
Evaluation of Cryptography Usage in Android Applications

Alexia Chatzikonstantinou
Mezza Group

ahatzikostantinou@imc.com.gr

Christoforos Ntantogian
Department of Digital Systems,

University of Piraeus
dadoyan@unipi.gr

Christos Xenakis
Department of Digital Systems,

University of Piraeus
xenakis@unipi.gr

Georgios Karopoulos
Department of Informatics and

Telecommunications, University of
Athens

gkarop@di.uoa.gr

ABSTRACT
Mobile application developers are using cryptography in their
products to protect sensitive data like passwords, short messages,
documents etc. In this paper, we study whether cryptography and
related techniques are employed in a proper way, in order to
protect these private data. To this end, we downloaded 49
Android applications from the Google Play marketplace and
performed static and dynamic analysis in an attempt to detect
possible cryptographic misuses. The results showed that 87.8% of
the applications present some kind of misuse, while for the rest of
them no cryptography usage was detected during the analysis.
Finally, we suggest countermeasures, mainly intended for
developers, to alleviate the issues identified by the analysis.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption - code breaking, data encryption
standard (DES), public key cryptosystems, standards (e.g., DES,
PGP, RSA)

General Terms
Design, Experimentation, Security

Keywords
Software security, Android, Cryptography misuse

1. INTRODUCTION
The need to privately share information in a manner that would be
understandable to only a specific group of people exists for
thousands of years before computer’s invention and
establishment. The existence of cryptographic algorithms akin to
Caesar’s Cipher proves that contemporary cryptography has its
origins in Caesar’s era, when attempts to achieve information
security began to take place. Thus, the field of cryptography is not
new and efforts towards its improvement exist for many years.

The rapid technological progress in the last years has led to the
emergence of smartphones which, apart from voice and SMS,
support Internet access, standalone applications, and wireless
connectivity. The same devices are used by a large proportion of
users to install applications that store sensitive data like
passwords, location, and social network interactions.

The need for privacy imposes cryptography utilization in
applications that manage these sensitive data [12]. To this end
developers embed cryptographic techniques in their mobile
applications; and while cryptography is a long existing field,
developers rarely have knowledge of information security. As a
consequence, incidents of data breaching and disclosure are very
frequent, while there are cases of popular products that claim to
be secure although they utilize practically no security; a recent
infamous example is NQ Mobile Vault application [18], which
was discovered that it uses a simple XOR function to perform
secure sensitive users’ data.

Regarding the academic activity in the specific domain, a lot of
research has been conducted and many studies have been realized;
however, none of them has yet concentrated on a set of good and
bad practices, as each work aims at giving prominence to the
specific cryptographic mistakes of the applications and not at
developers training. Our contributions, in this paper, are: (a) to
evaluate the use of cryptographic techniques in real world
Android applications and feature the most common misuses, and
(b) to provide a list of good practices for developers in order to
alleviate the identified issues. The reason we focus on Android is
because it is one of the prominent smartphone platforms with a
relatively stable cryptographic API (Java’s Cipher), and has
numerous applications available.

Our approach regarding application analysis was to employ a
combination of both techniques of static and dynamic analysis, so
as to succeed in producing more accurate results. Generally, the
term Static Analysis refers to the process of detecting software
errors and defects or security flaws by examining the source code
of a program without executing it, and can also be utilized to
ensure conformance with specific programming requirements.
Static Analysis is considered as a part of code review process and
provides better perception of code structure [13]. Developers
frequently perform static analysis combining automated tools and
visual source code inspection [22].

On the other hand, Dynamic Analysis refers to the testing and
evaluation of a program based on its execution and it is usually

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262471

performed with a view to detecting subtle defects or
vulnerabilities manifested during runtime, the cause of which is
too perplex to be detected via static analysis [27]. Developers,
through a dynamic test, are capable of monitoring system
memory, functional behavior, response time, and overall
performance of the system [26]. Therefore, there are cases where
a single component from the abovementioned list is selected to be
examined (e.g. system memory) in order to seek only for specific
types of errors.

Regarding the advantages of the two methods, Static Analysis is
the most thorough technique and the developers using it are
capable of identifying the exact location of weaknesses in the
code, as well as of examining all possible execution paths and
variable values and not just those invoked during execution.
Moreover, Static Analysis reveals errors in the initial stages of the
development life cycle, reducing the cost to fix and preventing
errors from manifesting themselves and triggering any incident.
Dynamic Analysis is more flexible regarding the possibility to
test the application for apropos specified error categories only, for
instance security flaws. What is more, via Dynamic Analysis it is
technically feasible to test applications even if there is no access
to their source code. Finally, Dynamic Analysis can be utilized as
a validation of Static Analysis results.

Nevertheless, the two methods of analysis have many
disadvantages both due to their nature per se, but also due to the
fact that the use of automated tools for analysis is widespread. In
cases where automated tools are utilized, the significant number
of false positives and false negatives constitute the main
drawback in both types of analysis as the tools’ efficiency is
highly dependent on the rules defined for software scanning. This
specific fact remarks the necessity for the human factor
involvement for understanding whether the tool alerted a real
error or not. Additionally, Static Analysis cannot provide
satisfactory results regarding memory leaks and concurrency
errors. In order to detect this type of faults it is necessary to
execute the software. Lastly, when Static Analysis is performed
by a tool, there is a limitation regarding the programming
languages that can be supported. Consequently, we can deduce
that the two approaches are complementary as no single approach
can find every possible type of error. Moreover, taking into
account automated tools’ inefficiencies, we have chosen to use
manual static analysis in combination with dynamic analysis, so
as to have more accurate results.

Using a combination of static and dynamic analysis, we evaluated
a total of 49 Android applications downloaded from the Google
Play marketplace. Our overall results feature that 87.8% of the
applications show evidence of cryptography misuse, while for the
rest 12.2% no cryptography was detected from our analyses. This
high proportion of misuse amplifies our previous argument that
developers rarely understand how to correctly incorporate
cryptography in their applications.

The rest of our paper is organized as follows. Section 2 briefly
presents important cryptographic concepts, while section 3
analyzes the related work. Section 4 elaborates on a set of
cryptographic weaknesses that we will be used to evaluate the
cryptographic security of the examined applications. Section 5
analyzes the carried out experiments by presenting the
methodology for static and dynamic analysis. Section 6 evaluates
the cryptographic security of the mobile application by analyzing
the numerical results, while section 7 concludes the article.

2. CRYPTOGRAPHIC CONCEPTS
The key goal of encryption is to provide confidentiality and
privacy; nonetheless, applications which employ cryptography
can be attacked in many different ways. The most usual way is
breaking encryption schemes incorporated in the application.

This particular class of attacks consists of three basic
subcategories: the ciphertext only, the known plaintext and the
chosen plaintext attacks. In a ciphertext only attack, the adversary
has access to a specific ciphertext which he tries to decrypt
searching in the set of all possible keys, while in a known
plaintext attack the attacker has in his possession a pair of
plaintext and ciphertext. In a chosen plaintext attack, the
adversary can access any possible plaintext with its corresponding
ciphertext.

A secure cryptosystem should resist all the above mentioned sorts
of attacks. In our work we will mainly consider ciphertext
indistinguishability. This property, also known as
Indistinguishability under Chosen Plaintext Attack (IND-CPA),
ensures that a potential adversary will not be able to distinguish
pairs of ciphertext based on the plaintext they encrypt.

A secure cryptosystem constitutes any entity employing
cryptography, in hardware or software level, which, given the
ciphertext, averts the threat of an adversary to discern even a
single bit of information describing the plaintext in polynomial
time. Taking this into consideration, we should only consider an
encryption scheme to be secure if and only if it is IND-CPA
secure. Moreover, an encryption scheme must be either
probabilistic or stateful to be IND-CPA secure [2]. Otherwise, the
adversary will be able to discern if the same message was sent
twice. It is noted that in a stateful encryption scheme the keys are
updated in each encryption, while in a probabilistic encryption
scheme randomness is used in the encryption algorithm which
satisfies collision resistance and hides all the information related
to its input [5].

As for the existent types of encryption, Password Based
Encryption (PBE) is highly widespread in Android applications.
PBE is a cryptographic technique where a secret key is generated
based on a user-generated passphrase. This particular technique is
proposed to be used with a high entropy password, as PBE is
usually used in applications where the adversary is able to apply
brute force attack to retrieve the password without being detected.

3. RELATED WORK
This section provides an overview of previous work realized in
static analysis, dynamic analysis, and techniques for combined
static and dynamic analysis.

The first methodical attempt that constitutes a key milestone in
the specific domain is Manuel Egele’s et al. study [4], the main
purpose of which was to test whether developers use the
cryptographic APIs in a fashion that provides typical
cryptographic notions of security (e.g. IND-CPA security). Their
system, namely CryptoLint, uses static program slicing and
analyzes compiled Android applications having no access to the
source code. The results showed that 88% of applications that use
cryptographic APIs make at least one mistake.

One of the drawbacks of this approach is that the tool is not open
source so it is not possible to repeat the experiments. Moreover,
the list of checked applications is not available. Also, CryptoLint
lacks the capability of analyzing cryptographic primitives’
invocation from native code (i.e. code written in other language

than Java, for example C and C++), as its functionality focuses on
Dalvik bytecode investigation. CryptoLint also does not include
the identification of all types of non-predictable IVs, as the static
IV's recognized by the tool refer to a subcategory of non-
predictable IVs. A general drawback of automated tools is false
alarms [25]. Thus, manual static analysis seems to be a more
proper approach, guaranteeing more accurate results as well as the
ability to cover a greater extent of cryptographic rules.

Yong Li et al. introduced iCryptoTracer [11], a tool similar to
CryptoLint, though its function is based on a combination of both
static and dynamic analysis techniques and its focus is on iOS
applications. This tool first uses static analysis to scan and record
the APIs’ locations of cryptographic functions. Then, during the
dynamic analysis phase, it monitors those API calls at runtime.
Finally, iCryptoTracer, combining the information gathered on
the previous steps with its diagnosis engine, decides whether a
cryptographic misuse exists or not in the application. The results
showed that approximately 65.3% of the applications examined
contain various degrees of security flaws caused by cryptographic
misuse. The main drawback of this method is that an insufficient
set of rules is provided, according to which applications are
classified into Healthy, Weak or Critical.

A quite similar study has been also conducted by Somak Das et
al. [3], who systematically compared the APIs of cryptographic
libraries across different programming languages (C, C++, Java,
Python and Go) and evaluated their potential for misuse. In this
report the possibility to have data security breaches is considered
irrespective of the security of cryptography library in use, and it
depends on the manner that the developer uses the library and
consequently, on the properties of each particular library that
encourage or discourage cryptographic misuse.

The purpose was to derive recommendations for library designers
to follow so as to reduce this misuse. The paper illustrates the
comparison of 6 particular cryptographic libraries (OpenSSL in C,
Crypto++ and NaCl in C++, PyCrypto in Python, JCA in Java and
Go Crypto package in GO) resulting in NaCl being the safest. The
authors also developed a linter tool (pycrypto_lint) which applies
to any application using PyCrypto library, checking the source
code during runtime in order to detect various misuses of the
library. The specific study however does not incorporate a
specifically defined method according to which each library was
examined, and although the source code of the tool is publicly
available, the report does not include proper sections concerning
the description of system design and implementation, as well as
the tool’s evaluation.

A literature review of cryptography on Android message
applications has been presented by Nishika and Rahul Kumar
Yadav [16], who surveyed and illustrated the most common and
widely used SMS encryption techniques, inferring that there is a
need for an efficient encryption algorithm.

The most recent work in this field of study is that realized by
Shuai et al. [24]. In their study, the authors initially define
specific models of cryptographic misuse, in which they are based
so as to build a tool of auto detection (CMA). CMA employs both
static and dynamic analysis techniques in order to detect
cryptographic vulnerabilities and it is tested in 45 Android
applications downloaded from the Chinese application store
Baidu. However, CMA misses cases where cryptography is
employed but is not included in the specific API (when, for
example, the developer has implemented a custom cryptographic
algorithm). This fact also indicates the need for including more

models for cryptographic misuse in the list. CMA’s paper
includes a quite satisfying number of cryptographic primitives
that have to be taken into consideration in such an analysis, which
is something that similar papers lack. Nevertheless, the tool
created is not designed to locate all the models of cryptographic
misuse mentioned in the paper, as for example the key
management category of flaws is omitted. Additionally, there are
models that, according to the results, are not violated by any of
the applications under examination, which makes the proper
functionality of the tool for the specific models and the necessity
of the specific models doubtful. As a result, there are only results
for the trivial cryptographic principles misuses. Last but not least,
it has to be remarked the fact that the applications were not
downloaded from the official Android marketplace but instead
they used the Chinese application store Baidu.

The majority of the related works are based on automated static or
dynamic analysis tools; however, although automated tools offer
the advantage of being able to examine a large number of
applications, it is always possible to miss certain types of flaws.
Moreover, automated static analysis tools have proven to generate
a fair number of false positives while in manual static analysis the
findings can be verified. Taking into account automated tools’
inefficiencies, we have chosen to use manual static analysis in
combination with dynamic analysis, so as to have more accurate
results. Our purpose is to cover a detailed list of cryptographic
flaws and misuses, something that developers’ community lacks,
with a view to helping programmers avoid common cryptographic
misuses.

4. CRYPTOGRAPHIC WEAKNESSES
In this section, we evaluate the cryptographic security of the
examined applications. To this end, we classify and analyze
cryptographic weaknesses using four categories: (a) use of weak
cryptography, (b) weak implementations, (c) use of weak keys,
and (d) use of weak cryptographic parameters.

Weak cryptography. This category comprises cryptographic
algorithms that are used in applications despite the fact that it is
well known that they are not secure.

C1. Use of weak cryptographic algorithms or hash functions.
Programmers should not use algorithms proven to be broken
or weak. For example, MD4, MD5, SHA1, DES and RC4
are considered to be obsolete [10].

C2. Use of custom cryptographic algorithms. The security
offered by non-publicly reviewed algorithms invented by
programmers themselves is questionable and their
employment is considered to be insecure [23].

C3. Use of cryptographic algorithms in ECB mode. It does
not constitute a secure cryptographic mode, as it cannot be
IND-CPA secure [4].

C4. Use of non-Cryptographically Secure PseudoRandom
Number Generators (CSPRNGs). CSPRNGs seed data
with the required entropy in order to make it much more
difficult for adversaries to guess the produced random
numbers [30]. The factor of randomness should also be
introduced in any kind of password, salt and seed. Java
provides for Android Development the SecureRandom class
which implements a PseudoRandom Number Generator
(PRNG) for keys production [10, 23]; the Random class,
however, is not considered secure and should not be used
for key generation.

C5. Use of CBC combined with PKCS5Padding. This mode is
vulnerable to padding oracle attacks, while PKCS7Padding
is considered to be the best option for the specific
encryption mode [1, 8, 9, 19, 21, 28, 29].

C6. No cryptography usage observed. This weakness
comprises the cases where no cryptographic operation was
identified during the static and dynamic analysis. This
includes cases where either obscure cryptography is used or
no cryptography is used at all.

Weak implementations. The utilization or implementation of
cryptographic algorithms in a non-standard manner or not
following best practices can result in unsafe applications.

I1. Re-implementing standard algorithms (e.g. AES). Re-
implementations of well-known algorithms are also possible
to be incorrect and insecure. Thus, developers should not
use other than well-known cryptographic algorithm
implementations [23].

I2. Use of PBE with no salt. It is recommended to use PBE
with random salts in order to avoid brute force attacks [4].

I3. Use of PBE with fewer than 1,000 iterations. This should
also be avoided in order to prevent brute force attacks [4].

I4. Use of static or reuse of PRNG seed. A PRNG seed must
not be reused in the same context as it is a best practice to
use independent random numbers in all stages of a
cryptographic procedure. Specifically for the
SecureRandom class, it is known that a static seed will
produce the same PRNG output [4, 10].

I5. Not processing the internal buffers after encryption or
decryption. When Java’s Cipher is used for cryptography,
the proper call of the dofinal() function, which processes the
last block in the buffer (i.e. ciphertext or plaintext), should
not be omitted for both the encryption and the decryption
phase. The internal mechanism of the algorithm
implementation, depending on its encryption mode (ECB,
CBC, or other), keeps an internal buffer which must also be
discarded [6].

I6. Use of RSA with a padding other than OAEP. This
should be avoided due to the fact that the use of a padding,
such as PKCS1Padding, which does not use random bytes,
will delay the adversary to decrypt the data or infer patterns
from the ciphertext less than the OAEP padding will [14].

Weak keys. This category includes those cases where weak
cryptographic keys are used, a practice that can put in risk the
security of users and applications.

K1. Use of short keys. Yet another possible vulnerability of a
cryptographic algorithm is short keys employment.
According to the contemporary cryptographic standards
[17], a key is weak when its length is less than 128 bits. The
usage of a suchlike cryptographic key weakens the
encryption and must be strictly avoided. For example, DES
is known to have a set of weak keys, as it uses a 56-bits key,
which does not provide sufficient security [10].

K2. Use of hard-coded encryption keys. The secrecy of
encryption keys is an important factor and this practice can
result even in the disclosure of the key to the adversary
[10]. The encryption keys must be dynamically generated
and developers should strictly avoid exposing them in the
application’s code [4, 11].

K3. The use of static/constant encryption keys. It is possible
for an encryption key to be static without being hard-coded,
e.g. when a byte array is initialized and remains the same
for the whole process. The randomness of the encryption
keys is the major factor contributing to encryption schemes
security, thus cryptographic keys should not be constant [4,
11].

K4. The use of hard-coded passwords for PBE. Although
PBE is usually based on a password given by the user as an
input to the Android application, there are cases where
developers use a specific value defined statically. In this
way, developers make the application use the same
password for each execution, while the password value can
easily be accessed by the adversary.

Weak cryptographic parameters. This category comprises
weaknesses related to poor choice of cryptographic parameters,
like cryptographic modes, IVs, and seeds.

P1. Use of block ciphers with Java’s default cryptographic
mode. When only the cipher algorithm is invoked (without
a specific mode defined), the default cryptographic mode
used in specific providers (SunJCE and SunPKCS11) is the
ECB, which is considered unsafe.

P2. Use of CBC encryption mode together with a non-
random IV. An IV should be neither static nor predictable
(for example an IV consisting of 0’s or sequential numbers)
[4, 11], otherwise the resulting cryptographic scheme is not
considered safe.

P3. Use of CTR encryption mode together with a static
counter value. It does not constitute a safe cryptographic
scheme as it is not IND-CPA secure.

P4. Use of hard-coded IVs. Developers have to generate IVs
dynamically for two reasons: (a) preventing adversaries
from obtaining the specific primitive’s value, and (b)
generating different values for the IV in each cryptographic
stage [4].

P5. Use of constant IV. A constant IV or an IV reuse renders
many cryptographic schemes IND-CPA insecure, as the IV
constitutes the only primitive introducing randomness in a
cryptographic procedure and using a constant or a static IV
frequently results in producing the same ciphertext. An IV
can be constant without being hard-coded if, for example, is
randomly generated but used more than once.

P6. Deriving IVs from keys or messages. This practice makes
the IV non-random and predictable [4, 11] and is considered
to be insecure.

P7. Generating IVs from cipher’s blocksize, based on byte
array creation. Many developers generate the IVs
manually by initializing a vector having the size of cipher’s
blocksize with the default values of the creation of a byte
array (bytearray = new byte[]), in combination with
nextbytes() method of Random class. There are also cases
where not even the Random class is utilized. It has to be
noted that Random class use is not a proper practice, while
deriving the IV without introducing any randomness, using
Java default values to a byte array, makes the IV non-
random and predictable [4, 11].

P8. Use of predictable PRNG seeds. The seed of the PRNG
constitutes an important factor in constructing a secure
cryptographic scheme. Developers should use non

predictable seeds with PRNGs, so as to generate a high
entropy key and not weaken PRNG’s strength [10]. It is also
essential to note that the setSeed() method of the
SecureRandom Java class produces a predictable seed and
must not be used in the key generation process [15].

5. METHODOLOGY & EXPERIMENTS
Our approach is organized in four main phases:

1. Application collection

2. Application utilization

3. Static analysis

4. Dynamic analysis

The first phase describes the particular Android applications that
were collected in order to be audited, while the second includes
applications’ testing through their graphical user interface (GUI).
The core of our study, however, is detailed in the phases three and
four where static and dynamic analyses are conducted with a view
to discovering possible cryptographic misuses.

5.1 Application Collection
We have selected randomly 49 Android applications that employ
cryptography to protect user’s data. Based on the provided
functionality, the underlying mobile applications can be divided
into four categories:

1. Secure messaging: This category includes applications that
exchange encrypted data either via SMS, or through
Bluetooth and Internet services (chat, social media and email).
This category comprises 23 applications.

2. Document encryption: Document encryption describes
applications that are involved with any kind of document
encryption, like file encryption, directory encryption,
multimedia content encryption, and note encryption. We
downloaded 7 applications belonging to this category.

3. Sensitive data exchange & storage: Applications that
appertain to this particular category are those handling any
type of sensitive data (passwords, credit card numbers, pins
etc.). 13 applications belong to this category.

4. Multipurpose encryption utility: This particular class contains
applications offering more than one operations such as
generating passwords, document encryption, text encryption,
sensitive data storage, password vaults etc. This category
comprises 5 applications.

All applications were downloaded from the official Google Play
marketplace between June and November 2014. This particular
aggregation of applications was considered to be a representative
sample of developers’ predilection for certain cryptographic
primitives and strategies.

5.2 Application Utilization
After collecting the application .apk files and prior to static and
dynamic analysis, we installed each application in at least 2
different Android devices. The purpose was to run the
applications and test them through their graphical environment so
as to recognize any parameters used that are possibly involved in
the cryptographic procedures employed. Moreover, in the
particular case of applications that appertain to the “Secure
messaging” category, we are able to form an opinion regarding
the general legitimacy of cryptographic practices employed, as
the cipher is directly available via the graphical user interface.

One of the checked parameters for all applications is the
utilization of a password. Applications encompassing encryption
usually utilize a password consisting of letters, digits, or
alphanumeric characters. A password is introduced by the user
and commonly takes part in the process of the plaintext
encryption. There are many cases, however, where the password
is only used as a pin.

The parameter that we particularly checked in “Secure
messaging” applications was the output of the same ciphertext,
when the same plaintext was given as an input. When this finding
is detected, we can deduce that the cryptographic scheme used is
not IND-CPA secure. The output of the same ciphertext implies
the usage of wrong cryptographic primitives, for example the use
of the same IV for each encryption. The same stands also in the
case of password usage (i.e., if for the same combination of
plaintext and password the same ciphertext is produced).

In order to ascertain ciphertext’s indistinguishability through each
application’s graphical environment, we considered three
different scenarios:

1. input of the same plaintext twice in the application under
examination, without disrupting its operation

2. input of the same plaintext once before and once after
application and device reboot, and

3. execution of the application in two different Android devices,
inserting in both cases the same plaintext.

5.3 Static Analysis
In the third phase of our study we proceeded in the manual source
code auditing of each one of the 49 applications with the intention
of inspecting in full detail the cryptographic primitives in use (i.e.
the general encryption scheme employed, the cryptographic
algorithms, their parameters and specific modes of operation).
Static analysis involves the following three steps:

1. Obtaining the target application’s .apk file. We
downloaded and installed the mobile application Root File
Explorer in a rooted Android phone, so as to be able to
explore the device’s files and copy the target application’s
.apk from /data/app/ to the SD card.

2. Extracting the source code of the application by apk
decompilation. For this step, we used dex2jar [20] toolset
as well as JD-GUI tool from Java Decompiler project [7].
Specifically, dex2jar is a set of tools to convert Android
.dex files into Java .class files, while JD-GUI is a
standalone graphical utility that displays Java .class files
source code. The step sequence followed in this stage for
each application was the following (see Figure 1):

 Add the extension “.zip” to the .apk file (so that
example.apk becomes example.apk.zip) and extract the
zip file into folder example_folder.

 Copy the files of the toolset dex2jar into
example_folder.

 From the command prompt, execute the command
dex2jar classes.dex. This command will generate the
file clasess.dex.dex2jar into the example_folder.

 Finally, we obtain access to Java source code by
opening the classes.dex.dex2jar file using the JD-GUI
application.

3. Source code analysis and reviewing. The last and most
important step is the manual (i.e., without the use of
automation tools) examination of the obtained source code
of the applications, in order to evaluate their security based
on the list of the cryptographic weaknesses discussed in the
previous section.

Figure 1. apk decompilation

5.4 Dynamic Analysis
In this phase we performed dynamic analysis in order to verify
the obtained results from the static analysis or to examine cases
where the results of the static analysis were inconclusive. That is,
static analysis cannot always cover the whole functionality of the
application. The reason behind this is that many Android
applications make use of native code, which is not available after
the apk decompilation process that we followed in the previous
phase. What is more, there is always the possibility to include in
the source code functions that are not actually called during
application’s execution. With a view to include in our research
these cases as well and have more accurate results, we have
performed also a simple yet effective dynamic analysis technique.

In particular, in this phase we have examined the cryptographic
security of the Android applications under examination using the
Dalvik Debug Monitor Server (DDMS). The latter is a GUI based
debugging application that allows the examination of running
processes. Although it’s primary goal is to help developers to
identify bugs in Android applications, for our purposes we have
used DDMS as a tool to examine the cryptographic libraries that
are invoked during runtime of Android applications. To this end,
we have used the Track Memory Allocation functionality of
DDMS, which detects and shows all invoked cryptographic
libraries of an Android application. In this way, we were able to
discover which cryptographic functions are being called during
the runtime of the application.

It is evident that for applications that implement a custom
algorithm and do not use standard cryptographic libraries (such as
Caesar’s Cipher or any other substitution cipher), we could not
deduce any meaningful result using DDMS.

6. RESULTS & EVALUATION
This section presents the results produced by the static and
dynamic analyses we performed in the selected 49 Android
applications. The findings of our study are shown in Table 1,
which presents the number and the categories of cryptographic
flaws discovered.

Table 1. Individual weaknesses per application category

Category

Weakness

SM MEU DE SDES Total

C1 17 6 7 2 32
C2 3 1 4
C3 9 4 3 16
C4 2 2
C5 8 3 11
C6 2 3 1 6
I1 3 3
I2 5 1 2 8
I3 2 1 3 6
I4 2 2
I5 1 1
I6 2 2
K1 2 2 2 1 7
K2 2 1 1 4
K3 1 2 1 4
K4 1 1 2
P1 2 4 1 7
P2 3 3
P3 2 2
P4 1 1 2
P5 1 1 2
P6 0
P7 1 1 2
P8 3 1 4

Legend:
SM: Secure messaging
MEU: Multipurpose encryption utilities
DE: Document encryption
SDES: Sensitive data exchange & storage

One of the first observations is that the most common weaknesses
are: C1 (weak cryptographic algorithm or hash function) which is
detected in 32 applications (65.3%), C3 (cryptographic algorithm
in ECB mode) in 16 applications (32.7%), and C5 (CBC mode
with PKCS5Padding) in 11 applications (22.4%). Interestingly
enough, these three weaknesses belong to the same category
(weak cryptography). By grouping weaknesses into the categories
presented in Section 4, it can be seen (Table 2) that most observed
misuses in Android applications are related to weak cryptography,
followed by weak implementations of the algorithms and weak
cryptographic parameters selection; the least observed
weaknesses are related to the selection of weak cryptographic
keys.

Table 2. Grouped weaknesses per application category

Category

Weakness

SM MEU DE SDES Total

Weak crypto 41 6 18 6 71
Weak

implementations
14 2 6 0 22

Weak keys 6 2 6 3 17
Weak

parameters
11 4 6 1 22

The results of the application testing scenarios discussed in
Section 5.2 are presented in Table 3 and concern those
applications that are non IND-CPA secure based on their output.
We deduced that the 30.6% of applications (i.e. 15 out of 49
applications) are not IND-CPA secure. From these non IND-CPA
secure applications, 80% of them fail in all three scenarios, i.e.
given the same plaintext as input, the same ciphertext is produced
regardless if the user restarts the application or the device, or use
another device, or not.

Table 3. Non IND-CPA secure applications

Scenarios not satisfied No of apps
1, 2 and 3 12
1 and 2 1

1 2

The vast majority of Android applications’ source code
encompasses at least one cryptographic misuse, not always
relevant to cryptographic algorithm and mode selection.
Nonetheless, there are many cases where no cryptography is
detected or out of date algorithms are invoked, for instance Caesar
Cipher, Columnar Transposition, AtBash Cipher and Playfair
Cipher along with others, even by applications bearing a name
that implies the use of strong cryptography.

Although the majority of applications use AES in CBC mode,
there is a significant number of Android applications that include
either ECB mode or at least one obsolete algorithm. As far as a
more comprehensive and statistical analysis of the results is
concerned, it seems that the applications presenting a weakness
related to cryptography misuse (i.e. all weaknesses apart C6)
reach a percentage of 87.8% (i.e. 43 out of 49 applications). At
the same time, the applications in which no cryptography was
detected (i.e. weakness C6) reach the 12.2% (i.e. 6 out of 49
applications). Consequently, the percentage of the applications
that seem to have no weakness is 0% (i.e. 0 out of 49
applications).

Table 4. Cryptographic misuses findings overview

Misuse
Percentage of
applications

Applications presenting at least one
cryptography misuse weakness

87.8%

Applications where no cryptography was
detected

12.2%

Applications where no weakness was detected 0%
Weak or no cryptography usage detected 95.9%
Weak implementations 32.7%
Weak cryptographic keys usage 26.5%
Incorrect cryptographic parameters
employment

30.6%

Use of ECB mode of encryption 32.7%

Another interesting point is that 95.9% of the tested applications
(i.e. 47 out of 49 applications) present a weakness of the weak
cryptography class (weaknesses C1 to C6). The percentage of
applications that incorporate poorly implemented cryptography
(weaknesses I1 to I6) is 32.7% (i.e. 16 out of 49 applications).
Also, the 26.5% (i.e. 13 out of 49) of applications use weak
cryptographic keys (weaknesses K1 to K4). Simultaneously, the
percentage of applications employing cryptographic techniques

with incorrect parameters (weaknesses P1 to P8) reach the 30.6%
of the applications examined (i.e. 15 out of 49 applications).

Another interesting conclusion is the fact that although the most
common cryptographic principle is that ECB mode of encryption
is not IND-CPA secure and should not be used, the 32.7 % (i.e. 16
out of 49 application) make use of the specific mode in their
cryptographic processes (weakness C3). An overview of all the
aforementioned misuses is presented in Table 4.

7. COUNTERMEASURES
At this point, it is necessary to design a list of countermeasures
and best practices that could be employed as a general
methodology for developing Android applications using solid
encryption. In the following we cite our proposals for specific
cryptographic primitives’ usage, emanating from our study:

1. Regarding encryption algorithms, developers should opt for
AES and RSA for symmetric and asymmetric encryption
respectively.

2. Depending on our previous selection, the most appropriate
encryption scheme for AES is CBC with PKCS7Padding,
while for RSA developers should select OAEP padding.

3. Another important practice that developers should certainly
take into consideration is using randomness for any
cryptographic parameter such as passwords, encryption keys,
initialization vectors, salts and seeds. The aforementioned
parameters must have the proper lengths and not be hard
coded or statically defined in the source code so as not to use
the same values for every execution of the application.

4. As for the random number generation, Cryptographically
Secure PseudoRandom Number Generators (CSPNGs)
should be used for encryption purposes.

5. As far as Password-Based Encryption (PBE) is concerned,
the usage of proper parameters is required on behalf of the
programmers. The password used for this particular procedure
should not be hard coded, the iterations defined should be
more than 1,000, and the salt should not be constant.

6. Last but not least, programmers should use only libraries that
are known to use proper cryptographic techniques and follow
all recommendations given by these libraries documentation
(e.g. internal buffers processing after encryption or
decryption).

The above guidelines and practices presented in this section
include essentially all types of cryptographic misuses observed in
the applications examined, and summarize the entire set of rules
in 6 principles. We hope that the developers’ community follows
these guidelines to avoid cryptographic flaws in mobile
applications.

8. CONCLUSIONS
In this paper, we have evaluated the use of cryptography in 49
Android applications whose operation is related to data
encryption. The results showed that the majority of applications
present at least one of those misuses. Developers’ community
lacks a specifically defined list of cryptographic misuses that must
be avoided, as well as a list of best practices for cryptographic
techniques. To this end, we provide guidelines, mainly intended
for developers, to help them build more secure applications.

9. ACKNOWLEDGMENTS
This research has been partially funded by the European
Commission in part of the SMART-NRG project (FP7-PEOPLE-
2013-IAPP GA number 612294), the UINFC2 project (GA
number HOME/2013/ISEC/AG/INT/4000005215), and the
ReCRED project (Horizon H2020 Framework Programme of the
European Union under GA number 653417).

10. REFERENCES
[1] Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel,

G. and Tsay, J.-K. 2012. Efficient Padding Oracle Attacks
on Cryptographic Hardware. Advances in Cryptology –
CRYPTO 2012. R. Safavi-Naini and R. Canetti, eds.
Springer Berlin Heidelberg. 608–625.

[2] Bellare, M., Desai, A., Pointcheval, D. and Rogaway, P.
1998. Relations among notions of security for public-key
encryption schemes. Advances in Cryptology — CRYPTO
’98. H. Krawczyk, ed. Springer Berlin Heidelberg. 26–45.

[3] Das, S., Gopal, V., King, K. and Venkatraman, A. 2014. IV
= 0 Security: Cryptographic Misuse of Libraries. Technical
Report #6.857 final project. MIT.

[4] Egele, M., Brumley, D., Fratantonio, Y. and Kruegel, C.
2013. An Empirical Study of Cryptographic Misuse in
Android Applications. Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security (New York, NY, USA, 2013), 73–84.

[5] Hofheinz, D. and Unruh, D. 2008. Towards Key-Dependent
Message Security in the Standard Model. Advances in
Cryptology – EUROCRYPT 2008. N. Smart, ed. Springer
Berlin Heidelberg. 108–126.

[6] How to encrypt files in Java with AES, CBC mode, using
Bouncy Castle API and NetBeans or Eclipse | IT&C
Solutions: http://www.itcsolutions.eu/2011/08/24/how-to-
encrypt-decrypt-files-in-java-with-aes-in-cbc-mode-using-
bouncy-castle-api-and-netbeans-or-eclipse/. Accessed:
2015-10-20.

[7] Java Decompiler: http://jd.benow.ca/. Accessed: 2015-10-
20.

[8] John’s Cryptography Blog: AES CBC Padding Oracle
Attack: http://johnx.blogspot.gr/2010/10/aes-cbc-padding-
oracle.html. Accessed: 2015-09-10.

[9] Klima, V. and Rosa, T. 2003. Side Channel Attacks on CBC
Encrypted Messages in the PKCS#7 Format. Cryptology
ePrint Archive, Report 2003/098 (2003).

[10] Lazar, D., Chen, H., Wang, X. and Zeldovich, N. 2014. Why
Does Cryptographic Software Fail?: A Case Study and Open
Problems. Proceedings of 5th Asia-Pacific Workshop on
Systems (New York, NY, USA, 2014), 7:1–7:7.

[11] Li, Y., Zhang, Y., Li, J. and Gu, D. 2014. iCryptoTracer:
Dynamic Analysis on Misuse of Cryptography Functions in
iOS Applications. Network and System Security. M.H. Au,
B. Carminati, and C.-C.J. Kuo, eds. Springer International
Publishing. 349–362.

[12] Markantonakis, K., Akram, R.N. and Msgna, M.G. 2015.
Secure and Trusted Application Execution on Embedded
Devices. Proceedings of the 8th International Conference on
Security for Information Technology and Communications
(Bucharest, Romania, Jun. 2015).

[13] McConnell, S. 2004. Code Complete: A Practical Handbook
of Software Construction, Second Edition. Microsoft Press.

[14] MITRE - CWE-780: Use of RSA Algorithm without OAEP
(2.8): http://cwe.mitre.org/data/definitions/780.html.
Accessed: 2015-09-10.

[15] MOTOROLA 2012. Βest practices for encryption in
Αndroid. White Paper.

[16] Nishika and Yadav, R.K. 2013. Cryptography on Android
Message Applications – A Review. International Journal on
Computer Science and Engineering. (2013), 362–367.

[17] NIST Cryptographic Standards and Guidelines Development
Process: http://www.nist.gov/director/vcat/cryptographic-
standards-guidelines-process.cfm. Accessed: 2015-09-09.

[18] NQ Mobile Vault: The popular encryption app has laughably
crackable encryption.:
http://www.slate.com/articles/technology/bitwise/2015/04/nq
_mobile_vault_the_popular_encryption_app_has_laughably
_crackable_encryption.html. Accessed: 2015-10-20.

[19] Padding oracle attacks: in depth:
https://blog.skullsecurity.org/2013/padding-oracle-attacks-
in-depth. Accessed: 2015-09-10.

[20] pxb1988/dex2jar · GitHub:
https://github.com/pxb1988/dex2jar. Accessed: 2015-10-20.

[21] Rizzo, J. and Duong, T. 2010. Practical Padding Oracle
Attacks. Proceedings of the 4th USENIX Conference on
Offensive Technologies (Berkeley, CA, USA, 2010), 1–8.

[22] RSA/ECB/<SomePaddingScheme> - How block operation
modes and asymmetric ciphers fit together:
http://armoredbarista.blogspot.gr/2012/09/rsaecb-how-
block-operation-modes-and.html. Accessed: 2015-10-20.

[23] Security Tips | Android Developers:
http://developer.android.com/training/articles/security-
tips.html. Accessed: 2015-09-09.

[24] Shuai, S., Guowei, D., Tao, G., Tianchang, Y. and Chenjie,
S. 2014. Modelling Analysis and Auto-detection of
Cryptographic Misuse in Android Applications. IEEE 12th
International Conference on Dependable, Autonomic and
Secure Computing (DASC) (Aug. 2014), 75–80.

[25] Static Code Analysis - OWASP:
https://www.owasp.org/index.php/Static_Code_Analysis.
Accessed: 2015-10-20.

[26] Static Testing vs. Dynamic Testing | Veracode:
https://www.veracode.com/blog/2013/12/static-testing-vs-
dynamic-testing. Accessed: 2015-10-20.

[27] Static vs. dynamic code analysis -- GCN:
https://gcn.com/articles/2009/02/09/static-vs-dynamic-code-
analysis.aspx. Accessed: 2015-10-20.

[28] The Padding Oracle Attack - why crypto is terrifying:
http://robertheaton.com/2013/07/29/padding-oracle-attack/.
Accessed: 2015-09-10.

[29] Vaudenay, S. 2002. Security Flaws Induced by CBC
Padding — Applications to SSL, IPSEC, WTLS... Advances
in Cryptology — EUROCRYPT 2002. L.R. Knudsen, ed.
Springer Berlin Heidelberg. 534–545.

[30] Viega, J. 2003. Practical random number generation in
software. Computer Security Applications Conference, 2003.
Proceedings. 19th Annual (Dec. 2003), 129–140.

