have trained on. We define a measure named as
detection accuracy to describe the performance, which
is defined mathematically as:

Detection Accuracy =
of test binaries rightly classified

of total test binaries
(12)

We use half of the binaries within each category as the
training data and the other half as the testing data, the
relationship of the detection accuracy with the training
epochs is shown in Fig.5. From the results we know
that after training the Siamese neural network with at
least 60 epochs, we can achieve the detection accuracy
of around 90%, which validates the performance of the
framework.

We also compared our proposed framework with
existing methods as shown in [7, 10], which are
representative methods to detect malware. [10] focuses
on a graph embedding network to convert the graph
into embeddings for binary functions, while [7] focuses
on the maximum common subgraph isomorphism to

8 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Binary Code Similarity Detection through LSTM and Siamese Neural Network

Table 1. The comparison of our proposed LSTM+Siamese neural network-based framework with existing works [7, 10].

Our proposed method Xu et al.[10] Eschweiler et al.[7]
Detection Accuracy 0.85 0.85 0.83

Relative time cost for training 1.00 1.24 0.78
Relative time cost for testing 1.00 1.15 0.67

10 20 30 40 50 60

Training epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Figure 5. The relationship of detection accuracy with training
epochs

measure the structural similarity between two different
binaries.

We compared the performance and relative time
cost of the three methods and the results are shown
in the Table 1. Both the time cost for training and
testing are compared with our proposed method in
a relative way, which means our proposed method is
set as a benchmark with the value of 1. From the
comparison results we know that our method shows
a higher training efficiency while still maintaining
similar detection accuracy performance with method
[10]. It is worth noting that here our detection accuracy
is 85%, as the testing data also includes binaries from
other categories of the dataset, which is differ from the
previous 90% of the detection accuracy, in which the
testing data is from the same categories of the training
data.

Compared with [7], our method showed a slightly
better performance though suffer from the training of
two neural networks which cost a little bit more time.
Compared with our proposed LSTM + Siamese neural
network combination, the methods in [10] require
to train a deep graph embedding neural network,
while the methods in [7] require a graph similarity
algorithm based on the maximum common subgraph
isomorphism.

5. Conclusion
Binary code similarity detection plays an important role
in evaluating the security of a software project that

are closed-source. It also offers many other applications
such as plagiarism and malware detection.

In this paper, we proposed an LSTM neural network-
based method to obtain an indexable embedding from
the dissembled control flow graphs of binary files. Also,
we employed Siamese neural network to conduct the
similarity comparison of two embeddings due to that
Siamese neural network has the capability of learn
the semantic information embedded in the inputs. Our
experimental results show a promising performance
compared with existing methods both in terms of
detection accuracy and computation cost.

In our future work, we will focus on extracting more
representative local features from the disassembled
blocks of the binaries. Also, how to combine the LSTM
network and Siamese Neural Network to make them
work closely to reduce the training complexity will be
one of another future work.

Acknowledgement. This material is based upon work sup-
ported by the U.S. Department of Energy, Office of Science
under Award Number DE-SC0018476. Zhengping Luo was
with University of South Florida when participating in this
work.

References
[1] Liu, B., Huo, W., Zhang, C., Li, W., Li, F., Piao, A.

and Zou, W. (2018) αdiff: cross-version binary code
similarity detection with dnn. In Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering: 667–678.

[2] Luo, L., Ming, J., Wu, D., Liu, P. and Zhu, S.

(2017) Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software
and algorithm plagiarism detection. IEEE Transactions on
Software Engineering 43(12): 1157–1177.

[3] Yu, Z., Cao, R., Tang, Q., Nie, S., Huang, J. and Wu, S.

(2020) Order matters: semantic-aware neural networks
for binary code similarity detection. In Proceedings of the
AAAI Conference on Artificial Intelligence, 34: 1145–1152.

[4] Jaramillo, L. (2018) Malware detection and mitigation
techniques: lessons learned from mirai ddos attack.
Journal of Information Systems Engineering & Management
3(3): 19.

[5] Chen, L., Ye, Y. and Bourlai, T. (2017) Adversarial
machine learning in malware detection: Arms race
between evasion attack and defense. In 2017 European
Intelligence and Security Informatics Conference (EISIC)
(IEEE): 99–106.

9 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

Z. Luo et al.

[6] Grieco, G., Grinblat, G.L., Uzal, L., Rawat, S., Feist, J.
and Mounier, L. (2016) Toward large-scale vulnerability
discovery using machine learning. In Proceedings of the
Sixth ACM Conference on Data and Application Security
and Privacy: 85–96.

[7] Eschweiler, S., Yakdan, K. and Gerhards-Padilla, E.

(2016) discovre: Efficient cross-architecture identifica-
tion of bugs in binary code. In NDSS, 52: 58–79.

[8] Pewny, J., Garmany, B., Gawlik, R., Rossow, C. and
Holz, T. (2015) Cross-architecture bug search in binary
executables. In 2015 IEEE Symposium on Security and
Privacy (IEEE): 709–724.

[9] Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B. and
Yin, H. (2016) Scalable graph-based bug search for
firmware images. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security:
480–491.

[10] Xu, X., Liu, C., Feng, Q., Yin, H., Song, L. and
Song, D. (2017) Neural network-based graph embedding
for cross-platform binary code similarity detection. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security: 363–376.

[11] Shin, E.C.R., Song, D. and Moazzezi, R. (2015)
Recognizing functions in binaries with neural networks.
In 24th {USENIX} Security Symposium ({USENIX}
Security 15): 611–626.

[12] Graves, A., Fernández, S., Gomez, F. and Schmidhuber,

J. (2006) Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international
conference on Machine learning: 369–376.

[13] Lafferty, J., McCallum, A. and Pereira, F.C. (2001)
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data .

[14] Koch, G., Zemel, R. and Salakhutdinov, R. (2015)
Siamese neural networks for one-shot image recognition.
In ICML deep learning workshop (Lille), 2.

[15] Staudemeyer, R.C. and Morris, E.R. (2019) Understand-
ing lstm–a tutorial into long short-term memory recur-
rent neural networks. arXiv preprint arXiv:1909.09586 .

[16] Graves, A. (2013) Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850 .

[17] Graves, A., Liwicki, M., Fernández, S., Bertolami,

R., Bunke, H. and Schmidhuber, J. (2008) A novel
connectionist system for unconstrained handwriting
recognition. IEEE transactions on pattern analysis and
machine intelligence 31(5): 855–868.

[18] Shukla, S., Kolhe, G., PD, S.M. and Rafatirad, S. (2019)
Stealthy malware detection using rnn-based automated
localized feature extraction and classifier. In 2019
IEEE 31st international conference on tools with artificial
intelligence (ICTAI) (IEEE): 590–597.

[19] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E.

and Shah, R. (1994) Signature verification using a"
siamese" time delay neural network. Advances in neural
information processing systems : 737–737.

[20] Zhang, C., Liu, W., Ma, H. and Fu, H. (2016) Siamese
neural network based gait recognition for human
identification. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (IEEE):
2832–2836.

[21] Chicco, D. (2021) Siamese neural networks: An
overview. Artificial Neural Networks : 73–94.

[22] Berlemont, S., Lefebvre, G., Duffner, S. and Garcia,

C. (2018) Class-balanced siamese neural networks.
Neurocomputing 273: 47–56.

[23] https://angr.io/.

10 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e1

	1 Introduction
	2 Background and Related Work
	2.1 LSTM Recurrent Neural Networks
	2.2 Siamese Neural Networks
	2.3 Binary Code Similarity Detection

	3 Binary Code Similarity Detection based on LSTM and Siamese Neural Network
	3.1 Motivation
	3.2 Our Proposed Framework
	Local block feature extraction
	LSTM network-based embedding
	Siamese Neural Network-based similarity detection

	4 Experimental Results and Analysis
	Local feature vector extraction
	LSTM network-based embedding
	Siamese neural network-based similarity detection

	5 Conclusion

