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ABSTRACT 
Mobile application developers are using cryptography in their 
products to protect sensitive data like passwords, short messages, 
documents etc. In this paper, we study whether cryptography and 
related techniques are employed in a proper way, in order to 
protect these private data. To this end, we downloaded 49 
Android applications from the Google Play marketplace and 
performed static and dynamic analysis in an attempt to detect 
possible cryptographic misuses. The results showed that 87.8% of 
the applications present some kind of misuse, while for the rest of 
them no cryptography usage was detected during the analysis. 
Finally, we suggest countermeasures, mainly intended for 
developers, to alleviate the issues identified by the analysis. 

Categories and Subject Descriptors 
E.3 [Data]: Data Encryption - code breaking, data encryption 
standard (DES), public key cryptosystems, standards (e.g., DES, 
PGP, RSA) 

General Terms 
Design, Experimentation, Security 

Keywords 
Software security, Android, Cryptography misuse 

1. INTRODUCTION 
The need to privately share information in a manner that would be 
understandable to only a specific group of people exists for 
thousands of years before computer’s invention and 
establishment. The existence of cryptographic algorithms akin to 
Caesar’s Cipher proves that contemporary cryptography has its 
origins in Caesar’s era, when attempts to achieve information 
security began to take place. Thus, the field of cryptography is not 
new and efforts towards its improvement exist for many years. 

The rapid technological progress in the last years has led to the 
emergence of smartphones which, apart from voice and SMS, 
support Internet access, standalone applications, and wireless 
connectivity. The same devices are used by a large proportion of 
users to install applications that store sensitive data like 
passwords, location, and social network interactions.  

The need for privacy imposes cryptography utilization in 
applications that manage these sensitive data [12]. To this end 
developers embed cryptographic techniques in their mobile 
applications; and while cryptography is a long existing field, 
developers rarely have knowledge of information security. As a 
consequence, incidents of data breaching and disclosure are very 
frequent, while there are cases of popular products that claim to 
be secure although they utilize practically no security; a recent 
infamous example is NQ Mobile Vault application [18], which 
was discovered that it uses a simple XOR function to perform 
secure sensitive users’ data. 

Regarding the academic activity in the specific domain, a lot of 
research has been conducted and many studies have been realized; 
however, none of them has yet concentrated on a set of good and 
bad practices, as each work aims at giving prominence to the 
specific cryptographic mistakes of the applications and not at 
developers training. Our contributions, in this paper, are: (a) to 
evaluate the use of cryptographic techniques in real world 
Android applications and feature the most common misuses, and 
(b) to provide a list of good practices for developers in order to 
alleviate the identified issues. The reason we focus on Android is 
because it is one of the prominent smartphone platforms with a 
relatively stable cryptographic API (Java’s Cipher), and has 
numerous applications available. 

Our approach regarding application analysis was to employ a 
combination of both techniques of static and dynamic analysis, so 
as to succeed in producing more accurate results. Generally, the 
term Static Analysis refers to the process of detecting software 
errors and defects or security flaws by examining the source code 
of a program without executing it, and can also be utilized to 
ensure conformance with specific programming requirements. 
Static Analysis is considered as a part of code review process and 
provides better perception of code structure [13]. Developers 
frequently perform static analysis combining automated tools and 
visual source code inspection [22]. 

On the other hand, Dynamic Analysis refers to the testing and 
evaluation of a program based on its execution and it is usually 
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performed with a view to detecting subtle defects or 
vulnerabilities manifested during runtime, the cause of which is 
too perplex to be detected via static analysis [27]. Developers, 
through a dynamic test, are capable of monitoring system 
memory, functional behavior, response time, and overall 
performance of the system [26]. Therefore, there are cases where 
a single component from the abovementioned list is selected to be 
examined (e.g. system memory) in order to seek only for specific 
types of errors. 

Regarding the advantages of the two methods, Static Analysis is 
the most thorough technique and the developers using it are 
capable of identifying the exact location of weaknesses in the 
code, as well as of examining all possible execution paths and 
variable values and not just those invoked during execution. 
Moreover, Static Analysis reveals errors in the initial stages of the 
development life cycle, reducing the cost to fix and preventing 
errors from manifesting themselves and triggering any incident. 
Dynamic Analysis is more flexible regarding the possibility to 
test the application for apropos specified error categories only, for 
instance security flaws. What is more, via Dynamic Analysis it is 
technically feasible to test applications even if there is no access 
to their source code. Finally, Dynamic Analysis can be utilized as 
a validation of Static Analysis results. 

Nevertheless, the two methods of analysis have many 
disadvantages both due to their nature per se, but also due to the 
fact that the use of automated tools for analysis is widespread. In 
cases where automated tools are utilized, the significant number 
of false positives and false negatives constitute the main 
drawback in both types of analysis as the tools’ efficiency is 
highly dependent on the rules defined for software scanning. This 
specific fact remarks the necessity for the human factor 
involvement for understanding whether the tool alerted a real 
error or not. Additionally, Static Analysis cannot provide 
satisfactory results regarding memory leaks and concurrency 
errors. In order to detect this type of faults it is necessary to 
execute the software. Lastly, when Static Analysis is performed 
by a tool, there is a limitation regarding the programming 
languages that can be supported. Consequently, we can deduce 
that the two approaches are complementary as no single approach 
can find every possible type of error. Moreover, taking into 
account automated tools’ inefficiencies, we have chosen to use 
manual static analysis in combination with dynamic analysis, so 
as to have more accurate results. 

Using a combination of static and dynamic analysis, we evaluated 
a total of 49 Android applications downloaded from the Google 
Play marketplace. Our overall results feature that 87.8% of the 
applications show evidence of cryptography misuse, while for the 
rest 12.2% no cryptography was detected from our analyses. This 
high proportion of misuse amplifies our previous argument that 
developers rarely understand how to correctly incorporate 
cryptography in their applications. 

The rest of our paper is organized as follows. Section 2 briefly 
presents important cryptographic concepts, while section 3 
analyzes the related work. Section 4 elaborates on a set of 
cryptographic weaknesses that we will be used to evaluate the 
cryptographic security of the examined applications. Section 5 
analyzes the carried out experiments by presenting the 
methodology for static and dynamic analysis. Section 6 evaluates 
the cryptographic security of the mobile application by analyzing 
the numerical results, while section 7 concludes the article. 

2. CRYPTOGRAPHIC CONCEPTS 
The key goal of encryption is to provide confidentiality and 
privacy; nonetheless, applications which employ cryptography 
can be attacked in many different ways. The most usual way is 
breaking encryption schemes incorporated in the application. 

This particular class of attacks consists of three basic 
subcategories: the ciphertext only, the known plaintext and the 
chosen plaintext attacks. In a ciphertext only attack, the adversary 
has access to a specific ciphertext which he tries to decrypt 
searching in the set of all possible keys, while in a known 
plaintext attack the attacker has in his possession a pair of 
plaintext and ciphertext. In a chosen plaintext attack, the 
adversary can access any possible plaintext with its corresponding 
ciphertext. 

A secure cryptosystem should resist all the above mentioned sorts 
of attacks. In our work we will mainly consider ciphertext 
indistinguishability. This property, also known as 
Indistinguishability under Chosen Plaintext Attack (IND-CPA), 
ensures that a potential adversary will not be able to distinguish 
pairs of ciphertext based on the plaintext they encrypt. 

A secure cryptosystem constitutes any entity employing 
cryptography, in hardware or software level, which, given the 
ciphertext, averts the threat of an adversary to discern even a 
single bit of information describing the plaintext in polynomial 
time. Taking this into consideration, we should only consider an 
encryption scheme to be secure if and only if it is IND-CPA 
secure. Moreover, an encryption scheme must be either 
probabilistic or stateful to be IND-CPA secure [2]. Otherwise, the 
adversary will be able to discern if the same message was sent 
twice. It is noted that in a stateful encryption scheme the keys are 
updated in each encryption, while in a probabilistic encryption 
scheme randomness is used in the encryption algorithm which 
satisfies collision resistance and hides all the information related 
to its input [5]. 

As for the existent types of encryption, Password Based 
Encryption (PBE) is highly widespread in Android applications. 
PBE is a cryptographic technique where a secret key is generated 
based on a user-generated passphrase. This particular technique is 
proposed to be used with a high entropy password, as PBE is 
usually used in applications where the adversary is able to apply 
brute force attack to retrieve the password without being detected. 

3. RELATED WORK 
This section provides an overview of previous work realized in 
static analysis, dynamic analysis, and techniques for combined 
static and dynamic analysis. 

The first methodical attempt that constitutes a key milestone in 
the specific domain is Manuel Egele’s et al. study [4], the main 
purpose of which was to test whether developers use the 
cryptographic APIs in a fashion that provides typical 
cryptographic notions of security (e.g. IND-CPA security). Their 
system, namely CryptoLint, uses static program slicing and 
analyzes compiled Android applications having no access to the 
source code. The results showed that 88% of applications that use 
cryptographic APIs make at least one mistake. 

One of the drawbacks of this approach is that the tool is not open 
source so it is not possible to repeat the experiments. Moreover, 
the list of checked applications is not available. Also, CryptoLint 
lacks the capability of analyzing cryptographic primitives’ 
invocation from native code (i.e. code written in other language 



than Java, for example C and C++), as its functionality focuses on 
Dalvik bytecode investigation. CryptoLint also does not include 
the identification of all types of non-predictable IVs, as the static 
IV's recognized by the tool refer to a subcategory of non-
predictable IVs. A general drawback of automated tools is false 
alarms [25]. Thus, manual static analysis seems to be a more 
proper approach, guaranteeing more accurate results as well as the 
ability to cover a greater extent of cryptographic rules.  

Yong Li et al. introduced iCryptoTracer [11], a tool similar to 
CryptoLint, though its function is based on a combination of both 
static and dynamic analysis techniques and its focus is on iOS 
applications. This tool first uses static analysis to scan and record 
the APIs’ locations of cryptographic functions. Then, during the 
dynamic analysis phase, it monitors those API calls at runtime. 
Finally, iCryptoTracer, combining the information gathered on 
the previous steps with its diagnosis engine, decides whether a 
cryptographic misuse exists or not in the application. The results 
showed that approximately 65.3% of the applications examined 
contain various degrees of security flaws caused by cryptographic 
misuse. The main drawback of this method is that an insufficient 
set of rules is provided, according to which applications are 
classified into Healthy, Weak or Critical. 

A quite similar study has been also conducted by Somak Das et 
al. [3], who systematically compared the APIs of cryptographic 
libraries across different programming languages (C, C++, Java, 
Python and Go) and evaluated their potential for misuse. In this 
report the possibility to have data security breaches is considered 
irrespective of the security of cryptography library in use, and it 
depends on the manner that the developer uses the library and 
consequently, on the properties of each particular library that 
encourage or discourage cryptographic misuse. 

The purpose was to derive recommendations for library designers 
to follow so as to reduce this misuse. The paper illustrates the 
comparison of 6 particular cryptographic libraries (OpenSSL in C, 
Crypto++ and NaCl in C++, PyCrypto in Python, JCA in Java and 
Go Crypto package in GO) resulting in NaCl being the safest. The 
authors also developed a linter tool (pycrypto_lint) which applies 
to any application using PyCrypto library, checking the source 
code during runtime in order to detect various misuses of the 
library. The specific study however does not incorporate a 
specifically defined method according to which each library was 
examined, and although the source code of the tool is publicly 
available, the report does not include proper sections concerning 
the description of system design and implementation, as well as 
the tool’s evaluation. 

A literature review of cryptography on Android message 
applications has been presented by Nishika and Rahul Kumar 
Yadav [16], who surveyed and illustrated the most common and 
widely used SMS encryption techniques, inferring that there is a 
need for an efficient encryption algorithm. 

The most recent work in this field of study is that realized by 
Shuai et al. [24]. In their study, the authors initially define 
specific models of cryptographic misuse, in which they are based 
so as to build a tool of auto detection (CMA). CMA employs both 
static and dynamic analysis techniques in order to detect 
cryptographic vulnerabilities and it is tested in 45 Android 
applications downloaded from the Chinese application store 
Baidu. However, CMA misses cases where cryptography is 
employed but is not included in the specific API (when, for 
example, the developer has implemented a custom cryptographic 
algorithm). This fact also indicates the need for including more 

models for cryptographic misuse in the list. CMA’s paper 
includes a quite satisfying number of cryptographic primitives 
that have to be taken into consideration in such an analysis, which 
is something that similar papers lack. Nevertheless, the tool 
created is not designed to locate all the models of cryptographic 
misuse mentioned in the paper, as for example the key 
management category of flaws is omitted. Additionally, there are 
models that, according to the results, are not violated by any of 
the applications under examination, which makes the proper 
functionality of the tool for the specific models and the necessity 
of the specific models doubtful. As a result, there are only results 
for the trivial cryptographic principles misuses. Last but not least, 
it has to be remarked the fact that the applications were not 
downloaded from the official Android marketplace but instead 
they used the Chinese application store Baidu. 

The majority of the related works are based on automated static or 
dynamic analysis tools; however, although automated tools offer 
the advantage of being able to examine a large number of 
applications, it is always possible to miss certain types of flaws. 
Moreover, automated static analysis tools have proven to generate 
a fair number of false positives while in manual static analysis the 
findings can be verified. Taking into account automated tools’ 
inefficiencies, we have chosen to use manual static analysis in 
combination with dynamic analysis, so as to have more accurate 
results. Our purpose is to cover a detailed list of cryptographic 
flaws and misuses, something that developers’ community lacks, 
with a view to helping programmers avoid common cryptographic 
misuses. 

4. CRYPTOGRAPHIC WEAKNESSES 
In this section, we evaluate the cryptographic security of the 
examined applications. To this end, we classify and analyze 
cryptographic weaknesses using four categories: (a) use of weak 
cryptography, (b) weak implementations, (c) use of weak keys, 
and (d) use of weak cryptographic parameters. 

Weak cryptography. This category comprises cryptographic 
algorithms that are used in applications despite the fact that it is 
well known that they are not secure. 

C1. Use of weak cryptographic algorithms or hash functions. 
Programmers should not use algorithms proven to be broken 
or weak. For example, MD4, MD5, SHA1, DES and RC4 
are considered to be obsolete [10]. 

C2. Use of custom cryptographic algorithms. The security 
offered by non-publicly reviewed algorithms invented by 
programmers themselves is questionable and their 
employment is considered to be insecure [23]. 

C3. Use of cryptographic algorithms in ECB mode. It does 
not constitute a secure cryptographic mode, as it cannot be 
IND-CPA secure [4]. 

C4. Use of non-Cryptographically Secure PseudoRandom 
Number Generators (CSPRNGs). CSPRNGs seed data 
with the required entropy in order to make it much more 
difficult for adversaries to guess the produced random 
numbers [30]. The factor of randomness should also be 
introduced in any kind of password, salt and seed. Java 
provides for Android Development the SecureRandom class 
which implements a PseudoRandom Number Generator 
(PRNG) for keys production [10, 23]; the Random class, 
however, is not considered secure and should not be used 
for key generation. 



C5. Use of CBC combined with PKCS5Padding. This mode is 
vulnerable to padding oracle attacks, while PKCS7Padding 
is considered to be the best option for the specific 
encryption mode [1, 8, 9, 19, 21, 28, 29]. 

C6. No cryptography usage observed. This weakness 
comprises the cases where no cryptographic operation was 
identified during the static and dynamic analysis. This 
includes cases where either obscure cryptography is used or 
no cryptography is used at all. 

Weak implementations. The utilization or implementation of 
cryptographic algorithms in a non-standard manner or not 
following best practices can result in unsafe applications. 

I1. Re-implementing standard algorithms (e.g. AES). Re-
implementations of well-known algorithms are also possible 
to be incorrect and insecure. Thus, developers should not 
use other than well-known cryptographic algorithm 
implementations [23]. 

I2. Use of PBE with no salt. It is recommended to use PBE 
with random salts in order to avoid brute force attacks [4]. 

I3. Use of PBE with fewer than 1,000 iterations. This should 
also be avoided in order to prevent brute force attacks [4]. 

I4. Use of static or reuse of PRNG seed. A PRNG seed must 
not be reused in the same context as it is a best practice to 
use independent random numbers in all stages of a 
cryptographic procedure. Specifically for the 
SecureRandom class, it is known that a static seed will 
produce the same PRNG output [4, 10]. 

I5. Not processing the internal buffers after encryption or 
decryption. When Java’s Cipher is used for cryptography, 
the proper call of the dofinal() function, which processes the 
last block in the buffer (i.e. ciphertext or plaintext), should 
not be omitted for both the encryption and the decryption 
phase. The internal mechanism of the algorithm 
implementation, depending on its encryption mode (ECB, 
CBC, or other), keeps an internal buffer which must also be 
discarded [6]. 

I6. Use of RSA with a padding other than OAEP. This 
should be avoided due to the fact that the use of a padding, 
such as PKCS1Padding, which does not use random bytes, 
will delay the adversary to decrypt the data or infer patterns 
from the ciphertext less than the OAEP padding will [14]. 

Weak keys. This category includes those cases where weak 
cryptographic keys are used, a practice that can put in risk the 
security of users and applications. 

K1. Use of short keys. Yet another possible vulnerability of a 
cryptographic algorithm is short keys employment. 
According to the contemporary cryptographic standards 
[17], a key is weak when its length is less than 128 bits. The 
usage of a suchlike cryptographic key weakens the 
encryption and must be strictly avoided. For example, DES 
is known to have a set of weak keys, as it uses a 56-bits key, 
which does not provide sufficient security [10]. 

K2. Use of hard-coded encryption keys. The secrecy of 
encryption keys is an important factor and this practice can 
result even in the disclosure of the key to the adversary 
[10]. The encryption keys must be dynamically generated 
and developers should strictly avoid exposing them in the 
application’s code [4, 11]. 

K3. The use of static/constant encryption keys. It is possible 
for an encryption key to be static without being hard-coded, 
e.g. when a byte array is initialized and remains the same 
for the whole process. The randomness of the encryption 
keys is the major factor contributing to encryption schemes 
security, thus cryptographic keys should not be constant [4, 
11]. 

K4. The use of hard-coded passwords for PBE. Although 
PBE is usually based on a password given by the user as an 
input to the Android application, there are cases where 
developers use a specific value defined statically. In this 
way, developers make the application use the same 
password for each execution, while the password value can 
easily be accessed by the adversary. 

Weak cryptographic parameters. This category comprises 
weaknesses related to poor choice of cryptographic parameters, 
like cryptographic modes, IVs, and seeds. 

P1. Use of block ciphers with Java’s default cryptographic 
mode. When only the cipher algorithm is invoked (without 
a specific mode defined), the default cryptographic mode 
used in specific providers (SunJCE and SunPKCS11) is the 
ECB, which is considered unsafe. 

P2. Use of CBC encryption mode together with a non-
random IV. An IV should be neither static nor predictable 
(for example an IV consisting of 0’s or sequential numbers) 
[4, 11], otherwise the resulting cryptographic scheme is not 
considered safe. 

P3. Use of CTR encryption mode together with a static 
counter value. It does not constitute a safe cryptographic 
scheme as it is not IND-CPA secure. 

P4. Use of hard-coded IVs. Developers have to generate IVs 
dynamically for two reasons: (a) preventing adversaries 
from obtaining the specific primitive’s value, and (b) 
generating different values for the IV in each cryptographic 
stage [4]. 

P5. Use of constant IV. A constant IV or an IV reuse renders 
many cryptographic schemes IND-CPA insecure, as the IV 
constitutes the only primitive introducing randomness in a 
cryptographic procedure and using a constant or a static IV 
frequently results in producing the same ciphertext. An IV 
can be constant without being hard-coded if, for example, is 
randomly generated but used more than once. 

P6. Deriving IVs from keys or messages. This practice makes 
the IV non-random and predictable [4, 11] and is considered 
to be insecure. 

P7. Generating IVs from cipher’s blocksize, based on byte 
array creation. Many developers generate the IVs 
manually by initializing a vector having the size of cipher’s 
blocksize with the default values of the creation of a byte 
array (bytearray = new byte[]), in combination with 
nextbytes() method of Random class. There are also cases 
where not even the Random class is utilized. It has to be 
noted that Random class use is not a proper practice, while 
deriving the IV without introducing any randomness, using 
Java default values to a byte array, makes the IV non-
random and predictable [4, 11]. 

P8. Use of predictable PRNG seeds. The seed of the PRNG 
constitutes an important factor in constructing a secure 
cryptographic scheme. Developers should use non 



predictable seeds with PRNGs, so as to generate a high 
entropy key and not weaken PRNG’s strength [10]. It is also 
essential to note that the setSeed() method of the 
SecureRandom Java class produces a predictable seed and 
must not be used in the key generation process [15]. 

5. METHODOLOGY & EXPERIMENTS 
Our approach is organized in four main phases:  

1. Application collection 

2. Application utilization 

3. Static analysis 

4. Dynamic analysis 

The first phase describes the particular Android applications that 
were collected in order to be audited, while the second includes 
applications’ testing through their graphical user interface (GUI). 
The core of our study, however, is detailed in the phases three and 
four where static and dynamic analyses are conducted with a view 
to discovering possible cryptographic misuses. 

5.1 Application Collection 
We have selected randomly 49 Android applications that employ 
cryptography to protect user’s data. Based on the provided 
functionality, the underlying mobile applications can be divided 
into four categories:  

1. Secure messaging: This category includes applications that 
exchange encrypted data either via SMS, or through 
Bluetooth and Internet services (chat, social media and email). 
This category comprises 23 applications. 

2. Document encryption: Document encryption describes 
applications that are involved with any kind of document 
encryption, like file encryption, directory encryption, 
multimedia content encryption, and note encryption. We 
downloaded 7 applications belonging to this category. 

3. Sensitive data exchange & storage: Applications that 
appertain to this particular category are those handling any 
type of sensitive data (passwords, credit card numbers, pins 
etc.). 13 applications belong to this category. 

4. Multipurpose encryption utility: This particular class contains 
applications offering more than one operations such as 
generating passwords, document encryption, text encryption, 
sensitive data storage, password vaults etc. This category 
comprises 5 applications. 

All applications were downloaded from the official Google Play 
marketplace between June and November 2014. This particular 
aggregation of applications was considered to be a representative 
sample of developers’ predilection for certain cryptographic 
primitives and strategies. 

5.2 Application Utilization 
After collecting the application .apk files and prior to static and 
dynamic analysis, we installed each application in at least 2 
different Android devices. The purpose was to run the 
applications and test them through their graphical environment so 
as to recognize any parameters used that are possibly involved in 
the cryptographic procedures employed. Moreover, in the 
particular case of applications that appertain to the “Secure 
messaging” category, we are able to form an opinion regarding 
the general legitimacy of cryptographic practices employed, as 
the cipher is directly available via the graphical user interface. 

One of the checked parameters for all applications is the 
utilization of a password. Applications encompassing encryption 
usually utilize a password consisting of letters, digits, or 
alphanumeric characters. A password is introduced by the user 
and commonly takes part in the process of the plaintext 
encryption. There are many cases, however, where the password 
is only used as a pin. 

The parameter that we particularly checked in “Secure 
messaging” applications was the output of the same ciphertext, 
when the same plaintext was given as an input. When this finding 
is detected, we can deduce that the cryptographic scheme used is 
not IND-CPA secure. The output of the same ciphertext implies 
the usage of wrong cryptographic primitives, for example the use 
of the same IV for each encryption. The same stands also in the 
case of password usage (i.e., if for the same combination of 
plaintext and password the same ciphertext is produced). 

In order to ascertain ciphertext’s indistinguishability through each 
application’s graphical environment, we considered three 
different scenarios: 

1. input of the same plaintext twice in the application under 
examination, without disrupting its operation 

2. input of the same plaintext once before and once after 
application and device reboot, and 

3. execution of the application in two different Android devices, 
inserting in both cases the same plaintext. 

5.3 Static Analysis 
In the third phase of our study we proceeded in the manual source 
code auditing of each one of the 49 applications with the intention 
of inspecting in full detail the cryptographic primitives in use (i.e. 
the general encryption scheme employed, the cryptographic 
algorithms, their parameters and specific modes of operation). 
Static analysis involves the following three steps: 

1. Obtaining the target application’s .apk file. We 
downloaded and installed the mobile application Root File 
Explorer in a rooted Android phone, so as to be able to 
explore the device’s files and copy the target application’s 
.apk from /data/app/ to the SD card. 

2. Extracting the source code of the application by apk 
decompilation. For this step, we used dex2jar [20] toolset 
as well as JD-GUI tool from Java Decompiler project [7]. 
Specifically, dex2jar is a set of tools to convert Android 
.dex files into Java .class files, while JD-GUI is a 
standalone graphical utility that displays Java .class files 
source code. The step sequence followed in this stage for 
each application was the following (see Figure 1): 

 Add the extension “.zip” to the .apk file (so that 
example.apk becomes example.apk.zip) and extract the 
zip file into folder example_folder. 

 Copy the files of the toolset dex2jar into 
example_folder. 

 From the command prompt, execute the command 
dex2jar classes.dex. This command will generate the 
file clasess.dex.dex2jar into the example_folder. 

 Finally, we obtain access to Java source code by 
opening the classes.dex.dex2jar file using the JD-GUI 
application. 



3. Source code analysis and reviewing. The last and most 
important step is the manual (i.e., without the use of 
automation tools) examination of the obtained source code 
of the applications, in order to evaluate their security based 
on the list of the cryptographic weaknesses discussed in the 
previous section. 

 

Figure 1. apk decompilation 

5.4 Dynamic Analysis 
In this phase we performed dynamic analysis in order to verify 
the obtained results from the static analysis or to examine cases 
where the results of the static analysis were inconclusive. That is, 
static analysis cannot always cover the whole functionality of the 
application. The reason behind this is that many Android 
applications make use of native code, which is not available after 
the apk decompilation process that we followed in the previous 
phase. What is more, there is always the possibility to include in 
the source code functions that are not actually called during 
application’s execution. With a view to include in our research 
these cases as well and have more accurate results, we have 
performed also a simple yet effective dynamic analysis technique. 

In particular, in this phase we have examined the cryptographic 
security of the Android applications under examination using the 
Dalvik Debug Monitor Server (DDMS). The latter is a GUI based 
debugging application that allows the examination of running 
processes. Although it’s primary goal is to help developers to 
identify bugs in Android applications, for our purposes we have 
used DDMS as a tool to examine the cryptographic libraries that 
are invoked during runtime of Android applications. To this end, 
we have used the Track Memory Allocation functionality of 
DDMS, which detects and shows all invoked cryptographic 
libraries of an Android application. In this way, we were able to 
discover which cryptographic functions are being called during 
the runtime of the application. 

It is evident that for applications that implement a custom 
algorithm and do not use standard cryptographic libraries (such as 
Caesar’s Cipher or any other substitution cipher), we could not 
deduce any meaningful result using DDMS.  

6. RESULTS & EVALUATION 
This section presents the results produced by the static and 
dynamic analyses we performed in the selected 49 Android 
applications. The findings of our study are shown in Table 1, 
which presents the number and the categories of cryptographic 
flaws discovered.  

 

Table 1. Individual weaknesses per application category 

Category

 
Weakness 

SM MEU DE SDES Total 

C1 17 6 7 2 32 
C2 3  1  4 
C3 9  4 3 16 
C4 2    2 
C5 8  3  11 
C6 2  3 1 6 
I1 3    3 
I2 5 1 2  8 
I3 2 1 3  6 
I4 2    2 
I5   1  1 
I6 2    2 
K1 2 2 2 1 7 
K2 2  1 1 4 
K3 1  2 1 4 
K4 1  1  2 
P1  2 4 1 7 
P2 3    3 
P3 2    2 
P4 1  1  2 
P5 1  1  2 
P6     0 
P7 1 1   2 
P8 3 1   4 

      
Legend:      
SM: Secure messaging  
MEU: Multipurpose encryption utilities  
DE: Document encryption  
SDES: Sensitive data exchange & storage  

 

One of the first observations is that the most common weaknesses 
are: C1 (weak cryptographic algorithm or hash function) which is 
detected in 32 applications (65.3%), C3 (cryptographic algorithm 
in ECB mode) in 16 applications (32.7%), and C5 (CBC mode 
with PKCS5Padding) in 11 applications (22.4%). Interestingly 
enough, these three weaknesses belong to the same category 
(weak cryptography). By grouping weaknesses into the categories 
presented in Section 4, it can be seen (Table 2) that most observed 
misuses in Android applications are related to weak cryptography, 
followed by weak implementations of the algorithms and weak 
cryptographic parameters selection; the least observed 
weaknesses are related to the selection of weak cryptographic 
keys. 

Table 2. Grouped weaknesses per application category 

Category

 
Weakness 

SM MEU DE SDES Total 

Weak crypto 41 6 18 6 71 
Weak 

implementations 
14 2 6 0 22 

Weak keys 6 2 6 3 17 
Weak 

parameters 
11 4 6 1 22 



 

The results of the application testing scenarios discussed in 
Section 5.2 are presented in Table 3 and concern those 
applications that are non IND-CPA secure based on their output. 
We deduced that the 30.6% of applications (i.e. 15 out of 49 
applications) are not IND-CPA secure. From these non IND-CPA 
secure applications, 80% of them fail in all three scenarios, i.e. 
given the same plaintext as input, the same ciphertext is produced 
regardless if the user restarts the application or the device, or use 
another device, or not. 

Table 3. Non IND-CPA secure applications 

Scenarios not satisfied No of apps 
1, 2 and 3 12 
1 and 2 1 

1 2 
 

The vast majority of Android applications’ source code 
encompasses at least one cryptographic misuse, not always 
relevant to cryptographic algorithm and mode selection. 
Nonetheless, there are many cases where no cryptography is 
detected or out of date algorithms are invoked, for instance Caesar 
Cipher, Columnar Transposition, AtBash Cipher and Playfair 
Cipher along with others, even by applications bearing a name 
that implies the use of strong cryptography. 

Although the majority of applications use AES in CBC mode, 
there is a significant number of Android applications that include 
either ECB mode or at least one obsolete algorithm. As far as a 
more comprehensive and statistical analysis of the results is 
concerned, it seems that the applications presenting a weakness 
related to cryptography misuse (i.e. all weaknesses apart C6) 
reach a percentage of 87.8% (i.e. 43 out of 49 applications). At 
the same time, the applications in which no cryptography was 
detected (i.e. weakness C6) reach the 12.2% (i.e. 6 out of 49 
applications). Consequently, the percentage of the applications 
that seem to have no weakness is 0% (i.e. 0 out of 49 
applications).  

Table 4. Cryptographic misuses findings overview 

Misuse 
Percentage of 
applications 

Applications presenting at least one 
cryptography misuse weakness 

87.8% 

Applications where no cryptography was 
detected 

12.2% 

Applications where no weakness was detected 0% 
Weak or no cryptography usage detected 95.9% 
Weak implementations 32.7% 
Weak cryptographic keys usage 26.5% 
Incorrect cryptographic parameters 
employment 

30.6% 

Use of ECB mode of encryption 32.7% 
 

Another interesting point is that 95.9% of the tested applications 
(i.e. 47 out of 49 applications) present a weakness of the weak 
cryptography class (weaknesses C1 to C6). The percentage of 
applications that incorporate poorly implemented cryptography 
(weaknesses I1 to I6) is 32.7% (i.e. 16 out of 49 applications). 
Also, the 26.5% (i.e. 13 out of 49) of applications use weak 
cryptographic keys (weaknesses K1 to K4). Simultaneously, the 
percentage of applications employing cryptographic techniques 

with incorrect parameters (weaknesses P1 to P8) reach the 30.6% 
of the applications examined (i.e. 15 out of 49 applications).  

Another interesting conclusion is the fact that although the most 
common cryptographic principle is that ECB mode of encryption 
is not IND-CPA secure and should not be used, the 32.7 % (i.e. 16 
out of 49 application) make use of the specific mode in their 
cryptographic processes (weakness C3). An overview of all the 
aforementioned misuses is presented in Table 4. 

7. COUNTERMEASURES 
At this point, it is necessary to design a list of countermeasures 
and best practices that could be employed as a general 
methodology for developing Android applications using solid 
encryption. In the following we cite our proposals for specific 
cryptographic primitives’ usage, emanating from our study: 

1. Regarding encryption algorithms, developers should opt for 
AES and RSA for symmetric and asymmetric encryption 
respectively. 

2. Depending on our previous selection, the most appropriate 
encryption scheme for AES is CBC with PKCS7Padding, 
while for RSA developers should select OAEP padding. 

3. Another important practice that developers should certainly 
take into consideration is using randomness for any 
cryptographic parameter such as passwords, encryption keys, 
initialization vectors, salts and seeds. The aforementioned 
parameters must have the proper lengths and not be hard 
coded or statically defined in the source code so as not to use 
the same values for every execution of the application.  

4. As for the random number generation, Cryptographically 
Secure PseudoRandom Number Generators (CSPNGs) 
should be used for encryption purposes. 

5. As far as Password-Based Encryption (PBE) is concerned, 
the usage of proper parameters is required on behalf of the 
programmers. The password used for this particular procedure 
should not be hard coded, the iterations defined should be 
more than 1,000, and the salt should not be constant. 

6. Last but not least, programmers should use only libraries that 
are known to use proper cryptographic techniques and follow 
all recommendations given by these libraries documentation 
(e.g. internal buffers processing after encryption or 
decryption). 

The above guidelines and practices presented in this section 
include essentially all types of cryptographic misuses observed in 
the applications examined, and summarize the entire set of rules 
in 6 principles. We hope that the developers’ community follows 
these guidelines to avoid cryptographic flaws in mobile 
applications. 

8. CONCLUSIONS 
In this paper, we have evaluated the use of cryptography in 49 
Android applications whose operation is related to data 
encryption. The results showed that the majority of applications 
present at least one of those misuses. Developers’ community 
lacks a specifically defined list of cryptographic misuses that must 
be avoided, as well as a list of best practices for cryptographic 
techniques. To this end, we provide guidelines, mainly intended 
for developers, to help them build more secure applications.  
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