
Reliability Analysis with Dynamic Reliability Block
Diagrams in the Möbius Modeling Tool

Ken Keefe
Information Trust Institute

University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

kjkeefe@illinois.edu

William H. Sanders
Department of Electrical and Computer

Engineering
University of Illinois at Urbana-Champaign

Urbana, Illinois, USA
whs@illinois.edu

ABSTRACT
Reliability block diagram (RBD) models are a commonly
used reliability analysis method. For static RBD models,
combinatorial solution techniques are easy and efficient. How-
ever, static RBDs are limited in their ability to express vary-
ing system state, dependent events, and non-series-parallel
topologies. A recent extension to RBDs, called Dynamic Re-
liability Block Diagrams (DRBD), has eliminated those lim-
itations. This tool paper details the RBD implementation
in the Möbius modeling framework and provides technical
details for using RBDs independently or in composition with
other Möbius modeling formalisms. The paper explains how
the graphical front-end provides a user-friendly interface for
specifying RBD models. The back-end implementation that
interfaces with the Möbius AFI to define and generate exe-
cutable models that the Möbius tool uses to evaluate system
metrics is also detailed.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; B.8.1 [Performance and Reliability]:
Reliability, Testing, and Fault-Tolerance

Keywords
Reliability Modeling, Availability Modeling, Continuous Time
Markov Chain Models, State-based Reliability Model, Möbius
Atomic Model Formalism

1. INTRODUCTION
Reliability analysis is an essential part of critical system de-
sign and planning. Many methods exist to support such
analysis, such as reliability block diagrams (RBD), fault trees,
and reliability graphs [6][11]. These methods work well for
limited cases.

However, those methods do not offer a way to handle dy-
namic behavior, such as how the failure of one component

impacts the behavior of the remaining elements. Common
notions in system design, such as complex redundancy mod-
els (e.g., cold spares, warm spares, hot spares) and load bal-
ancing, are also not available in those approaches.

Dynamic Reliability Block Diagrams (DRBDs) [2] are a re-
cent development that expands on reliability block diagrams
to address those issues. DRBDs add model state to tradi-
tional RBDs to support dynamic change of component state
over time. Adding state and time enables the use of state
dependent expressions to offer time-dependent, rich redun-
dancy, and load-balancing behaviors.

The primary contribution of this paper is a detailed discus-
sion of a new implementation of the Dynamic Reliability
Block Diagram formalism within the Möbius tool. Section
2 provides an introduction to reliability block diagrams and
Dynamic Reliability Block Diagrams.

The Möbius modeling tool leverages a framework that en-
ables multiple modeling formalisms, including compositional
formalisms that flexibly connect multiple, diverse models
into a single model. The framework provides several solu-
tion techniques, such as simulation and analytical solution
to solve for metrics that are defined on the model. Möbius
uses a well-defined abstract functional interface (AFI) [3] to
allow for the addition of new modeling formalisms that can
leverage the existing experimental and solution methods.

The remainder of this paper is organized as follows, Section
3 describes our implementation of DRBDs in the Möbius
framework. Section 4 explains how the RBD formalism can
be used effectively in Möbius. Section 5 details related tools
that work with DRBDs or similar reliability models. Section
6 concludes the paper.

2. FORMALISM DEFINITION
The RBD formalism implemented by this work is very sim-
ilar to the original dynamic reliability block diagram con-
cept. To understand the subtle differences, we begin with
our interpretation of the RBD formalism and then explain
the details of the DRBD formalism.

2.1 Reliability Block Diagrams
RBDs offer a graphical representation of the reliability re-
lationship of system components that expresses the overall
system reliability. System analysts can easily define and

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262723



read RBDs.

Each RBD contains a start node, a stop node, a set of block
elements that correspond to components in a system that
independently fail at some rate, and connections that de-
fine the reliability relationship between the components and
the system. When a component fails, its block becomes dis-
abled. In order for a system to be considered operational,
there must be at least one path through the RBD (from start
to stop) that does not cross through a disabled block.

The diagram topology of an RBD can typically be decom-
posed into two connection classes:

• Series connections indicate a logical OR relationship.
If any of the components in the serial connection fail,
the entire system fails.

• Parallel connections indicate a logical AND relation-
ship. If all of the components in the parallel connection
fail, the entire system fails.

Direct combinatorial methods are available for evaluating
the system reliability (or availability, if repair is defined) if
the diagram is series-parallel, and the failure (and repair)
rates are independently distributed.

2.2 Dynamic Reliability Block Diagrams
A Dynamic Reliability Block Diagram is a pair (C, N). C
is the set of components in the system. A component is a
triple (S, F , R). S is the current state of the component,
either Active or Failed. F and R are failure and repair
events, respectively. Each component event is a triple (T ,
E, R). T is a state-based timing distribution. For example,
a web server may fail at a faster rate if several other web
servers in a load-balancing configuration have failed, as the
traffic will spill over to the remaining web servers. E is
the enablement of the event, either true or false. R is the
resulting effects of the event executing. A component event
is enabled based on its E and S. For example, a component
in the Failed state cannot fail again, so the failure event is
disabled. The R expressions are able to update the state of
other components. For example, the failure of a repair robot
may disable the Repair events on several components in a
system.

N is the set of nodes that represent directed connections
among components in the diagram. N must contain a unique
start node and a unique stop node. Nodes can have zero
or more incoming component connections and zero or more
outgoing component connections. Those connections rep-
resent the same reliability relationship as defined in static
RBD models. Specifically, the overall system state is con-
sidered operational if there exists a path from the start node
to the stop node such that each component along the path
has S = Active.

3. IMPLEMENTATION IN MÖBIUS
The Reliability Block Diagram atomic model formalism in
the Möbius framework implements Dynamic Reliability Block
Diagrams as defined in Section 2.2. The implementation

Figure 1: An example of the RBD atomic model editor.

provides a graphical front-end for defining RBD models.
RBD model specifications are stored in a textual, XML for-
mat. Möbius uses the RBD implementation to generate
C++ code from the XML specification; the code inherits
from the formalism-specific, AFI-level C++ code that is part
of the implementation and the Möbius framework.

3.1 RBD Atomic Model Editor
The Reliability Block Diagram atomic model editor is writ-
ten in Java and leverages Eclipse libraries to offer a clean and
user-friendly interface. The RBD atomic model editor uses
the Eclipse Rich Client Platform (RCP) [7], which allows
the inclusion of several other useful Eclipse projects. SWT
[9] and JFace [5] provide a nice set of native widgets and
dialogs. The Eclipse Graphical Editing Framework (GEF)
[12] handles the actual drawing and editing of the diagram
on a canvas. The Eclipse Modeling Framework (EMF) [15]
is a meta-modeling and model code generation engine used
widely by Eclipse and Eclipse-related projects. The RBD
atomic model implementation uses EMF to define the code
models that store a reliability block diagram atomic model.
That allows the atomic model to integrate nicely with the
existing Möbius tool. EMF also handles the persistence of
RBD models in an XML-formatted file.

Eclipse RCP defines two top-level UI-components, editors
and views. For the RBD atomic model editor (Figure 1),
a new GraphicalEditorWithFlyoutPalette to handle the
palette and diagram canvas was defined, as well as a new
ViewPart to allow definition of details of components and
nodes.

When a new RBD atomic model is created, a green node
and a red node are automatically created and placed on the
canvas. They are the start and stop nodes, respectively, of
an RBD model. They cannot be deleted, but they can be
moved if the default starting position is inconvenient.

On the left side of the editor window is a palette containing
a selection tool, an add component tool, and an add con-
nection tool. These tools are used to create and change an
RBD diagram on the drawing canvas. These tools work as
expected, with the exception of the connection tool which
will be explained next.

To connect two components, the connection tool must first
be selected from the palette. The source component should



be selected first, followed by the target component. When
two previously unconnected components are connected, a
new node is created along the path. These nodes are drawn
as small black circles and make it possible to have multi-
ple sources and multiple targets for each connection. The
importance of nodes will be discussed in Section 3.3. Ad-
ditional components can be added to the connection by fol-
lowing the above procedure and connecting the component
directly to the node itself, or by connecting a component to
another component already connected by the node’s connec-
tion.

For example, in Figure 1, the connections among Sensor,
Ethernet NIC, and Wireless NIC can be defined by using
the connection tool on Sensor and then Ethernet NIC, fol-
lowed by using the connection tool on the node between
Sensor and Ethernet NIC and then the Wireless NIC. Al-
ternatively, the second connection can be accomplished by
using the connection tool on Sensor and then on the Wire-
less NIC. Depending on the order of connections made in an
RBD model, several nodes may be created and then merged
together. In the end, every component can have at most one
incoming connection and at most one outgoing connection.

When a component is selected on the canvas, a Details view
appears on the right side of the window. It is shown as
the rightmost column in Figure 1. In the Details view, the
user can defined the name of a component, as well as its
code name, which is the C++ object name by which this
component can be referenced within any code expression.
Both the name and code name must be unique, and the
default behavior is for the code name to be automatically
generated based on the name. The initial operational state
of the component is next chosen as either Active or Failed.

Below that portion of the Details view, there are sections
for defining the fail behavior and the repair behavior. In
each section, there is a check box to indicate whether the
behavior should initially be enabled. If it is not enabled,
this event will not begin firing until the behavior has been
enabled and the operational state of the component has been
appropriately set (e.g., fail behavior requires the state to be
Active). Next, a timing distribution can be defined from
any of the general distributions that Möbius supports. The
timing distribution will be sampled to find the firing time
of this behavior’s event. It is important to note that the
parameters of the firing distribution can access the model
state. For example, a set of load-balancing servers may fail
at a faster rate if their workload increases because one of
the other servers fails. Lastly, a C++ expression may be
provided in the Effects text box. That code will execute after
the component’s state is updated by the fail/repair event.
The effects can be used to alter other parts of the model state
in a completely custom way. For example, it can be used to
define a k of N failure model for several parallel devices
by entering code that checks to see how many of its sibling
components are still functional and manually fail a separate
component block if the k threshold has been reached.

3.2 Möbius AFI Overview
The Möbius AFI is a set of base classes that all formalisms
must inherit to integrate with the Möbius framework and
tool [3]. These base classes have pure virtual functions, as

Figure 2: Graphical representation of the state variables
and actions that model the failure and repair behavior of a
component. Arcs represent preconditions and effects of an
action.

defined by the implementation of object-oriented program-
ming in C++, that must be defined by derived classes in
a formalism. The Möbius AFI uses these virtual functions
to interact in a well-defined manner with the derived classes
[3]. The Möbius AFI defines a base formalism to which every
atomic model formalism must provide a mapping. This for-
malism contains state variables and actions. State variables
use basic C++ data types to store parts of model state.

The BaseModelClass defines a base class that all modeling
formalisms must inherit from. A BaseModelClass contains
objects that are state variables and actions that are part of
the model. BaseStateVariableClass defines the C++ class
that represents a state variable object in the base formalism.
However, a derived class of BaseStateVariableClass, called
SharableSV, can be used to enable the sharing of state vari-
ables across different models with varied formalisms. That
is an important feature that enables state variable sharing
model composition in Möbius, as explained in Section 4.1.

Actions in the Möbius AFI define events that change state
variable values; those changes transition the model from
state to state. An action has an enabling predicate, a firing
time distribution (which may be instantaneous), an input
function, and an output function. The enabling predicate
determines in which model states an action can begin and
continue firing. The input and output functions are used to
update the model state. BaseActionClass is the base class
for all actions in Möbius.

3.3 RBD AFI Implementation
The RBDModel class inherits from the BaseModelClass. The
RBDModel class contains all of the state variables and ac-
tions that are used in a Dynamic Reliability Block Diagram
atomic model. It contains a set of Component state vari-
able objects, a set of Node state variable objects, a set of
FailRepairEnabledSV state variable objects, and a single
ResetPathExplorationSV state variable object. All state
variables in a Dynamic Reliability Block Diagram atomic
model are derived from the SharableSV base class.



Figure 3: Graphical representation of the state variables and
actions that represent the paths of the example model seen
in Figure 1. The state variables and actions for component
failure and repair have been omitted for clarity. Arcs repre-
sent preconditions and effects of an action.

The RBDModel also contains a set of ComponentFail action
objects, a set of ComponentRepair action objects, a set of
CheckComponent action objects, and a single ResetPathEx-

ploration action object. All actions in an RBD model are
derived from BaseActionClass.

In Figure 2, we see the state variables and actions that de-
fine a single component’s repair and failure behaviors. In
the figure, each circle is a state variable containing a short

int value, and the black rounded boxes represent timed ac-
tions. There are separate timed events for fail and repair. In
order for the fail action to be enabled, the FailRepairEn-

abledSV state variable called FailEnabled must equal 1, and
the Component state variable, called CurrentState, must
equal Component::ACTIVE. In order for the repair action to
be enabled, the FailRepairEnabledSV state variable called
RepairEnabled must equal 1, and the Component state vari-
able, called CurrentState, must equal Component::FAILED
(see Table 2). Upon completion of the firing of the Fail or
Repair action, the CurrentState state variable is updated
appropriately, and the RBDModel’s ResetPathExplorationSV
is set to 1. The need for this state variable will be explained
shortly.

Figure 3 illustrates the state variables and actions that are
used to explore the paths of the example reliability block
diagram model from Figure 1. Each circle represents a state
variable containing a short int, and the thin black rectan-
gles represent instantaneous actions. This structure is used
to determine the overall system state. A complete picture
would include multiple instances of the diagram from Figure
2, one for each component in the RBD, but those have been
omitted to reduce the complexity of the diagram.

In Figure 3, there is a single ResetPathExplorationSV state
variable object, labeled simply R. Next to it is the single Re-

setPathExploration instantaneous action, labeled Reset.
That action is enabled and fires instantaneously when R

equals 1. Upon execution, the value of R is set to 0, the
value of all the other state variables in the diagram are set
to 0, except for the state variable labeled A, which is set to 1.
The ResetPathExploration action resets a path exploration
process that will happen instantaneously.

The state variables, other than R, are all Node objects, and
they indicate whether the current node in the RBD is reach-
able from the start node. In Figure 3, A is the start node,
and D is the stop node in the RBD. The actions, other than
Reset, are all CheckComponent actions, one for each compo-
nent in the RBD. Although it is omitted from the figure for
clarity’s sake, each CheckComponent action should also have
an incoming arc from a Component state variable for its com-
ponent. A CheckComponent instantaneous action is enabled
when the incoming Node is 1, the outgoing Node is 0, and the
Component state variable associated with the current state
of the component is 1 (which indicates that the component’s
state is Active). When the CheckComponent action fires, it
sets the outgoing Node to 1. That allows a path exploration
to occur across the topology of the RBD in order to deter-
mine if there is still an active path from the start node to
the stop node. Because the R state variable is set to 1 every
time a Fail or Repair action fires, the path exploration gets
updated whenever a component’s state changes. To deter-
mine the overall system state, one must simply check the
value of the stop Node.

4. USING RBD MODELS IN MÖBIUS
To access the state variables in an RBD model, a user must
know the RBD element code names (defined in the Details
view in the graphical editor) in conjunction with several
member function names. The names of the Component state
variables shown in Figure 2 are identical to the code names
defined on the component. The fail and repair state vari-
ables in Figure 2 are respectively named:

• <Component Code Name>FailEnabled

• <Component Code Name>RepairEnabled

The names of the Node state variables in Figure 3 are iden-
tical to the code names defined on the node in the graphical
editor. All state variables are in scope for all code expres-
sions defined in the graphical editor.

// Gets the current state of the component.

short int getState()

// Sets the current state of the component.

void setState(short int state)

// Returns true if the fail event is enabled.

bool isFailEnabled()

// Enables/disables the fail event.

void setFailEnabled(bool enabled)

// Returns true if the repair event is enabled.

bool isRepairEnabled()

// Enables/disables the repair event.

void setRepairEnabled(bool enabled)

Table 1: Useful member functions for Component class.

// Component is in the active state.

short int Component::ACTIVE = 1
// Component is in the failed state.

short int Component::FAILED = 0

Table 2: Useful constants.

Several useful member functions have been added to the
Component and Node classes. Table 1 lists the member func-
tions on a component object. For example, if the sensor



// Whether node is reachable from the start.

bool isReachable()

Table 3: Useful member functions for Node class.

component in the example in Figure 1 had a code name,
sensor, then we could determine if the failure event for
that component was enabled by considering the return value
from sensor->isFailEnabled(). In the case of the func-
tions that deal with fail/repair enabled state, it is impor-
tant to note that those refer to the state of the FailEn-
abled/RepairEnabled state variables shown in Figure 2. The
ComponentFail action in Figure 2 requires the FailEnabled

state variable to be 1 and the CurrentState state variable
to be 1 (Component::ACTIVE) in order to be enabled. The
requirements are similar for the ComponentRepair action.

Table 2 lists a set of class constants that are useful when
one is working with the state of a component. ACTIVE in-
dicates that a component is up and functioning properly.
FAILED indicates that the component is down and that the
path in the RBD is broken at the component’s block. Table
3 contains a description of the isReachable() function on
Node objects, which determines if an unbroken path exists
from the RBD start to that node. To determine the state of
the overall RBD model, calling the isReachable() function
on the stop node (node D in the example in Figure 3) will
suffice.

4.1 Composing RBD Models
The Möbius framework allows for easy composition of atomic
and other composed models through sharing of state vari-
ables or synchronizing of events. Model composition with
RBD models are a powerful way to expand the behavior of
a RBD model or to incorporate RBD models in larger com-
plex Möbius models. To properly compose an RBD model,
the actions and state variables described in Section 3 must
be carefully considered.

All of the state variables used in RBD models make use of a
short int base data type and can be shared with places in
a SAN model [14], or access, skill, knowledge, and goal ele-
ments in an ADVISE model [4], etc. For example, a compo-
nent whose state behavior is too complicated to be described
in an RBD model can be expressed in a SAN model. The
SAN model can update the FailEnabled, RepairEnabled,
and CurrentState state variables to mimic the change of
component state from within the SAN model. That allows
the remainder of the RBD model to continue functioning in
harmony with the specialized component. Also, action syn-
chronization can be leveraged so that a failure in an RBD
model can be synchronized with an attack step in an AD-
VISE model to model the behavior of an adversary taking
down a component.

4.2 Specifying Metrics
Möbius provides a reward model formalism called perfor-
mance variables to specify model metrics. Performance vari-
ables can use rate reward functions to consider the value of
any of the state variables mentioned earlier. For example,
the average downtime of a system can be calculated by us-
ing a rate reward performance variable that examines the

state of the stop node. Impulse reward performance vari-
ables can be used to define metrics that track the firing of
failure and repair events. For example, an impulse reward
performance variable can be used to count the number of
times a component fails.

4.3 Defining Studies
Studies in Möbius allow a user to design a set of experi-
ments that vary parameters on a model. Global variables
are used to specify a model parameter. The RBD atomic
model uses the global variable feature of Möbius. Any of
the code expressions in an RBD model, including the fail-
ure/repair timing distribution parameters and failure/repair
effects, can use functional expressions using global variables.
For example, by setting the component’s failure timing dis-
tribution to use a global variable as its rate, we can define
different failure rate values for different experiments in the
study.

4.4 Solution Techniques
Möbius provides a discrete event simulator to solve model
metrics using iterative simulation. To do so, Möbius links
together C++ libraries that are generated for an RBD model
instance with RBD formalism libraries in the Möbius AFI.
Similarly, libraries are built for the composed model, reward
model, and study. Finally, Möbius links those together with
the Möbius discrete event simulator to create an executable
binary. The binary is executed by the graphical front-end
and instructed to initialize the model state, begin execution,
and continue until all metric times have been reached. The
model is then reset to the initial state, and the execution is
repeated many times. Each iteration gathers metric obser-
vations for a trajectory, and Möbius calculates statistics on
the observed measures, e.g., mean and variance.

Alternatively, Möbius can build the model instance libraries
and link them with a transformer library to create a state
space generator that will generate a continuous-time Markov
chain (CTMC) representation of the model. Möbius includes
an array of analytical solvers that will solve the CTMC
with much higher precision than the simulator. The trans-
former/analytical solution route places significant constraints
on the model, such as a finite state space and exponential
timing distributions. If those constraints cannot be met, the
discrete-event simulator must be used instead.

More details on composed models, reward models, studies,
and solution methods in Möbius can be found in the Möbius
documentation [8].

5. RELATED TOOLS
Since the introduction of Dynamic Reliability Block Dia-
grams [2], several tools have incorporated DRBDs to study
system reliability. We examined several of the tools during
the formulation of our implementation.

The SHARPE toolkit [13] provides a nice collection of mod-
eling formalisms, such as fault trees, queuing networks, Markov
chains, and Dynamic Reliability Block Diagrams. SHARPE
provides combinatorial solution methods for traditional RBDs
and fault trees as well as analytical solution methods for Dy-
namic Reliability Block Diagrams similar to what is done in



Möbius. SHARPE is able to hierarchically compose mod-
els together, which can yield a significant reduction of state
space for Markov chain solutions by decomposing a model
into parts that can use combinatorial solutions, and parts
that require analytical solution techniques. SHARPE does
limit the topology of DRBDs and does not allow non-series-
parallel nor cyclical DRBD models, which our implementa-
tion does allow.

PTC provides a commercial tool called Windchill that in-
cludes an RBD module [10]. PTC’s Windchill RBD is a
graphical tool for creating and analyzing DRBD models.
The tool provides a user-friendly interface, but lacks the
flexibility and customization that Möbius affords with its
model composition and reward model specification. For ex-
ample, Windchill RBD asks users to select from a list of
predefined metrics, while Möbius allows users to express a
wide range of metrics with its performance variables formal-
ism. Windchill RBD uses analytical solution techniques and
simulation to solve for specified metrics.

ReliaSoft offers a tool called BlockSim [1] that uses DRBDs
and dynamic fault trees to perform maintainability and avail-
ability analysis. Like Möbius and Windchill, BlockSim uses
analytical solution and simulation to calculate system mea-
sures. Also as in Windchill, the metrics that can be defined
are constrained by a predefined list for the purpose of main-
taining user friendliness.

Although several tools exist for modeling and solving DRBDs,
we feel that our implementation offers greater utility because
of its use of the Möbius framework, which offers significantly
greater flexibility to the definition and solution of complex
models.

6. CONCLUSION
The main contribution of this paper is the in-depth explana-
tion of the implementation of the Dynamic Reliability Block
Diagram atomic formalism in Möbius. This implementa-
tion offers a graphic interface for easy definition of reliabil-
ity block diagrams that have model state that changes over
time, state-dependent behavior, and more complex compo-
nent behavior, such as load balancing and nontrivial re-
dundancy. The incorporation of the DRBD implementation
in the Möbius framework allows for composition of DRBD
models with other Möbius models and leverages the mature
solution techniques already existing in Möbius. This im-
provement to the Möbius tool will significantly enhance its
offerings for system reliability analysis.

7. ACKNOWLEDGMENT
The authors would like to acknowledge the contributions of
current and former members of the Möbius team and the
work of outside contributors to the Möbius project. We also
thank Jenny Applequist for her editorial contributions.

8. REFERENCES
[1] R. Corporation. Reliability block diagram software

(rbd software tool) and fault tree analysis software

(fta software tool) for system reliability and
maintainability analysis, 2014.

[2] S. Distefano and L. Xing. A new approach to
modeling the system reliability: dynamic reliability
block diagrams. In Reliability and Maintainability
Symposium, 2006. RAMS ’06. Annual, pages 189–195,
Jan 2006.

[3] J. M. Doyle. Abstract model specification using the
Möbius modeling tool. Master’s thesis, University of
Illinois at Urbana-Champaign, Urbana, Illinois,
January 2000.

[4] M. Ford, K. Keefe, E. Lemay, W. Sanders, and
C. Muehrcke. Implementing the advise security
modeling formalism in Möbius. In Dependable Systems
and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, pages 1–8, June 2013.

[5] R. Harris. The Definitive Guide to SWT and Jface.
Apress, Berkeley, CA, USA, 2nd edition, 2007.

[6] B. Johnson. Design and Analysis of Fault-tolerant
Digital Systems. Addison-Wesley series in electrical
and computer engineering. Addison-Wesley Publishing
Company, 1989.

[7] J. McAffer, J.-M. Lemieux, and C. Aniszczyk. Eclipse
Rich Client Platform. Addison-Wesley Professional,
2nd edition, 2010.

[8] Möbius Team. Official Möbius Documentation.
University of Illinois at Urbana-Champaign, Urbana,
IL, 2014.

[9] S. Northover and M. Wilson. SWT: The Standard
Widget Toolkit, volume 1. Addison-Wesley
Professional, first edition, 2004.

[10] I. PTC. Ptc windchill | product lifecycle management
(plm) software | ptc, 2014.

[11] M. Rausand and A. Høyland. System Reliability
Theory: Models, Statistical Methods, and Applications.
Wiley Series in Probability and Statistics - Applied
Probability and Statistics Section. Wiley, 2004.

[12] D. Rubel, J. Wren, and E. Clayberg. The Eclipse
Graphical Editing Framework (GEF). Eclipse Series.
Pearson Education, 2011.

[13] R. A. Sahner and K. Trivedi. Reliability modeling
using sharpe. Reliability, IEEE Transactions on,
R-36(2):186–193, June 1987.

[14] W. H. Sanders and J. F. Meyer. Stochastic activity
networks: Formal definitions and concepts. In
E. Brinksma, H. Hermanns, and J. P. Katoen, editors,
Lectures on Formal Methods and Performance
Analysis, volume 2090 of Lecture Notes in Computer
Science, pages 315–343, Berg en Dal, The
Netherlands, 2001. Springer.

[15] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition, 2009.


