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Abstract

Verifying software integrity for embedded systems, especially legacy and deployed systems, is very
challenging. Ordinary integrity protection and verification methods rely on sophisticated processors or
security hardware, and cannot be applied to many embedded systems due to cost, energy consumption, and
inability of update. Furthermore, embedded systems are often small computers on a single chip, making it
more difficult to verify integrity without invasive access to the hardware.

In this work, we propose “side-channel programming”, a novel method to assist with non-intrusive software
integrity checking by transforming code in a functionality-preserving manner while making it possible to
verify the internal state of a running device via side-channels. To do so, we first need to accurately profile
the side-channel emanations of an embedded device. Using new black-box side-channel profiling techniques,
we show that it is possible to build accurate side-channel models of a PIC microcontroller with no prior
knowledge of the detailed microcontroller architecture. It even allows us to uncover undocumented behavior
of the microcontroller. Then we show how to “side-channel program” the target device in a way that we can
verify its internal state from simply measuring the passive side-channel emanations.
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1. Introduction
Embedded devices are pervasive in our everyday life.
From electric thermostats, elevators, automobiles, to
insulin pumps, most embedded devices nowadays are
cyber-physical systems which are composed of one or
more processors and are controlled by software. Since
many of these devices are essential to our safety and
well-being, verifying their integrity is an important
task. Developers traditionally focus on realizing device
functionality, while overlooking an attacker who may
change the behavior of a device by overwriting its
program and/or data remotely or locally.

Enforcing software integrity for embedded systems,
especially legacy and deployed systems, is extremely
difficult. Modern integrity checking mechanisms rely
on specialized trusted hardware and/or sophisticated
processors that provide security functionality to detect
or prevent software tampering [1–9]. However, many
embedded systems do not possess such capabilities

due to prohibitive cost, power consumption, space, and
inability of update.

Our solution is to utilize “side-channels” – any
channels that leak information about the runtime state
of a device as a by-product of executing software
on a physical device. Internal signal switches of a
CMOS circuit will cause current flows to charge or
discharge internal node capacitance, which can be
measured from energy consumed from the power pin.
Researchers have tried using power consumption and
electromagnetic radiation to detect abnormal behavior
at the level of function blocks or code segments [10–
14]. However, attackers can write compact malware
as small as one instruction in size (e.g., not setting
an important flag) which has minimal impact on
side-channel measurements. More importantly, a side-
channel-aware attacker can profile the target device
and rewrite malware in a fashion that the tampered
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code has indistinguishable difference in side-channel
measurement from the authentic code.1

In such situations, software attestation can be
used to detect software tampering down to single
instructions [15–18], even for a side-channel-aware
attacker. Software attestation utilizes the timing side-
channel and does not rely on specialized hardware
or sophisticated processors, but requires interruption
of normal execution, and is also inapplicable to
deployed systems that cannot be updated to support
software attestation (while malware tampers with
RAM). In addition, software attestation is vulnerable to
transient malware in which the memory configuration
is tampered and then restored between two attestations.

In this work, we explore the feasibility of using
passive side-channel emissions of an SoC for software
integrity checking, without modifying the hardware,
or interrupting device execution. The idea is to first
find the relationships between internal activities of
an embedded device and side-channel emanations.
Then we design a protection mechanism utilizing the
side-channel characteristics. The goal is to determine
whether the internal state is an expected one or not
by measuring the passive side-channel emanations of
a running device. Unexpected state may be a sign of
incorrect execution or malware. Compared to side-
channel analysis for other purposes (such as extracting
cryptographic key materials), this requires inferring
internal runtime status of an embedded system at a
granularity that is able to detect transient, compact, and
side-channel-aware malware from a single side-channel
measurement.

Such an integrity checking mechanism is very useful
because: (a) measuring passive side-channel emissions
without interrupting device execution will not leave
a trace of the integrity checking mechanism – the
integrity verifier is not visible to attackers who
penetrate the target device; (b) the integrity verifier
resides outside the target device and does not incur
computation, power, or space overhead to the device;
(c) it is easy to deploy and update the verifier without
modifying the target device; (d) adversaries only get
stronger; a verifier that is external to a device is the
only possible verifier when all the security mechanisms
internal to the device fail, or do not even exist.

The main contributions of this work include:2

• Details on constructing side-channel models of a
microcontroller instruction set at clock-cycle level

1Although side-channel-aware attackers are considered in [12], the
authors do not rigorously evaluate the difficulty in creating malware
that produces indistinguishable side-channel measurements (c.f.
Sections 4.3 and 5).
2Our preliminary experiments on power consumption and the idea
of side-channel programming were first presented in [19], and [20]
briefly mentioned our experiments on electromagnetic radiation.

accuracy, enabling inference of internal activities
given a single passive capture of side-channel
measurements, including discovery of several
undocumented behaviors of the target device.

• A new integrity checking approach – “side-
channel programming” – which allows programs
to utilize the side-channel characteristics of a
target device. The approach is unique in that any
code that satisfies the side-channel constraints
is guaranteed to reach the desired final state.
Furthermore, the security properties of side-
channel programming hold even in the presence
of strong adversaries who know they are being
monitored.

• The design, pseudo-code, and evaluation of side-
channel programming on a microcontroller.

We note that a major differentiating factor of this
work from other contributions in the area of side-
channels is that we are using side-channels “for
good rather than evil”. This means that side-channel
programming must not expose additional attack
surfaces. This aligns with our goal of code integrity.
Briefly, out attacker model (see Section 3 for details)
is a full-control but “hardware-respecting” adversary:
they have full control of any running code but cannot
modify any of the hardware characteristics of the
microcontroller. This attacker would see no benefit
from profiling side-channels from the microcontroller
as they would know the ground truth of the executing
code and runtime characteristics/parameters. The same
would hold after the application of side-channel
programming. In short, confidentiality of the running
code is a non-goal.

2. Related Work
A fundamental integrity checking method for embed-
ded devices without hardware modification is to sniff
bus signals. This is easy to perform on systems com-
posed of discrete components. For small systems inte-
grated in single chips, however, internal activities can-
not be observed easily. And it is not always practical
or efficient to perform micro-scoping or micro-probing,
due to the invasive access to the ICs, requirement of
costly equipment and expertise [21].

An alternative strategy is software and/or firmware
modification. For example, the Symbiote [22] integrity
checking method does not require security hardware
or sophisticated processors, but rather is injected into
embedded device firmware in a randomized way and
computes checksums on protected regions periodically.
Symbiote however cannot detect transient malware or
defend attackers who are aware of the existence of
Symbiote.
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Our solution is to utilize side-channel information to
determine whether the internal state of a device is legit-
imate or not. It involves two tasks: first, modeling side-
channel emanations to find the relationships between
side-channel emanations and internal activities, and
second, utilizing the side-channel models to design the
verifying mechanism.

2.1. Side-channel Profiling

Side-channel models can be built at different levels
given different degrees of system configuration knowl-
edge. At the lowest level, power consumption of a
CMOS circuit is computed at the transistor level in
order to analyze power usage and EMI/EMC proper-
ties [23, 24]. Dynamic power consumption, which is
of more interest for security analysis, is in general
modelled as the aggregation of power consumed by
each node in a device [25]. The switching power con-
sumption of an internal node is proportional to the
clock frequency, the load capacitance of the node, and
the frequency of switches of the node. More accurate
power models also consider the cross-talk (interference)
between signals of neighboring wires [26]. These power
models are often used in combination with SPICE
simulation and manufacture parameters to estimate
dynamic power of small-scale circuits [23–25, 27–29].
In practice, however, the complexity and obscurity of
embedded devices prevent such analysis. Researchers
have in turn tried to build empirical (“black-box”)
models from real measurements, with limited or no
knowledge of the chip architecture.

In the simplest form, application developers read
the voltage of the battery of a mobile phone from
time to time to determine the power consumption of
the system so that some power-saving strategy can
be applied. At a finer granularity, researchers have
studied the average power consumption of instructions
of various devices to guide power-efficient processor
design or software development [30–32]. Researchers
often execute the target instruction (e.g., multiply,
branch) for many times and then compute the average
power consumption or EM cartography. Such study
does not concern runtime side-channel emanations for
individual instruction executions. These averaged side-
channel models cannot be used to design integrity
checking mechanisms.

Empirical profiling of side-channel emanations has
also been researched for many other purposes, includ-
ing device fingerprinting, covert channels, detecting
hardware trojans, and breaking cryptographic hard-
ware [33–41]. There are several major differences
between side-channel analysis for software integrity
and for other purposes:

1. Analysis for software integrity is on a single cap-
tured side-channel measurement that represents
a one-time execution of some code with data;

2. The analysis is over the entire instruction set
instead of a few special instructions;

3. The analysis is on the entire trace in one capture
instead of a few special points in the trace;

4. The analysis is on a black-box device the design
detail of which is unknown;

5. The analysis must consider compact malware
that may be composed of a single instruction,
or a change of original instruction only on the
operands;

6. The analysis must consider side-channel-aware
attackers who actively attempt to evade detection
by computing alternative code that has near indis-
tinguishable side-channel measurement from that
of the original code.

2.2. Side-channel-based Protection Mechanisms
Previous research on side-channel analysis for integrity
of general programs tries to detect anomalous behaviors
and/or malware from passive system-wide power
measurements of functions and code segments [10–14,
42–44]. Often pattern matching and machine learning
techniques are used to build the reference side-channel
emanations for code blocks, and new side-channel
measurements are matched against the reference to
detect anomalous behaviors. Because the learned
side-channel profiles cannot predict side-channel
emanations of arbitrary code, these methods rely on
malware being sufficiently long/causing peculiar side-
channel emanations, and not written to adapt side-
channel profiles. Some works [12, 13, 42] only used
very few examples of tampering to test the effectiveness
of their approach. To use side-channels for rigorous
integrity checking, however, it is important to secure
against arbitrary, compact, and side-channel-aware
malware, given any original code to protect.

Software attestation [15–18] is capable of detecting
malware at such precision and does not require
modification of hardware. It however requires software
update and interruption of the device execution, a
particular drawback for deployed systems. Software
attestation is also unable to detect transient faults
and attacks such as self-delete malware and data-only
attacks in which memory is tampered and then restored
between two attestations.

Researchers have tried to build side-channel profiles
of the instruction set for certain smart cards, pro-
grammable logic controllers, and microcontrollers [12,
14, 42, 45–51]. The purpose is to recognize instruction
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operations from passive side-channel measurements
(e.g., MOVLW). For integrity checking, in contrast, the
entire instruction (e.g., MOVLW 0xAA), as well as internal
states such as the content of registers and memory must
be verified (e.g., data-only attacks). In addition, we
will show in later sections that profiling side-channels
based on instruction operations is unlikely to be very
successful at least for our target device.

3. Threat Model
Device Under Test The device under test (DUT)
is a PIC16F687 microcontroller (µC). PIC16F687 has
a 8-bit RISC processor in Harvard architecture [52,
53]. The instruction set has 35 operations. The
processor, program flash, RAM, on-chip oscillator, and
peripherals, such as the programming interface, timers,
and a A/D Converter (ADC), are integrated into a
single chip. Though a simple device compared to many
more modern microcontrollers, most related research
has been performed on this IC [47–51], making this
device ideal for comparison of different techniques.

Adversary We assume a powerful attacker, able to
modify the software of the DUT, for instance by
modifying RAM through buffer overflows, code-reuse,
data-only attacks, etc., or by reprogramming the
device, or by inserting trojans into the CAD software.
Furthermore, the attacker is able to profile the side-
channel emissions of the DUT and to modify the
software in a fashion that minimizes side-channel
deviations from original code. The attacker is however
unable to inject faults or modify the hardware,
including the IC design and the Printed Circuit Board
(PCB) on which the DUT is mounted – in essence,
the attacker cannot modify the inherent side-channel
emissions of the target device. We also assume that the
attacker is not an insider of the IC manufacturer and is
unable to tamper with the CAD tools upon which we
based the ground truth.

Verifier We assume that the verifier is trusted and
able to profile side-channel emissions of the DUT. The
verifier cannot modify the hardware, including the IC
and the PCB to amplify side-channel emissions. The
verifier does not have more knowledge about the IC
design besides public documents. The verifier does not
need to reverse-engineer the IC, although doing so may
facilitate side-channel profiling (c.f. [21]). In particular,
the verifier can only passively measure the DUT with
measurement equipment that incurs minimal impact
on the Electromagnetic Compatibility (EMC) of the
DUT. The verifier for example may remove the shielding
enclosure for measurement, but should not remove the
noise decoupling circuits, which may cause errors in
device execution.

Figure 1. Side-channel profiling a black-box device.

4. Side-channel Profiling of the Instruction Set
To design a side-channel-based protection mechanism
such as “side-channel programming”, we must first
discover how side-channel information is linked to
internal activities. As introduced in Section 2.1,
dynamic power consumption of a CMOS circuit can be
approximated as a sum of power consumed by all the
internal nodes, proportional to the load capacitance and
the frequency of signal switches of each node. For our
black-box DUT, however, we do not know the detailed
structure of the IC or how internal signals change
as instructions are executed. Public documents of the
DUT only describe the chip skeleton and functional
behaviors of the instruction set [52, 53].

Previous work in profiling side-channels of a “black-
box” device (without knowing the IC design or
reverse-engineering the IC), often make the simplify-
ing assumption that side-channel leakage is related
to instruction operations (e.g., ADD has different side-
channel patterns with XOR), and use pattern match-
ing/classification or machine learning techniques to
classify side-channel measurements according to oper-
ations [12, 14, 48, 49, 51]. In our experiments we
find that, at least for our DUT, such methods can-
not lead to accurate side-channel models or reliable
integrity checking schemes, as side-channel leakage is
only related to instruction operations indirectly, as a
macroscopic effect of internal signal switches.

Our approach to accurately profile side-channels
is to build semantic model of the instruction set,
and then to relate the side-channel patterns with
the semantic model. Repeat the process until we get
satisfactory semantic model and side-channel profile
simultaneously, as shown in Figure 1:

1. Build semantic model of the instruction set, using
known architecture information;

2. Generate test code and collect side-channel
measurements;

3. Calculate runtime activities according to the
semantic model;

4. Build side-channel model and cross-validate the
side-channel model with the semantic model;
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Figure 2. A single captured power measurement executing
{MOVLW 0x95; ADDWF 0x40, F; CLRF 0x7F}. The x-axis
is time and the y-axis is voltage drop. The oscilloscope offset to
-60 mV to span the vertical range.

5. Correct or refine the semantic model and repeat
the procedure.

To build a semantic model of the instruction set,
we enumerate internal activities, such as fetch, decode,
and data read/write, that may occur during instruction
execution. Because detailed architecture information
is unknown, our semantic model is only a conjecture
to be tested against side-channel measurements. Next,
we generate code that tests properties of the semantic
model and perform side-channel measurements. Mean-
while, we compute the potential runtime activities of
the test code according to the semantic model. We then
try to find the linkage between internal activities and
side-channel measurements. A highly accurate side-
channel model that relates internal activities to side-
channel information proves the validity of the semantic
model as well.

Initially we only have a coarse semantic model and
generate code to test very specific properties. We then
collect side-channel measurements and obtain an initial
side-channel model. Next, we analyze the outliers and
try to correct the semantic model. If no outliers exist,
we repeat the procedure to test more generic properties
or to find higher-order relationships, until we obtain
satisfactory semantic model and side-channel model
simultaneously. For example, we first generate test code
that only uses a portion of general-purpose registers
in order to execute each operation many times with
different data, and obtain a side-channel model for
these GPRs. Then we generate code that uses all GPRs to
see if the side-channel model still holds for other GPRs.

A final remark is that we do not try to profile side-
channels of code that involves system-level behaviors
such as I/O events, putting device to sleep, or accessing
ADC or other peripherals. We only model side-channels
of “computation” and leave other profiling tasks for
further work.

4.1. Semantic Model
Although the DUT is a simple µC, there are many
factors that may cause internal signal switches and
thus affect the side-channel leakage. The instruction
set consists of 35 different operations. The processor
has a two-stage pipeline. Each instruction execution
is overlapped with the next instruction fetch. Most
instructions execute in single instruction cycle, except
branches. Unconditional and conditional branches take
two instruction cycles if a branch is taken, and a NOP

operation will be executed instead of the original next
instruction in the second instruction cycle. Otherwise
a branch instruction takes one instruction cycle. Each
instruction cycle is composed of four clock cycles,
denoted as Q1 to Q4, as shown in Figure 2. The working
register is one of the two operands of the ALU. There
is a 128-byte register file including general-purpose
registers (GPRs) and special function registers (SFRs).
GPRs are composed of registers indexed 0x40 to 0x7f.

Based on the architecture description in the
PIC16F687 datasheet [53], we deduce that potential
data that may appear on buses, and therefore are
likely to cause major side-channel emissions, include
the program counter (PC), the operands and coding
of instructions, the working register, the selected
file register, and the STATUS SFR. Formally, we
represent the internal state of the device as T =
(W,C, F, P C, Iprev , Icurr , Inext , Type, OPRD1, OPRD2, B, D)
where

• W is the working register,

• C is the STATUS register,

• F is the GPRs (indexed from 0x40 to 0x7f),

• P C is the program counter,

• Iprev is the previous instruction (including opera-
tion and operands),

• Icurr is the current instruction,

• Inext is the next instruction,

• Type is the type of the operation of the current
instruction,

• OPRD1 is the content of first operand,

• OPRD2 is the content of second operand,

• B ∈ {True,False} is whether a branch is executing,

• D is the result of the current instruction.

Type is one of the instruction categories we
summarize from the instruction set document [52, 53],
as shown in Table 1. We then build the hypothetical
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Table 1. Instruction summary

Description Type Example(s)

byte-oriented file register operation
wfw ADDWF f,W

with the working register as destination
byte-oriented file register operation

wff {ADDWF f,F}, {CLRF f}, {MOVWF f}
with GPR as destination
bit-oriented increment/decrement branch operation

fszw {INCFSZ f,W}, {DECFSZ f,W}
with the working register as destination
bit-oriented increment/decrement branch operation

fszf {INCFSZ f,F}, {DECFSZ f,F}
with GPR as destination
bit-oriented test branch operation btfs BTFSC, BTFSS
bit-oriented set/clear operation bxf BCF, BSF
literal operation lw ADDLW k

literal clear operation clrw CLRW

goto operation goto GOTO

call operation call CALL

return operation ret RETURN, RETLW, RETFIE
no operation nop NOP

inserted NOP when branch is taken brnop

semantic model for each instruction, e.g.,

T0 =(W,C, F, P C, Iprev , {ADDWF f,W},
Inext , Type0, OPRD1, OPRD2,False, D)

ADDWF f,W
−−−−−−−−−−−→

T1 =(W ′ = mod(W + (f ), 256), C′ , F, P C + 1, {ADDWF f,W},
Inext , Inext_next , wfw,W , (f ),False,W ′)

which means, if a branch is not executing (i.e., current
instruction is not replaced with NOP), after executing
ADDWF f,W, the internal state of the device will change
from T0 to T1, with (1) the working register is updated
with the truncated value of (W + (f )), where (f ) is the
content of the GPR f ; (2) the STATUS register is updated
according to the result of (W + (f )); (3) the GPRs remain
the same; (4) the program counter increments; (5) next
instruction is read; (6) the type of the operation is
updated to wfw; (7) the first operand is the working
register; (8) the second operand is the content of the
GPR f ; (9) no branch will happen; and (10) the result
of the instruction is W ′ . The state transition of ADDWF

f,F can be defined similarly, with the exception that the
result is stored back to f instead of W . In this way we
build the hypothetical semantic models for ADDWF f,d,
ANDWF f,d, COMF f,d, DECF f,d, INCF f,d, IORWF f,d,
RLF f,d, RRF f,d, SUBWF f,d, SWAPF f,d, XORWF f,d,
where d is W or F indicating whether the result is stored
to the working register or the GPR. Note that for SUBWF
f,d, the result is the truncated value of ((f ) −W ). One
of the operands can be both W or two’s complement of
W . We have tried both cases in cross-validation.

For conditional branch instructions,take the example
of INCFSZ f,W:

T0 =(W,C, F, P C, Iprev , {INCFSZ f,W},
Inext , Type0, OPRD1, OPRD2,False, D)

INCFSZ f,W
−−−−−−−−−−−−→

T1 =(W ′ = mod((f ) + 1, 256), C, F, P C + 1, {INCFSZ f,W},
Inext , Inext_next , fszw, (f ),NA,False if W ′ , 0

True if W ′ = 0,

W ′)

which means, if a branch is not executing, after
executing INCFSZ f,W, the internal state of the device
will change from T0 to T1, with (1) the working register
is updated with the truncated value of ((f ) + 1); (2)
the STATUS register and GPRs are not affected; (3)
the program counter increments (see below); (4) next
instruction is read (see below); (5) the type of the
operation is updated to fszw; (6) the first operand is
the content of the GPR f ; (7) the second operand is not
related; (8) branch (skip) will happen if W ′ = 0; and (9)
the result of the operation is W ′ .

If a branch is taken after INCFSZ f,W:

T0 =(W,C, F, P C, {INCFSZ f,W},
Icurr , Inext , fszw, (f ),NA,True,W )

Icurr−−−−→
T1 =(W,C, F, P C + 1, {NOP},

Inext , Inext_next , brnop,W , 0,False,W )

which means, if a branch is executing, for any Icurr ,
the internal state of the device will change from T0 to
T1, with (1) the actual instruction executed is NOP; (2)
the program counter increments; (3) next instruction is
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Figure 3. A single captured power measurement. The amplitude
has a -100 mV offset.

read; (4) the type of the operation is updated to brnop;
(5) the first operand is W , the second operand is 0, and
the result of the operation is W (c.f. Section 4.3); (6)
branch will not happen. The semantic model of each
instruction operation is defined similarly.

4.2. Experimental Setup
We perform passive measurements of power consump-
tion and electromagnetic (EM) radiation when running
the test code. The power consumption is measured by
inserting a 82Ω shunt resistor to the ground pin of
the DUT. The voltage drop cross the shunt resistor is
sampled by a PicoScope 5244B oscilloscope, which has
a 200 MHz bandwidth and a maximum per-channel
sampling rate of 500 MS/s. We use the oscilloscope’s
20 MHz integrated hardware filter to avoid aliasing.
Because the side-channel signal is of frequency much
higher than the processor’s main clock, the clock fre-
quency should be much lower than 20 MHz. We set the
clock to 125 kHz, generated by the internal clock gener-
ator of the device. A typical single-captured waveform
is shown in Figure 2. It exhibits sharp peaks at clock
rising edges and much smaller peaks at falling edges. A
plateau can be seen through Q2 to the peak of Q4.

We build side-channel models at 125 kHz and then
repeat the experiment at 1 MHz clock (using a 100Ω
shunt resistor). A typical single-captured waveform is
shown in Figure 3, where the low-pass filtering effect
becomes stronger due to the higher clock and also to
the 20 MHz hardware filter. The side-channel model for
the peak amplitudes is essentially identical between the
125 KHz and 1 MHz experiments, with the exception
that at 1 MHz, SNR is much lower and the plateaus
following the peaks in Q2 and Q3 is no longer visible.

We also repeat the experiment using EM measure-
ment at 125 kHz. It is a proof-of-concept to test an
alternative to insertion of a shunt resistor for power
measurement, where no modification of the original
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Figure 4. A single captured EM measurement.

hardware is necessary. EM emission is measured by a
hand-made probe following the design of EMC probe
in [54]. The loop probe is placed over the power line
from the VSS pin which also forms a loop (with an
opening) to the power source. The perimeter of the
probe is 25 mm. The magnetic field generated by the
power line will cause voltage drop in the loop probe,
which is amplified by a 20 dB amplifier. The probe
therefore essentially collects global current. The ampli-
fier output is sampled by the same oscilloscope. The 20
MHz integrated hardware filter of the oscilloscope is
also turned on. A typical single-captured waveform of
EM radiation of the DUT is shown in Figure 4. Although
the waveform of EM radiation appears to be different,
the side-channel models are similar to those of power
consumption as shown in Section 4.3.

At each iteration, we generate test code traces
and calculate internal activities from the hypothetical
semantic model. Operation for each instruction is
chosen from a portion of the instruction set, and the
operands are selected to compose a legal instruction
(file register access is limited to GPRs and the STATUS

SFR). CALL, RETFIE, RETLW, and RETURN are manually
inserted in multiple places so that the program can
execute normally. SLEEP (put device to standby mode)
and CLRWDT (clear watchdog timer) are not profiled.
The target µC has 2 kB memory and around 1400
instructions are programmed each time. We then
cross-validate the measurements with the hypothetical
internal activities to find their relationships.

4.3. Side-channel Model
We first profile the power measurement with respect to
instruction operations, as done in previous research [12,
14, 47–50]. The problem can be described as: given a
single trace of power samples of four clock cycles, the
verifier tries to recognize one out of 33 instruction oper-
ations based on the profiling model3 – a typical pattern
recognition/classification problem. We have applied

3Recall that SLEEP and CLRWDT are excluded
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various general classifiers, including naive Bayes, k-
nearest neighbor, support vector machine (SVM), mul-
tilayer perceptron, and template analysis. Power sam-
ples are preprocessed with/without feature selection by
principal component analysis, mutual information, and
linear discriminant analysis. The highest recognition
rate is obtained by using template analysis, in which the
power consumption is approximated as multi-variate
Gaussian signals, similar with [48, 55]. The average
recognition rate is 45.6%, which is comparable to the
unoptimized results of [48, 55] and the single-location
result of [50]. While some operations have acceptable
recognition rates, such as CALL (94.3% recognition rate),
GOTO (97.8%), CLRW (99.0%), and COMF f,F (95.7%),
some operations, such as CLRF, DECFSZ f,W and IORWF

f,F, are almost always misclassified.
Inspired by previous discoveries of linear relation-

ship between power consumption and some data opera-
tion [47] and the success of linear regression analysis in
cryptographic hardware [56, 57],4 we apply regression
analysis to profile power consumption of arbitrary code
for the target device. Leveraging on the hypothetical
semantic model and iterative correction, we succeed to
obtain a very accurate side-channel model.

Let runtime activities at time t be a vector of variables
~xt , the power measurement at t be a random variable Yt ,
we assume Yt depends on ~xt :

Yt = f (~xt) +Nt

where Nt encloses remaining components in the
power consumption at time t including time-dependent
components and noise, as in [58]; Nt and Yt are random
variables; ~xt is a result of executing instructions and is
therefore controllable.

We include the internal state T of the hypothetical
semantic model in the regressor ~xt , as well as the
Hamming distance (HD) and the Hamming weight
(HW) of the variables of T .5 We have intentionally
added more variables in the semantic model than
necessary (not all shown in Section 4.1). This does
not affect regression since adding more regressors
will always give smaller mean square errors, as long
as no multicollinearity exists among regressors [59].
Unnecessary regressors are pruned afterwards, using
t-test, Partial F-test, and confidence interval of the
regression coefficients.

It turns out that there are strong linear relationships
between internal activities and power consumption
measurements. For any instruction cycle t, there are
four regression models, corresponding to four clock

4Note the difference between side-channel profiling for breaking
cryptographic hardware vs. software integrity checking (c.f. Section 2)
5HD counts the number of bit differences between two binary values;
HW counts the number of 1s of a binary value.

cycles Q1 to Q4:

Yqi = ~x′t~βqi + bqi +N

where i ∈ [1, 4] indicates the clock cycle, ~βqi is a
vector of weights (regression coefficients) and bqi is a
constant. The noise component N is assumed to be
time-independent.

The actual regression models are built for individual
instruction categories (Type). We use the Pearson’s
correlation coefficient r and the Spearman’s correlation
coefficient ρ to show the performance of the regression
models. For two random variables X = ~x′~β and Y , the
Pearson correlation coefficient is a measure of linear
dependence between X and Y :

r =
σXY
σXσY

=
σX√
σ2
X + σ2

b

where the covariance of the two random variables
are estimated by using the empirical sample variance.
r tends to ±1 as σ2

b tends to 0. Spearman’s rank
correlation is the Pearson correlation between weakly-
ordered values. Spearman’s correlation is able to find
non-linear dependence between X and Y . The two
correlations are identical for values which are linearly
related. Spearman’s correlation is more sensitive to
outliers.

Q1. We find that the HD of PC and (PC+1) influences
the peak in Q1, regardless of instruction operations
due to the fact that each instruction execution is
overlapped with fetching of the next instruction, and
PC is incremented in Q1 for instruction fetch.

Q2. The result of previous the instruction (which is
likely the data already on some internal bus) and the
operand loaded for current instruction influence the
peak amplitude in Q2. In Q2, different categories of
operations will load different types of operands. And
the peak amplitude in Q2 is linear to the HD of previous
result and the content of the operand (e.g., (f ) instead
of f ):

Yq2 = βq2 ·HD(previous_result, data_f or_current) + bq2

where Yq2 is in millivolt (mV, same unit for the
following Y ). Table 2 shows the regression models.6

While performing the measurements described,
we encountered some interesting and surprising
findings. Contrary to the functional descriptions, some
instructions loaded register contents whether or not
they were needed. For instance, the content of the

6The file register operations in Table 2 include all the operations not
listed in the following entries, e.g., ADDWF, CLRF, CLRW, MOVWF, BTFSC,
etc. The literal operations include ADDLW, ANDLW, IORLW, XORLW, and
MOVLW. The constants bqi are negative because the oscilloscope is set
to have a -60 mV offset.
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Table 2. Regression analysis of power consumption in Q2

[2][c]File register operations
Predictors HD(previous_result, (f )) Constant

Coefficients 2.88 -15.30
r 0.97
ρ 0.97

[2][c]Literal operations
Predictors HD(previous_result, literal) Constant

Coefficients 2.86 -19.34
r 0.92
ρ 0.92

[2][c]SUBLW
Predictors HD(previous_result, literal) Constant

Coefficients 1.73 -17.99
r 0.95
ρ 0.88

[2][c]NOP
Predictors HD(previous_result, 0) Constant

Coefficients 2.49 -19.63
r 0.90
ρ 0.90

[2][c]GOTO
Predictors HD(previous_result, address) Constant

Coefficients 2.38 -22.09
r 0.92
ρ 0.89

file register was unnecessarily loaded for CLRF, CLRW,
MOVWF.The content of the file register is loaded for bit-
oriented and byte-oriented file register operations (e.g.,
ADDWF, INCF, BSF, INCFSZ, and BTFSC) regardless of
whether the instruction is a conditional branch or not.
The operand (e.g., f and b in BSF f,d) does not affect
the peak amplitude in Q2.

Through our iterative profiling approach, we are able
to uncover the actual data loaded in Q2:

• The content of GPR 0x7f is loaded for CLRW –
we discover that CLRW is actually implemented as
CLRF 0x7f,W;

• The target address is loaded for GOTO;

• The operand is loaded for literal operations such
as ADDLW (moreover, the operand of SUBLW, not its
two’s complement, is loaded);

• Zero is loaded for NOP since NOP is implemented as
ADDLW 0, except that it has no effect on the STATUS
flags.

The Plateaus. The plateaus following the peaks in Q2
and Q3, are linear to the HW of next instruction,
regardless of instruction operations:

Yplateaus = 0.836 ·HW (Inext) − 45.71

r = 1.00 and ρ = 0.99. The amplitude of the plateaus is
the mean of 150 samples between rising/falling edges of
Q2 and Q3 respectively. The amplitude of plateau of Q2
is nearly the same with that of Q3, as shown in Figure 2.

We find that the next instruction is still the instruc-
tion immediately following the current instruction even

Table 3. Regression analysis of power consumption in Q4

[3][c]W as destination

Predictors
HD

HW (Inext) Constant(data_loaded_in_q2,
result)

Coefficients 2.93 2.15 -25.09
r 0.99
ρ 0.99

[3][c]f as destination

Predictors
HD

HW (Inext) Constant(data_loaded_in_q2,
result)

Coefficients 3.60 2.15 -23.78
r 1.00
ρ 1.00

if a branch will be taken after executing current instruc-
tion (e.g., current instruction is GOTO or BTFSS f,b and
bit b of GPR f is 1).

Q3. The peak amplitude in Q3 is linear to the HW
of next instruction and the HW of current instruction,
regardless of instruction operations:

Yq3 = 1.32 ·HW (Icurr ) + 0.828 ·HW (Inext) − 31.57

r = 1.00 and ρ = 1.00. We find that the current
instruction is NOP if current instruction cycle is an
inserted cycle after a branch is taken. The HW (Icurr ) is
therefore zero, regardless of neighboring instructions.
So Icurr of current instruction cycle is not necessarily
equal to Inext of the previous instruction cycle.

Q4. The peak amplitude in Q4 is linear to the HD
between data loaded in Q2 and result of current
instruction and the HW of next instruction:

Yq4 =βq4,1 ·HD(data_f or_current, result)+

βq4,2 ·HW (Inext) + bq4

Table 3 shows the detailed regression models.7 We
find that the linear relationship between internal
activities and power consumption measurement is very
strong. Operations with file register as destination
consume more power than those with the working
register as destination.

We are able to uncover the actual data stored in Q4:

• The result of MOVLW is the new W , which has the
same value with the operand of the instruction.
The HD is therefore always zero.

• The result of GOTO is still the operand (i.e.,
branch address). The HD is therefore always zero.
The next instruction of GOTO is the immediate
instruction followed, and is not the instruction at
the goto address.

7The operations with the working register as destination include
instruction types of lw, nop, brnop, goto, fszw, btfs, clrw, wfw. The
operations with the GPR as destination include fszf, wff, bxf.
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• The results of conditional branches BTFSC f,b

and BTFSS f,b is always zero, regardless of
whether branch is to happen or not. (The HD is
therefore HD((f ), 0) = HW ((f )).)

• The results of conditional branches DECFSZ f,d

and INCFSZ f,d, in contrast, are the incremented
or decremented (f ) value. (The HD is therefore
HD((f ), mod((f ) + 1, 256)).)

• The result of brnop is W , as if a normal NOP is
executed. The next instruction of brnop is the
branch destination.

• The results of instructions of types lw, clrw, wfw,
fszw, nop are the new W . The HD for NOP is
therefore equal to HW (W ).

• The file register operations COMF f,d and MOVF

f,d always have constant HDs – the HD for COMF
f,d is always eight, and for MOVF is always zero.

Implications. The side-channel models have several
implications. First, they reveal that side-channel
measurements have strong dependencies on data and
weak dependencies on instruction operations. This
explains the result of previous template analyses:
while most logic and arithmetic operations are not
distinguishable by classification techniques, COMF f,F

has a 95.7% recognition rate and CLRW has a 99.0%
recognition rate. COMF f,F has the highest power
consumption in Q4 because the HD is always eight and
the destination is a file register. For CLRW, the HW of
its instruction is always one, which is unique when file
register access is limited to GPRs. Other operations in
contrast have mostly overlapping measurements due to
internal activities.

Second, they imply that some internal bus, which
loads instructions and data, is the main source of power
consumption of the µC. Although theoretically every
internal node consumes energy when signal switches,
the effect of other nodes is negligible.

Third, the dependency in Icurr and Inext through Q2 to
Q4 leaks information about the control flow. While not
directly revealing arbitrary neighboring instructions,
this already allows us to identify special instructions,
such as NOP and brnop (whose instruction coding is the
unique 0).

Fourth, the regression coefficient is in mV per bit, and
is large enough to be resilient to measurement noise.

Profiling Electromagnetic Radiation. Although the wave-
form of EM radiation appears to be different from that
of power consumption, it is interesting to observe that
regression analysis still works for profiling the EM
radiation. The peak amplitude at each clock rising edge
is linearly related with the internal activity of the DUT.
The resulting regression models for individual clock

Table 4. Regression analysis of EM radiation in Q2

[2][c]File register operations
Predictors HD(previous_result, (f )) Constant

Coefficients 0.346 3.708
r 0.96
ρ 0.96

[2][c]Literal operations
Predictors HD(previous_result, literal) Constant

Coefficients 0.362 3.209
r 0.91
ρ 0.91

[2][c]SUBLW
Predictors HD(previous_result, literal) Constant

Coefficients 0.224 3.385
r 0.94
ρ 0.88

[2][c]NOP
Predictors HD(previous_result, 0) Constant

Coefficients 0.312 3.180
r 0.89
ρ 0.89

[2][c]GOTO
Predictors HD(previous_result, address) Constant

Coefficients 0.309 2.769
r 0.91
ρ 0.88

cycles are only slightly different from those of power
consumption. One major difference is the missing of the
plateaus following the peaks in Q2 and Q3, which is not
surprising since EM measurement will filter out near
DC components.

Note that the EM measurement is not a “localized”
one as in [21, 50, 60], in which the probe is focused
on only a portion of the chip area to collect particular
signals. With current setup, we actually collect global
current through the probe coil. The EM waveform is
therefore very similar to the power waveform.

We are not trying to extract more information by
using EM measurement. Indeed, the goal of this paper
is not to develop any new side-channel measurement
techniques or to use sophisticated measurement
equipment in order to discover new side-channel
features. We instead develop new techniques to build
more accurate side-channel models which enable us
to discover hidden behavior of the DUT, and new
protection mechanisms using the side-channel models.

Table 4 shows that in Q2, the measurement of EM
radiation is still linear to the HD of previous result and
data loaded for current instruction. The only difference
is the value of regression coefficients and the model
performance r and ρ of the EM models are slightly
smaller than those of the power consumption models. It
is not surprising since EM measurement often has lower
SNR than power measurement.

The peak amplitude of EM measurement in Q3 is
linear to the HW of current instruction, regardless of
instruction operations:

Yq3 = 0.148 ·HW (Icurr ) + 1.832

11 EAI Endorsed Transactions on 
Security and Safety 

01 2021 - 09 2021 | Volume 8 | Issue 28 | e2



H. Liu and E.Y. Vasserman

Table 5. Regression analysis of EM radiation in Q4

[3][c]W as destination

Predictors
HD

HW (Inext) Constant(data_loaded_in_q2,
result)

Coefficients 0.333 0.090 2.563
r 0.91
ρ 0.90

[3][c]f as destination

Predictors
HD

HW (Inext) Constant(data_loaded_in_q2,
result)

Coefficients 0.442 0.087 2.738
r 0.99
ρ 0.99
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Figure 5. Difference in averaged peak amplitude among chips of
the same type.

r = 0.97 and ρ = 0.96. Note that the EM measurement
in Q3 is not related with the HW of next instruction,
unlike the case in power consumption.

Table 5 shows again that in Q4, the EM measurement
is linear to the HD of data loaded for current instruction
and result, and to HW (Inext).

Profiling and Testing on Different Devices. Up to now we
have assumed that the device we use to profile side-
channels is also used for testing. Sometimes we may
want to profile one device and use the model for testing
other devices of the same type. To examine whether
the side-channel model can be generalized to other
devices, we collect power measurements of six chips
running at 1MHz clock. We randomly pick a chip and
take its averaged peak amplitude of each clock cycle as
the reference and compare it with the power traces of
other devices. For clarity, only the averaged difference is
shown in Figure 5. A single captured peak is estimated
as the averaged amplitude plus a Gaussian noise with
standard deviation around 0.84 mV.

It is interesting to observe that among the five testing
chips, three of them have similar measurement with the
reference plus a constant bias. Two of them have similar
measurement except at clock cycles executing CLRW. To

use a side-channel model on another chip, at least some
calibration is needed and clock cycles executing CLRW

cannot be used for testing.

5. Side-channel Programming

After obtaining an accurate side-channel model, we
design the integrity checking scheme. Now we can
predict side-channel leakage of arbitrary programs and
evaluate the effects of tampered code and/or data
on side-channel emanations. For integrity checking,
however, the side-channel characteristics do not
reveal a direct reverse mapping from side-channel
measurements to code and data – it is the Hamming
distance/weight rather than the exact data that is leaked
from side-channels. For a side-channel-aware attacker,
it is possible to compute alternative instructions that
have the same HD with previous result in Q2, go
through different operations, and again have the same
HD with the current result in Q4, since the instruction
set coding is quite compact.

The good news is that a change in instruction
and/or data may have cascading effects. Tampering
with one instruction affects neighboring instructions
and/or data, which may be reflected from subsequent
side-channel measurements. Given an initial state and
a series of instructions, we are able to derive the side-
channel measurements, as well as the number of all the
possible alternative instructions and final states. If the
number of all the possible final states is one, then the
device must function as desired. We design the integrity
checking scheme following this idea.

5.1. Side-channel Constrained Transitions
From the side-channel model, we derive that the
side-channel-distinguishable runtime state S is S =
(W,C, FS,D, B), where

• W is the working register,

• C is the STATUS register,

• FS = {f sw |w = 1, . . . , 7} is a set of sets of GPRs
grouped by HW, i.e., the 64 GPRs (indexed f
from 0x40 to 0x7f) are divided into seven sets
f sw according to the HW of index w = HW (f );
the GPRs of the same HW are in one set and
therefore do not distinguish index order. This is
because we cannot distinguish file registers of the
same HW (e.g., 0x41 and 0x50) from side-channel
measurements.

• D is the result of current instruction,

• B ∈ {True,False} is whether a branch is to execute.
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S is valid for both power and EM measurements.
Note the difference in the definition here and the
hypothetical internal state used for side-channel
profiling in Section 4.1.

We only need to consider three values for one
instruction cycle:

1. q2 = HD(previous_result,
data_loaded_f or_current_operation),

2. q3 = HW (Icurr ), and

3. q4 = HD(data_loaded_f or_current_operation,
current_result).

q2 ∈ [0, 8] corresponds to the power measurement in
Q2 of current instruction cycle, q3 ∈ [0, 14] corresponds
to the power measurement both in Q3 of current
instruction cycle and Q2 through Q4 of the previous
instruction cycle, and q4 ∈ [0, 10] corresponds to the
power measurement in Q4 of current instruction cycle,
which is adjusted from [0, 8] as instructions with the
file register as destination consumes more power than
instructions with the working register as destination
(c.f. Table 3). q2, q3, q4 are also valid for EM
measurement.

Given side-channel constraints (q2, q3, q4) and an
initial state, we can exhaustively compute all the
possible instructions and the resulting states. Since
we can identify the unconditional branch operations
call, ret, and goto separately by template analysis
and also by the NOP instruction that always follows,
we only consider the literal operations, the file-
register operations that perform arithmetic and logic
computation, and the conditional branch operations.
This includes 28 operations. Both branch and no branch
are considered.

For efficient computation, all the possible runtime
states for one instruction cycle are stored as a search
tree T r keyed by the runtime state S. The record V of
each node of key S is a set of previous state S0i and
instructions P0i : V = {(S01, P01), . . . , (S0k , P0k)} that result
in S. The skeleton of the algorithm that computes a
series of possible resulting states, given a trace of side-
channel constraints and an initial state, is shown from
Algorithm 1 to 4.

Repeating Algorithm 1 will compute all the possible
final states in T rn, given the initial state T r0 =
{(S0, null)} and a series of side-channel constraints {q1,
q2, . . ., qn}, qi = (q2i , q3i , q4i) for n instruction cycles. If
T rn only contains one possible state Sn, then we can
guarantee that a unique state is reached, no matter
what instructions have executed. This leads to the idea
of “side-channel programming”, in which a program
is rewritten in a way that its internal state can be
verified by simply checking the side-channels. Note that
verifying the code solely cannot rigorously secure a

Algorithm 1: onecycle: Compute all the possi-
ble instructions and resulting states that satisfy a
given side-channel constraint (q2, q3, q4) for one
instruction cycle.

Data: q2, q3, q4, T r0
Result: T r1

onecycle(q2, q3, q4, T r0)
begin

T r1 ←− ∅
for each node (S, V ), S = (W,C, FS,D, B) in T r0 do

if B = True (i.e., a branch nop to be executed) then
if q2 = HW (R) and q3 = 0 and q4 = HW (W ) then

compute resulting S1 of executing NOP
addnode(S1, S, branch_nop, T r1)

end
end
else

procliteral(q2, q3, q4, S, T r1)
procbyte(q2, q3, q4, S, T r1)
procbit(q2, q3, q4, S, T r1)

end
end

end

Algorithm 2: procliteral: Find all literal
instructions satisfying (q2, q3, q4). Some opti-
mizations omitted.

Data: q2, q3, q4, S = (W,C, FS,D, B), T r
Result: T r

procliteral(q2, q3, q4, S, T r)
begin

for each literal operation op do
for each operand opr0 that satisfies HD(opr0, R) = q2

do
if q3 = HW (opr0) +HW (op) then

compute resulting S1 of executing op on the
working register

if adjusted q4 = HD(opr0, R1) then
addnode(S1, S, {op opr0}, T r)

end
end

end
end
if q3 = 0 and q2 = HW (R) and q4 = HW (W ) then // NOP

compute resulting S1 of executing NOP
addnode(S1, S, NOP, T r)

end
if q3 = 1 and q2 = HD(R, (0x7f )) and q4 = HW ((0x7f ))

then // CLRW

compute resulting S1 of executing CLRW
addnode(S1, S, CLRW, T r)

end
end

device, due to the existence of code-reuse attacks and
data-only attacks.

Our integrity checking problem can therefore be
formalized as: given an initial state S0 and a final
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Algorithm 3: procbyte: Find all byte-oriented
file register instructions (including conditional
branch DECFSZ and INCFSZ) that satisfy
(q2, q3, q4). Some optimizations omitted.

Data: q2, q3, q4, S = (W,C, FS,D, B), T r
Result: T r

procbyte(q2, q3, q4, S, T r)
begin

for each file-register operation op do
d ←− W

// result stored in the working register

for each file-register f in f sw with w = q3 −HW (op)
do

if HD(R, (f )) = q2 then
compute resulting S1 of executing op on f
if q4 = HD((f ), R1) then

addnode(S1, S, {op f ,d}, T r)
end

end
end
d ←− F

// result stored in GPR

q4′ ←− adjusted q4 for each file-register f in f sw with
w = q3 − 1 −HW (op) do

if HD(R, (f )) = q2 then
compute resulting S1 of executing op on f
if q4′ = HD((f ), R1) then

addnode(S1, S, {op f ,d}, T r)
end

end
end

end
end

state Sn, find a trace of side-channel measure-
ments {(q2i , q3i , q4i)}, i = 1, . . . , n of n steps (instruction
cycles), such that the transition from S0 to Sn is unique.
Any tampering with the program can either be detected
from side-channel measurements, or leads to the same
resulting state. For example, when the initial state is

S0 = (16, 000b, {f sw |f sw = {fij |fij = 0}}, 32,False)

where 000b means three binary zeros.

Given the side-channel constraint
{(1, 8, 1), (7, 10, 6), (1, 7, 4)} for three instruction cycles,
only one final state will be reached, namely

S3 =(7, 001b,

{f s4 = {8, 0, . . . , 0}, f sw |f sw = {fij |fij = 0}, w , 4},
7,False)

There are 20 possible three-instruction traces that
satisfy the side-channel constraints, e.g., {BSF 0x47,3;

ANDLW 0xE7; DECFSZ 0x47,W}, {BSF 0x65,3; ANDLW

0xE7; DECFSZ 0x65,W}, and {BSF 0x78,3; ANDLW

0xE7; DECFSZ 0x78,W}. However all the traces lead to
the unique final state S3.

Algorithm 4: procbit: Find all bit-oriented
file register instructions (including conditional
branch BTFSC and BTFSS) that satisfy (q2, q3, q4).
Some optimizations omitted.

Data: q2, q3, q4, S = (W,C, FS,D, B), T r
Result: T r

procbit(q2, q3, q4, S, T r)
begin

if q4 = 0 or 1 then
for each BCF or BSF operation op do

for each file-register f do
if HD(R, (f )) = q2 and
w = q3 −HW (f ) −HW (op) ∈ [0, 3] then

for each bit b ∈ [0, 7] of weight w do
compute resulting S1 of executing
op on bit b of f

if HD(R1, (f )) = q4 then
addnode(S1, S, {op f ,b}, T r)

end
end

end
end

end
end
for each BTFSC or BTFSS operation op do

for each file-register f do
if HW ((f )) = q4 and HD(R, (f )) = q2 and
w = q3 −HW (f ) −HW (op) ∈ [0, 3] then

for each bit b ∈ [0, 7] of weight w do
compute resulting S1 of executing op on

bit b of f
addnode(S1, S, {op f ,b}, T r)

end
end

end
end

end

5.2. Composing the Programs

Because the instruction set coding of the target µC
is compact and many instructions having the same
HW perform completely different operations, it is not
obvious how to obtain side-channel programs, given
arbitrary initial state and final state, or even whether
it is possible to side-channel program. We adopt a
reductionist method: to reach a desired final state from
a given initial state, we allow several intermediate states
and every pair of neighboring states can be reached by
side-channel programs (i.e., unique transformations).
Then the left work is to find enough side-channel
programs that compose a path from the initial state to
the final state.

We can assume that some heuristic function can
generate a suitable q based on current runtime state,
and the heuristic function will guarantee (at high
probability) that the desired unique final state is
reached within a few steps. For example, the heuristics
may allow more than one possible states to be reached
at intermediate steps while forcing the intermediate
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Algorithm 5: uniquetx: Compute programs that
transform a given initial state to a unique final
state

Data: S0, n
Result: S1

uniquetx(S0, n)
begin

T ri ←− ∅, i = 0, . . . , n
add (S0, null) to T r0
while i ≤ n do

q←−genq(context)
T ri+1 ←− onecycle(q2, q3, q4, T ri)
if size of T ri+1 is one then

break
end
else if size of T ri+1 < threshold then

i ←− i + 1
end

end
end

states to converge to a unique desired final state. This
algorithm is shown in Algorithm 5, where the heuristics
genq(·) generates a q for one instruction cycle based on
the context. The simplest genq(·) is to generate a random
q at each step ignoring current context. An optional
throttle value is chosen to limit the size of the search
tree at each instruction cycle.

Repeating Algorithm 5 will give a directed graph of
states connected by side-channel programs: each node i
of the graph is a state Si , and an edge exists from Si to
Sj only if a side-channel program (of any instructions)
exists to uniquely transform Si to Sj . Since computing
the entire graph that connects all the possible runtime
states is impractical (and unnecessary), we test the
effectiveness of this method by only computing the
graphs for representative values.

Random Initial GPRs. First we consider the initial state

SW = (W, 000b, FS,W ,False) (1)

where FS is set to random value (note that the last
result D = W ). We compute the graphs of side-channel
programs for 20 different FS with W ∈ [0, 255]. For
each W , we execute Algorithm 5 200 times, with genq(·)
generates random q and threshold = 100. We obtain
some interesting results.

First, it is surprisingly easy to obtain side-channel
programs. Given the maximum number of instruction
cycles n to be 2, 4, 8, and 16, the number of side-channel
programs generated for any SW is on average 70, 95,
120, and 136, respectively, for 200 trials. When n is
2, 4, 8, or 16, the side-channel programs result in on
average 51, 74, 99, and 115 distinct final state values (as
different side-channel programs from the same initial
state may reach the same final state). This shows that
the side-channel programs compute diverse final states
(each by unique transformation) from a given initial

state. Among the 51, 74, 99, and 115 distinct final state
values S ′ , there are 26, 31, 33, and 33 state values,
respectively, that have FS ′ = FS. Others have different
FS ′ that differ for one to several GPR values. There
are 21, 26, 28, and 28 state values, respectively, that
not only have FS ′ = FS, but also have the resulting
data D ′ equal to the working register W ′ . There are 10,
12, 12, and 12 state values, respectively, that not only
have FS ′ = FS, D ′ = W ′ , but also have the final STATUS
register C′ = 000b.

We can therefore compose a graph of side-channel
programs with each node as SW ,W ∈ [0, 255]. Given n
as 2, 4, 8, 16, there are 228, 236, 238, and 238 out of
the total 256 SW that can traverse the entire graph (i.e.,
transformed to any possible SW through side-channel
programs), by repeating Algorithm 5 for only 200 times
per SW and genq(·) generating random q. Note that the
graph is a lower bound of the actual graph with nodes of
the form SW because it does not include the edges that
connect two nodes of the form SW indirectly through
nodes not of the form SW .

Furthermore, since there are 25, 43, 66, and 82
distinct final state values, respectively, that have
different FS ′ , the graph of SW is connected to
graphs of different FS ′ through side-channel programs.
Combining the graphs of the same GPRs and of
different GPRs will produce a side-channel program
that statistically traverses any internal states.

Zero Initial GPRs. Second, we consider special initial
states that have all the GPRs of zero values, since
after system reboot, all GPRs are initialized with zero.
The initial side-channel-distinguishable state is of the
form SW = (W, 000b, F0,W ,False) where F0 = {f si |f si =
{fij |fij = 0}, i = 1, . . . , 7}, W ∈ [0, 255], W = D. For each
W , we execute Algorithm 5 200 times with n = 8 and
threshold = 100. genq(·) generates random q. Then we
connect Si to a final state Sj only if any side-channel
program exists resulting in a unique Sj . Note that again
the graph does not contain any nodes not of the form
SW . We find that 252 out of the total 256 nodes in the
graph can traverse the entire graph, showing that the
majority of the runtime states can be reached by side-
channel programming, for 200 trials per SW . The graph
of SW with F0 is also connected to graphs of GPRs with
nonzero values.

5.3. Other Heuristics
The results in Section 5.2 are obtained with the simplest
heuristic function: genq(·) uniformly generates q at each
step, without considering context. It is free to choose
any other heuristic functions. Algorithms 6 and 7 show
two other heuristics we have tried.

We consider the initial state to be of the form in
Equation 1. Executing Algorithm 5 using Algorithm 6
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Algorithm 6: genqec: Generate q by considering
context C

Data: C, n
Result: q2, q3, q4

genqec(C, n)
begin

if current step C < n/2 then
q2←− rand([3, 5])
q3←− rand([5, 9])

end
else

q2←− rand([0, 2] ∪ [6, 8])
q3←− rand([0, 4] ∪ [10, 14])

end
q4←− rand([0, 10])

end

Algorithm 7: genqless: Generate q to have fewer
possible instructions

Data:
Result: q2, q3, q4

genqless()

begin
q2←− rand([0, 2] ∪ [6, 8])
q3←− rand([0, 4] ∪ [10, 14])
q4←− rand([0, 10])

end

and 7, respectively, we again compute side-channel-
program graphs for 20 different FS with W ∈ [0, 255].
For each SW , we repeat the computation 200 times,
with n set to 8. The numbers of resulting side-channel
programs are on average 74 and 180, respectively (i.e.,
the probability of obtaining a side-channel program
of maximally eight instruction cycles is 37% by using
Algorithm 6 and 90% by using Algorithm 7). The
numbers of distinct final states are on average 66 and
95 (i.e., 33% and 47%), respectively.

Among the 66 distinct final states by using
Algorithm 6, on average 6 (actually 5.65) have FS ′ = FS.
Others have FS ′ that differs for one to several GPR
values. 5 out of 6 final states not only have FS ′ = FS, but
also haveD ′ = W ′ . 2 out of 5 final states further have the
final STATUS register C′ = 000b. The entire side-channel
graph for the same FS has on average 25 out of the total
256 states that are connected.

For Algorithm 7, on average 44 out of 95 final states
have FS ′ = FS. 35 out of 44 further have D ′ = W ′ .
13 out of 35 further have C′ = 000b. The entire side-
channel graph for the same FS has on average 204 out
of the total 256 states that are connected. Note that
above graphs are obtained by considering only the 200
executions of Algorithm 5 with nodes of the same form
of SW .

Table 6. Side-channel programs for transitions among Si,j

Target transition
Number Total number
of edges of cycles

S0,0 → S1,1 1 2
S1,1 → S2,2 2 2
S2,2 → S4,4 3 4
S4,4 → S8,8 7 19

S8,8 → S0x10,0x10 6 14
S0x10,0x10 → S0x20,0x20 5 7
S0x20,0x20 → S0x40,0x40 7 17
S0x40,0x40 → S0x80,0x80 3 5

Compared to the results in Section 5.2 which uses
random q at each instruction cycle and ignores the
context, Algorithm 7 seems to be almost as effective
in finding side-channel programs as random q, while
Algorithm 6 is surprisingly less effective. Algorithm 7
is more efficient than random q because it takes much
less time to compute.

5.4. Example
Here gives an example of side-channel programs.
The goal is to output a pattern 0x01, 0x02, . . .,
0x80 at a fixed interval. The system initialization
includes clearing flags, setting up clock and I/O ports.
After initialization, all the GPRs are zero. Writing
to the I/O PORTC, for example, with non-zero val-
ues uses the code {BCF STATUS,0x5; BCF STATUS,0x6;

MOVLW 0xAA; MOVWF PORTC}. The initialization proce-
dure changes W and D. No matter what the values are,
W and D can be reset to zero by using CLRW, which
can be verified from side-channel measurements since
only CLRW satisfies the constraint q3 = 1 and q4 = 0.8

The initial state after initialization is therefore

S0,0 = (0, 000b, F0, 0,False)

To write to PORTC, we only need to change W to each
of the target values through side-channel programs.
We run Algorithm 5, with Algorithm 7 as genq(·) for
100 times for each Si,j = (i, 000b, F0, j,False) to obtain
edges for the graph of side-channel programs with FS =
F0 and STATUS equal to 000b. The computation takes
around 8 hours on a commercial Core i7 computer
to run for every Si,j , i ∈ [0, 255], j ∈ [0, 255]. We are
able to find side-channel programs for every transition
S0,0 → S1,1, S1,1 → S2,2, . . ., S0x40,0x40 → S0x80,0x80. The
detailed result is given in Table 6. Column 2 of Table 6
means the number of intermediate nodes Si,j that need
to be traversed in order to reach the final state. Column
3 means the total number of instruction cycles required
for the target transition.

Because the number of instruction cycles required
for each transition is different, padding instructions
are needed to output to PORTC at a fixed interval.

8Excluding operations on SFRs and unconditional branches
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The simplest way is to use NOP, which is the only
instruction that satisfies q3 = 0. q2 and q4 can be
calculated according to Tables 2 and 3.

6. Conclusion
We have shown that accurate side-channel models of a
microcontroller can be built at clock-cycle granularity
by iteratively correcting and refining hypothetical
semantic models of the instruction set and side-channel
models. We even discovered undocumented internal
behavior of the device using this approach.

We further proposed a novel software integrity
checking method, side-channel programming, in which
a program is rewritten in a way that its internal
state can be verified by simply checking the passive
side-channel emanations. Side-channel information in
general cannot be used directly for integrity checking
because a side-channel-aware attacker may be able
to write malware that has indistinguishable side-
channel emission with the legitimate code. The side-
channel programming approach shown in this paper
has the unique feature that as long as the side-channel
constraint is satisfied, any code starting from the given
initial state is guaranteed to reach a single final state.
We have illustrated in detail on how to generate
“side-channel programs” in combination with the side-
channel constraints. Compared to existing protection
mechanisms, our approach does not interrupt device
execution or require hardware modification, and is
secure against side-channel-aware attackers.
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