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Abstract

Network-based detection of botnet Command and Control communication is a difficult task if the traffic has a
relatively low volume and if popular protocols, such as HTTP, are used to resemble normal traffic. We present
a new network-based detection approach that is capable of detecting this type of Command and Control

traffic in an enterprise network by estimating the trustworthiness of the traffic destinations. If the destination
identifier of a traffic flow origins directly from: human input, prior traffic from a trusted destination, or a
defined set of legitimate applications, the destination is trusted and its associated traffic is classified as
normal. Advantages of this approach are: the ability of zero day malicious traffic detection, low exposure to
malware by passive host-external traffic monitoring, and the applicability for real-time filtering.
Experimental evaluation demonstrates successful detection of diverse types of Command and Control Traffic.
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1. Introduction

It is crucial for an organization to identify infected
computers in its premises. Infected computers can
attack other computers, steal sensitive information
and disturb critical production processes. Infected
computers are often bot instances that participate in
a botnet. In addition to normal traffic, they produce
malicious traffic, consisting of occasional connections
or phone home calls to a C&C (Command and Control)
entity on the Internet and optionally they generate
attack traffic, such as DDoS and spam.

In this paper we present a new approach to detect
botnet activity in an enterprise network. With the term
enterprise network we refer to a computer network that
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is exclusively used by a private or public organization
under one common administration.

Network-based detection of botnet traffic is, in
addition to host-based solutions, an attractive defense
component against botnets because of its low risk
of compromise if implemented host-externally and
passively. A basic approach is misuse detection, based
on definitions of known malicious traffic, such as
signatures [1] or blacklists of malicious hosts [2][3].
However, the dependency on prior knowledge of
specific botnets, makes it ineffective against new types
of C&C communication. Anomaly detection addresses
this problem of zero-day C&C-traffic by observing
deviations from normal traffic. Detection of C&C
traffic by DNS anomalies is a popular approach
[4][5], but only effective against a limited group of
C&C communication types, because it depends on the
presence of observable DNS anomalies. An important
group of botnet-specific anomaly detection approaches
evaluates correlation between traffic flows [6]. Although
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capable of detecting zero-day traffic, statistical anomaly
detection is not successful in all cases. Firstly
correlation-based detection cannot be used to block
immediately all C&C traffic, because, during the
correlation process, a part of the C&C communication

will slip through. Secondly traffic correlation can not
always be measured in an enterprise network. In
case of only one infected computer in the network,

correlation in C&C traffic of different bots cannot be
measured, unless detection information is collected
from multiple enterprise networks. Additionally some
bots, in particular bots deployed for espionage, do not
produce attack traffic, such as spam, network scans, or
DDoS traffic. This reduces the correlation options to
only C&C traffic.
In this paper we present a entirely different type

of C&C anomaly detection with the capability of
immediate detection of a single C&C flow, which can
complement existing methods. It is based on trust of
traffic destinations. Trust is a complex concept and
can be defined in many different ways. We use a
context-specific definition of trust, derived from a more
generic definition from Olmedilla et al. [7]. In our
context, which is an enterprise network with inside
potentially bot-recruited computers, we define trust as
the measurable belief of the organization that a specific
entity does not collude in a botnet. We assume that the
organization trusts its employees and a defined set
of legitimate software applications if deployed on an
uninfected computer. On the other hand, the enterprise
computers with the installed OS and software instances,
are not trusted, since they can be compromised and
recruited in a botnet. Traffic destinations are initially
not trusted, because they can be part of a C&C
infrastructure that is contacted by an inside bot.
However, a destination becomes trusted by transitivity,
if its identifier origins from another trusted entity. The
identifier of a destination can be an IP-address, name,

URI, or any other data that is used to direct the traffic to
a remote computer or resource.
Evaluation of the origin of destination identifiers

enables the detection of C&C traffic. Traffic is classified
as normal, if the destination identifier origins directly
from: human input, a legitimate application, or the
received content from a trusted destination. All
other destination identifiers are not trusted and the
associated traffic is classified as anomalous.
We will refer to this anomaly detection approach

as Untrusted Destination by Identifier Detection or UDI
Detection. Section 2 describes the details of UDI detec-
tion. Section 3 presents a practical implementation
for experimental evaluation. Section 4 evaluates UDI

detection by experiments with real traffic. Section 5
elaborates evasion possibilities. UDI detection is com-
pared with other work in Section 6. Finally Section 7
concludes and proposes future work.

2. UDI Detection Approach

For UDI detection we assume the typical scenario of
client computers in a segment of an enterprise network,
protected by a stateful firewall, that blocks all traffic
that is initiated from outside. This enforces inside bots
as the initiator of all C&C communication(phone home).
All traffic from and towards the inside computers is
passively captured and evaluated by the UDI detector
as shown in Figure 1. To limit the number of detection
decisions, the UDI detector organizes all traffic in flows
by protocol, source and destination IP address, and
UDP/TCP port numbers. The stateful firewall assures
that each ingress flow is associated with exactly one
existing egress flow with swapped IP addresses and
ports.

The detector evaluates the egress flows on trust of
their destinations. An egress flow is only classified as
normal if its destination is trusted. Ingress flows inherit
the trust and anomaly state of their associated egress
flows.

For each new egress flow, trust is determined by
the the origin of its destination identifier in the three
consecutive decision stages of Figure 1.

The first stage tests if the destination identifier is
present in a predefined set of legitimate destinations,
used by trusted applications. This typically includes
destinations of servers for software updates, browser
home pages, and local management traffic. Flows to
these destinations are classified as normal and not
further evaluated.

The second stage tests if the destination identifier
matches a reference that was received in the payload of
prior ingress flows from a trusted destination. Examples
of such references are URL’s in HTTP content and IP-
addresses in DNS replies. If the destination identifier
matches a reference, the destination is trusted, and the
associated flow is classified as normal and not further
evaluated. If there is nomatch, the destination identifier
is forwarded to the third stage.

The third stage evaluates the remaining destination
identifiers on the likelihood of being directly inputted
by a human. We assume that humans normally enter
destinations that can be distinguished from machine-
originated input by differences in complexity and
surprisal. For example, humans will normally not type
very long names or IP-addresses. These and many
other features can be used in heuristics to differentiate
between human and machine origin. If the destination
identifier is estimated as human input, the destination
is trusted and its flow is classified as normal and
not further evaluated. The remaining destinations
identifiers represent untrusted destinations that belong
to flows that are likely automatically generated by
illegal processes.
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Figure 1. Schematic overview of UDI detection.

The combination of the three stages results in a
system that can immediately detect botnet phone
home traffic, even if it has a low volume and uses
popular traffic types, to stay below the radar of existing
Intrusion Detection Systems. The passive monitoring
and real-time classification of UDI detection, allow
for implementation in an edge-router, or a network
Intrusion Prevention System, to prevent any contact
between an inside bot and outside C&C entities.

The necessary deep packet inspection of all received
traffic payloads and the management of a set of known
trusted legitimate destinations, are especially feasible
in enterprise networks. Deployment in the networks
of public ISP’s with connected consumer devices and
home networks is more difficult, due to the high
diversity of consumer end systems, the lack of control
and transparency in consumer networks, and privacy
regulations.

2.1. Logical Destination Identifiers

Before further elaborating UDI detection, we present a
more precise definition of the destination identifier of
a flow, and will refer to this as the logical destination
identifier or ldi. We assume a local computer that
initiates an egress flow X to a remote destination that
is identified by ldiX , as defined by Equation 1.

ldiX = host-idX + resource-idX (1)

• The host-id identifies the contacted remote host
of flow X. It is determined by the destination
IP address of the flow as shown in Equation
2. A computer normally acquires a destination
IP address by the translation of a hostname,
performed by a translation service, in most cases
DNS. If the translation is observed before flow X,
the host-id will be the hostname. In all other cases

it is directly the IP-address.

host-idX =
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if hostname(IPdest,X ) , 0

IPdest,X

if hostname(IPdest,X ) = 0

(2)

In this formula IPdest,X is the destination address
in the IP-header of egress packets of flow X.
The function hostname()delivers the IP address,
if a valid translation exists from hostname to IP
address. Otherwise hostname() is 0.

• The resource-id in Equation 1 identifies a specific
resource of the remote host. It is extracted from
the payload of the egress flow. If not present in
the payload, the resource-id is defined as zero. An
example of a resource-id is the path/querystring,
used in a HTTP GET request. In this particular
example the complete ldi is very similar to a URI.
A completely different example is an ICMP flow
of a ping. In this case the resource-id in the ldi is
zero.

The basic assumption of UDI detection is the low
probability that a trusted destination belongs to the
C&C infrastructure of a local bot-infected computer,
or provides ldi’s of the C&C infrastructure. However
this assumption does not hold for trusted destinations
that deliver translation services, such as corporateDNS-
servers. Malware from infected computers can contact
the DNS-server for resolving a hostname of a C&C
server. In such a case the trust stateof the DNS-server
should not transfer to translated destinations. Therefore
the ldi of an egress DNS flow is defined by the query
sent to the resolver for translation (Equation 3).

ldiX = queryX if X = DNS f low (3)
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This means that a DNS flow, towards a DNS-server
with a query that refers to an untrusted destination, is
classified as anomalous. If an anomalous DNS flow is
not immediately blocked, the received IP-addresses in
the DNS answer are not placed in the list of trusted
received traffic references, despite the fact that they
are delivered by a trusted corporate DNS server. DNS
is by far the most important protocol that generates
resolver flows, but there are other protocols that can
be regarded as resolvers or translators, such as the
Bittorrent Tracker Protocol, that resolves hashes of file
names to IP-addresses of peers.

2.2. Forward Reference Extraction

We define a forward reference as a data element in
the payload of an ingress flow that can be used as
the ldi of a future flow. It can range from a URL in a
HTTP hyperlink to an IP-address in a DNS A-record.
The adjective forward is used, to emphasize that the
reference refers to the ldi of a future flow. It should not
be confused with the Referer field in an egress HTTP
request that refers back to the server that delivered
the URL of the new request in a prior flow. For UDI
detection all potential forward references in received
payloads are stored in a list. The size of the list is
limited by defining a maximum allowed validity time
of unused forward references. In addition the complete
list of references, received by one local computer can be
cleared after a reboot of that computer.
Forward references are important in UDI detection,

because they transfer the trust state from the destina-
tion of a prior flow to the destination of a new flow. This
is illustrated in Figure 2.

Figure 2. The remote destination B of egress flow F3, identified
by ldiB is trusted, because it was referenced in a prior ingress

flow F2 of trusted destination A.

2.3. The UDI Detection Algorithm

The three stages of Figure 1 identify ldi’s of trusted
destinations. After the three stages, the remaining ldi’s
represent destinations that are not trusted and their
associated flows are classified as anomalous. Algorithm
1 shows the complete detection procedure.

Algorithm 1 UDI detection algorithm

for each new f low X do
if isEgress(X) then
ldi = identif yDestination(X);
if isLegitimate(ldi) or
isRef erenced(ldi) or
isUserSubmitted(ldi) then
X.Status = NORMAL;

else
X.Status = ANOMALOUS;
signalAnomaly(X);

end if
else
X.Status = getStatusOf AssociatedFlow(X);
if X.Status = NORMAL then
extractForwardRef erences(X);

end if
end if

end for

• isEgress(X) is true if X is an egress flow

• IdentifyDestination(X) extracts the ldi from flow
X according to equation 1 or equation 3 for
respectively non-resolver or resolver flows.

• isLegitimate(), isReferenced(ldi), isUserSubmitted()
are the tests of the three consecutive stages of
Figure 1.

• getStatusofAssociatedFlow(X) is NORMAL or
ANOMALOUS, depending on the state of the
associated egress flow of ingress flow(X).

• extractForwardReferences(X) will extract and store
the forward references from trusted payloads.

2.4. Detection Accuracy

To elaborate the accuracy of UDI detection, we firstly
introduce two classifications for ldi’s.

1. A malicious ldi is the ldi of a destination that is
used by a bot for a connection to its C&C. All other
ldi’s are in this context non-malicious.

2. A trusted ldi is the ldi of a destination that is
classified by the UDI detector as trusted. An
egress flow with a trusted ldi is normal. An egress
flows with an untrusted ldi is anomalous. An
ingress flow inherits the normal or anomalous
status from its associated egress flow.

In the ideal situation the UDI Detection algorithm
will classify exactly all malicious ldi’s as untrusted,
and all non-malicious ldi’s as trusted. However
practical imperfections of the detector will introduce
classification errors, resulting in False Negatives and
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False Positives. We treat here the two most important
error sources: partial ldi-matching and selection of
human-input features.

• Partial ldi-matching: The first and second stage of
UDI detection use a list with respectively legiti-
mate destinations and forward references. False
Positives and False Negatives are directly related
with the accuracy of the lists. An incomplete
list increases the probability of false positives.
To keep the list of legitimate destinations short
and maintainable, it is convenient to use partial
matching: only a part of the ldi has to match
for classification as trusted. The match could be
limited to the host-id of the ldi or even to just the
domain-name of the host-id. A problem of partial
matching, is the increased probability that mali-
cious ldi’s are erroneously classified as trusted,
because of a partial match.

The second stage uses a list of forward references,
obtained from the payloads of ingress flows.
Extracting complete forward references from
payloads can be very complex. For example
URL’s in HTTP are often relative or dynamically
composed from different elements in the payload
by a client script. If the detector does not fully
emulate the involved browser, this leads to missed
forward references, that can cause false positives.
Partial matching can also in this case reduce the
false positives, however with an increased risk of
false negatives, as in the first stage.

• Selection of human-input features: The heuristics
to test the likeliness that the ldi is from human
input, depends on a proper selection of features.
Literature suggests many features to classify
anomalous names [8] [9] [10] [11] [12], but non
of the proposed feature sets is perfect, with false
decisions as a result. A significant advantage of
UDI detection is the removal of many non-human
ldi’s, such as references in prior flows, by the two
preceding stages.

The complex design choices, make it difficult to derive a
simple quantitative predictive model of the FPR (False
Positive Rate) and the DR (Detection Rate). Instead we
evaluated empirically the behavior of UDI detection
and the resulting FPR and DR. Other causes of errors,
related with detection evasion, are discussed in Section
5.

3. Detector Implementation

We constructed a basic UDI detector as a proof of
concept and evaluated its accuracy in experiments
with real traffic. We implemented the UDI detection
algorithm in C++ with the usage of the pcap and

zlib libraries on a X86-64 PC with 8GB of RAM and
a Linux Operating system. Two network interfaces
make the system applicable as a bridge in a LAN and
allow for real-time inspection with optional removal of
bridged traffic by the detector. The bridge can also be
configured as a stateful firewall. In addition to real-
time detection, the captured traffic can be stored in
pcap format for offline evaluation by the UDI detector.
The traffic is captured by Gulp [13], a capture tool
with a low probability of packet loss. Tables of forward
references, ldi’s, and flows are implemented with hash
tables, to speed up the search for existing flows and ldi’s.
Tables, intermediate results, and detection decisions are
extensively logged for later manual evaluation.

3.1. Partial ldi-matching

To limit the complexity of payload parsing in this
proof of concept, only the payloads of DNS and HTTP
are inspected for forward references and partial ldi-
matching is applied, as explained in Section 2.4. The
extracted forward references are limited to the host-id
part of Equation 1. The ldi-matching in the 2nd stage
for DNS host names is limited to the TLD and at least
4 characters of the second level domain. If the second
level domain is a well-known public suffix, such .co in
.co.uk, 4 characters of the third level domain name are
also included.

3.2. Name-Based Criteria

For the function isUserSubmitted() of Algorithm 1, we
derived three name-based features from [10], [12], and
[11] to test if an ldi origins directly from a human:

1. number of characters � C

2. number of non-letter characters � N

3. top level domain ∈ {set of popular human-input
TLD’s}

The result of isUserSubmitted() is only true, if all three
conditions are true. The optimal value of C, N and
the set of popular human-input TLD’s depends on the
behavior of the local average user. In particular the set
of TLD’s depends on the nationality of the user and the
location of computer. For example in The Netherlands
the TLD .nl is popular, along with some international
TLD’s, such as .com and .org.

4. Experimental Evaluation

The experimental evaluation of UDI detection has two
objectives:

1. Determine the accuracy of practical UDI detection
with different types of C&C traffic. The False
Positive Rate (FPR) is determined by feeding the
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UDI detector in a controlled environment with
a defined set of real non-malicious traffic. The
Detection Rate (DR) is determined by feeding
the detector with various types C&C traffic,
embedded in non-malicious traffic.

2. Demonstrate that each of the three stages
contributes significantly in the reduction of the
total FPR. In the case of a non-malicious flow, one
of the stages has to classify the ldi as trusted. If
a stage does not classify an ldi as trusted, it is
passed to the next stage. The fraction of remaining
ldi’s, passed from a stage x to the next stage, is
expressed by Hx in Equation 4;

Hx =
#ldistage x,not trusted

#ldistage x,non malicious
(4)

After the third stage the flows of the remaining
untrusted ldi’s are classified as anomalous. Since
we assumed normal traffic, these are the False
Positives. Equation 5 expresses the FPR (False
Positive Rate).

FPR = Ht = H1.H2.H3 (5)

Although the three stages are derived from a
coherent model that is based on the origin of
ldi’s, it is difficult to exclude hidden dependencies
in sieving properties between the stages. This
can result in a stage that does not a have a
net contribution in the reduction of untrusted
ldi’s. By changing the sequence of the stages,
the ratios per stage H1, H2 , and H3 can change,
by dependencies in sieving properties of the
proceeding stages, but the overall FPR will not
change. If one of the three stages has no net
contribution, placement as the third stage will
equal the ratio H3 to 1.

4.1. Controlled Environment

We evaluated False Positive behavior, True Positive
behavior, and the dependency between stages, of the
UDI detector with traces of both normal traffic and
malicious C&C-traffic. All traffic was produced by, and
captured from computers in a controlled environment:

• The normal traffic was generated by the use of
popular applications and the visits to popular
websites from computers with a freshly installed
operating system and software.

• The C&C traffic was generated from computers,
infected with real well-known botnet malware.

Due to corporate regulations and law, it is difficult
in a large enterprise network to capture, store, and
analyze traffic with complete payloads for experimental

evaluation and review of the detection approach.
Evaluation of UDI detection in just a small sample
of an enterprise network is feasible, but results in
a high risk that the traffic is very homogeneous
with a limited number of different destinations. UDI-
detection will then produce an optimistic False Positive
behavior, caused by the fact that the production of new
destinations is relatively low. In addition the probability
of infection by various types of bots with sophisticated
phone home traffic is small, resulting in unreliable
information about the True Positive behavior. By testing
in a controlled environment, we could evaluate UDI
detection more accurately because:

• By the selection of a wide variety of legitimate
applications, including many popular websites
that result in abundant traffic to referred desti-
nations, the False Positive behavior is evaluated
under difficult conditions. This prevents a to opti-
mistic estimation of the FPR.

• By the selection of different types of botnet
traffic, combined with clean legitimate traffic, the
malicious part of the traffic is precisely known,
resulting in an accurate evaluation of the True
Positive detection per type of C&C traffic.

4.2. Evaluation of False Positives and Stage
Contribution

For evaluation of the False Positive performance, traffic
was generated by 40 selected cases of preinstalled
applications and web applications, all commonly used
by students of our university. Although some of the
applications, used by students, are not expected to be
present in a corporate environment, we chose for this
selection, to test the detector under difficult conditions
by a wide variety of applications. Examples of the cases
are: Email with a stand-alone client and a webclient,
participation in several social media, usage of Google
Maps and Street View, planning of a journey by Dutch
public transport, communication by WhatsApp, games
and downloading. Depending on the case, the traffic
was produced by a Windows 7, Linux, or Android
device. The applied list of legitimate ldi’s was kept as
small as possible and consisted only of: the IP-addresses
in the same local subnet, the domain names of OCSP
servers of well-known certificate authorities, and the
domain names of servers that were configured in the
installed legitimate applications for automatic updates,
home-pages, etc. DNS and browser caches of the
evaluated systems were cleared before the experiment,
to start synchronized with the UDI detector, as needed
for a proper functioning of the referenced destination
evaluation.
All collected traces were evaluated by the detector.

The parameters of the function isUsersubmitted() were
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chosen: C=20, N=3 and {.com, .org, .net, .nl, .uk,
.de, .gov} ∈ TLD. Two particular cases resulted in
an excessive number of false positives (FPR > 0.5).
They were isolated from the other traces and further
manually examined. The first case was a download with
Bittorrent. Since our implementation of UDI detection
cannot extract the peer IP addresses of encrypted
tracker information, all peer to peer connections were
classified as anomalous. The second case was an
Android game that connected continuously to different
destinations. Since both cases are not representative for
corporate usage, they were excluded from further FPR
calculation.Wewill discuss these types of false positives
and possible solutions in Section 5.
The traces of the remaining 38 cases contain 24362

flows with 54% HTTP, 8% of HTTPS, 36% DNS, and
2% of other traffic. Since all cases were produced with
freshly installed software, we assume no C&C traffic.
Consequently every flow, classified by the detector as
anomalous, is regarded as a False Positive. The FPR
was calculated by the fraction of the False Positives
in the total number of flows and resulted over all 38
cases in an FPR of 0.0026 (64 False Positives in 24362
flows). Additional analysis revealed that web traffic to
Content Delivery Networks and advertisement-related
traffic were responsible for the majority of the false
positives. The ldi’s were referred in prior encrypted
HTTPS payloads that could not be inspected by our
implementation of the UDI detector. Nevertheless the
number of False Positives caused by this shortcoming
remained relatively low, because HTTPS-objects often
share the same domain name as the referring web page.
Also many entry pages are not encrypted but contain
references of ldi’s to https-objects. We will also further
elaborate this in Section 5.

The individual effect of each of the three ldi evaluating
stages is evaluated, by placing each particular stage in
turn as the last stage and measuring the ldi Ratio, H, as
defined in Equation 4. The results are shown in Table
1. All stages reduce the net FPR, since all H3-values

Table 1. Measured ldi ratios of the last stage (H3) and the

combined preceding stages (H1.H2) for different sequences.
L=Legitimate ldi state, R=Referenced ldi stage, U=Human Input

stage.

Last Stage (H3) H3 H1.H2

U 0,28 0,0097
R 0,0038 0,70
L 0,083 0,032

are significantly smaller than 1. This supports our
model of the ldi origin in UDI detection. Table 1 also
demonstrates that the referred ldi stage is the largest
contributor to the reduction of False Positives, since its

ldi ratio is the smallest. The small contribution of the
name complexity filter, is caused by the fact that only a
small number of flows have an ldi that is directly typed
by the user.

4.3. Evaluation of True Positives

For analysis of True Positives, traces with a mixture
of normal traffic and malicious command and control
traffic were composed. The malicious traffic consisted
of C&C traffic of well-known bot malware. Five botnet
instances were selected to cover different types of C&C
traffic:

1. HTTP-based C&C by Kelihos [14] with DNS and
HTTP-traffic

2. Peer-to-peer-based C&C by Storm [15] with
Kademlia-based UDP-traffic

3. Social medium-based C&C by Twebot [16] with
HTTP and HTTPS web traffic to a Twitter
timeline.

4. TOR-based C&C by TBOT [17] with TOR TCP
traffic on port 9001

5. DNS-based C&C by Morto [18] with DNS traffic
to ms.jifr.co.cc.

The normal traffic was generated by visits to the 30
most popular global websites, derived from Alexa [19]
and Google [20]. For each website visit, a typical
functionality of the website was used, such as a login, a
search, playing a clip, or a product selection. All traffic
was captured and collected in one trace from a PC with
a fresh Windows 7 installation with a Firefox browser,
including popular plugins. The trace contains 8358
flows. Due to the popularity of the websites, the trace
is a representative sample of web traffic. In addition
popular websites truly test the effectiveness of the
implemented referring ldi stage, because the received
HTML objects contain a massive number of forward
references that cause auxiliary flows, such as media,
advertisements, and mesh-ups. Missed references can
result in false positives.
The applied list of legitimate ldi’s was limited in this

experiment to just the IP-addresses in the same local
subnet and the domain names of OCSP servers of well-
known certificate authorities.
For each C&C trace, the flows of one representative

call-home effort, were manually isolated from captured
traffic. With a self-developed tool we injected 10 copies
of a C&C traffic sample in the normal traffic. Our
tool modified the packet positions and timestamps
of 10 injected C&C copies to spread the phone
communication equally over the entire observation
interval of the 8358 legitimate flows. In addition the
tool modified IP-addresses and port numbers of the
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Table 2. Measured FPR and DR of UDI detection with 1 clean and 5 infected traces.

trace phone home calls malicious flows TP FP DR FPR
Top30 clean 0 0 0 16 - 0.0019
Top30+Kelihos 10 40 40 16 1 0.0019
Top30+Storm 10 20 20 16 1 0.0019
Top30+Twebot 10 60 0 16 0 0.0019
Top30+TBOT 10 20 20 16 1 0.0019
Top30+Morto 10 20 20 16 1 0.0019

C&C traffic to create one consistent trace with both
normal and C&C traffic, originating from the same
computer, without conflicts in the used ephemeral TCP
and UDP ports. Table 2 shows the number of measured
True Positives and the resulting DR of the traces with
injected C&C flows. For reference the trace without
C&C traffic is also evaluated.
All injected flows of Storm and TBOT are detected

because the ldi’s are not from known trusted applica-
tions, unreferenced, and bare IP-addresses. The phone
home calls of Kelihos start with a DNS lookup of a
hostname in the .ru domain. These DNS flows and the
traffic to the resolved IP-address are therefore classified
as anomalous, resulting in a DR of 1. The injected DNS-
only C&C traffic by Morto is detected by the query of
ms.jifr.co.cc. Similar to the lookup of the .ru domain, the
ldi is not from a known legitimate application, neither
from prior trusted traffic, nor from human input. The
C&C traffic from Twebot is not detected, because the
ldi is Twitter.com, which is a simple name that could
have been entered by a human. Additionally Twitter.com
is referred by other legitimate traffic. The inability
to detect C&C traffic that uses popular hostnames, is
caused by the partial ldi-matching that excludes the
resource-id from the evaluation. A solution for this
problem is proposed in the next Section.

5. Evasion of UDI Detection and Solutions

There are several ways for a bot to evade UDI
detection. One approach is directly demonstrated in
our experiments: by using a popular server as C&C,
there is a high probability that the detector will
classify the ldi as trusted. This is caused by partial
ldi-matching, as demonstrated in our experiments
with Twebot. The complete ldi of the C&C in our
experiment was Twitter.com/tlab32768, including the
timeline of a malicious account, but due to partial
ldi-matching, the malicious resource-id was omitted
and only the host-id Twitter.com was evaluated. This
resulted in classification as trusted, because other
objects of Twitter.com were already referenced by prior
flows and additionally Twitter.com can origin from
user input by its low complexity. The solution is a
complete ldi match instead of a partial. This requires
two techniques:

1. encrypted payload inspection A significant part
of modern traffic uses TLS, such as HTTPS.
The encrypted payload prevents the extraction
of resource-id’s from egress flows, and forward
references from ingress flows. Complete ldi-
matching would then result in a large number
of false positives. In our experiments this was
reduced by partial ldi-matching. However a
better solution is the insertion of an SSL/TLS-
interception proxy. By the installation of a public-
key certificate on clients in an organization, a
trust relationship can be established between the
observed computers and the proxy that enables
decryption of TLS-traffic, without certificate
warnings of browsers [21]. Resource id’s and
forward references can now completely be
extracted from the decrypted traffic. This allows
for complete ldi-matching and prevents false
negatives by the use of popular hosts. The
appliance of an SSL-interception proxy changes
the detector from a passive into an active
device, since traffic is intercepted, decrypted, and
encrypted. Although this theoretically results in
more exposure of the detector to bots, it is our
belief that it will not increase significantly the risk
of compromise.

2. browser emulation Modern websites use complex
client scripts that can construct URL’s by
dynamically combining different elements from
ingress payloads and even user input. This
complicates the complete extraction of ldi’s and
forward references with an increased risk of false
positives. As explained, partial ldi-matching is a
simple solution for this, but introduces evasion
possibilities by inaccurate matching. A solution
is the extraction of complete forward references
in the UDI-detector by emulation of the clients
browser.

It is evident that both techniques include complex
and processing-intensive payload analysis that requires
further research.

UDI detection can also be evaded by completely
different techniques:
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1. The botnet controls a trusted destination. This is
for the botnet a complex type of evasion because
it has to recruit at least two instances: a local
computer as the inside bot and an external host
with a trusted destination. Additionally in case
of a takedown it would be difficult to replace the
C&C destination.

2. The botnet acquires a hostname that can origin from
human input. This also raises problems for the
botnet, since human-friendly hostnames are often
occupied, and again in case of a takedown, the
replacement is difficult. In our experiment we
only used three simple static rules to classify ldi’s
from human input. The use of more features and
machine learning can result in a more accurate
classification that can adapt to specific situations.

3. The botnet does not phone home.Nagaraja et al. pro-
posed a botnet that piggybacks C&C messages in
pictures that were exchanged between members
of social media [22]. In this model there are no
phone home connections, which makes it unde-
tectable for UDI detection. However it requires
the recruitment of at least two instances that
exchange content by a popular social medium.
Generally this is a difficult condition to achieve,
with again problems in case of a takedown.

6. Related Work

In addition to the work, discussed in Section 1, we
start here by discussing some important examples of
network-based passive botnet detection.
Gu et al. propose Botminer [23]. BotMiner clusters

similar communication flows and hosts that perform
similar suspicious activities. Both clusters are cross
correlated, to identify potential bots. Although it can
detect many types of botnet traffic, it depends on
the presence of multiple botnet flows and observable
malicious activities.
Rieck et al. propose Botzilla for detection of botnet

phone home traffic [24]. Basically it is misuse-based
detection, because it uses signatures of repeatedly
executed bots. This results in a low FPR and DR if
the signature is known and parameterizable. However,
unlike our anomaly-based UDI detection, it can only
detect C&C traffic with known signatures.
Cocospot detects botnet C&C traffic by classifying

traffic flows by protocol, length sequences of packets
in a flow, and the encoding of URL’s in a HTTP query
[25]. Unlike UDI detection the system needs to learn
from known C&C traffic, before it can distinguish this
traffic from normal traffic. Evasion is possible by noise
injection in the packets.
Giroire et al. propose detection of botnet C&C traffic

by identifying new repeated combinations of traffic

destinations within varying time windows [26]. This
type of anomaly detection assumes C&C traffic that
connects multiple times to the same destination. Unlike
UDI detection it does not relate traffic destinations with
prior references or user input. The C&C communication
must repeatedly have taken place, before it can be
detected by the method of Giroire.
The combination of legitimate destination evaluation,

referenced destination evaluation, and human input
evaluation, distinguishes UDI detection from the other
detection approaches.

6.1. Work Related with Flow Analysis in Consecutive
Stages

Detection of C&C traffic by flow-based analysis over
several consecutive stages is a common approach.
Strayer et al. propose a behavior-based detection system
of IRC-based C&C [27]. Like our method they apply
several consecutive stages to isolate the malicious
traffic, with the first stage as a coarse filter to reduce
processing in the other stages. However, unlike our
UDI detection, the approach focuses on IRC and uses
statistical flow-based and topological properties that
depend on the presence of multiple infected bots.
Walsh et al. describe a first pass filter that uses simple

statistical flow attributes to select flows for further
analysis [28]. They only focus on this first filtering stage
instead of a complete detector.

6.2. Work Related with Logical Destination
Referencing

The second stage of our UDI detector tests if the ldi of a
new flow is referenced in the received payloads of prior
flows. Zhang et al. propose CR-miner [29], a system that
evaluates traffic dependencies between connections and
user events, to determine malicious automatic traffic.
CR-miner associates a new connection with earlier
references and user input. In contrast to our method
CR-miner is implemented in the observed computer
itself, since it needs user and process properties for
classification. This significantly increases the exposure
level to potential malware. In addition CR-minor uses
a different method for associating flows: the Referer
field in the HTTP header of a new connection is used
to determine if the flow was previously referenced
by another flow. This method is only applicable for
HTTP traffic that supports this field and it can be
easily manipulated by malware, since it is produced
by an application in a potentially infected computer.
Our method is not sensitive for this type of tampering,
because forward references are captured from payloads
of ingress flows that origin from other computers and
because ldi’s cannot be manipulated, without changing
the egress flow destination.
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Burghouwt et al. use causal relationships between

flows to detect botnet C&C traffic [30]. Instead of the
destination, the direct cause of a flow determines if
communication is initiated by malware. Unlike UDI
detection this demands for the accurate measurement
of the delay between certain events and induced new
flows. Another difference is the required monitoring of
user events by a software agent or a hardware device.
Whyte et al. present a detector of scanning worms

by determining IP-addresses that are not earlier seen
in DNS-replies or received HTTP-data [31]. This can be
seen as a special case of flow referral, that isolates flows
with unreferenced destination IP-addresses, as is often
seen with worms.

6.3. Work Related with human-input evaluation

Several name-based properties of hostnames and URL’s
have been proposed, to detect malicious destinations.
Since there is not a unique name-based property that
can decisively classify anomalous names, the pro-
posed techniques use multiple lexographical and non-
lexographical features, often combined with machine
learning. Alphanumerical frequencies are used in work
of Yadav et al. [8] and Mc Grath et al. [9]. Length of
hostnames and substrings is used in work of Mc Grath
[9]. et al. and Bilge et al. [10]. The number of dots
and other delimiters in URL’s are used by Ma et al.
[11] and Blum et al. [12]. Our human-input evalua-
tion is different in two ways from other approaches.
Firstly the human-input classification in UDI detection
is preceded by a stage that removes all traffic with
referred destinations. This reduces the FPR. Secondly
most name-evaluating detectors produce a list of mali-
cious names for blacklisting. UDI-detection can classify
in real-time and allows for an immediate drop of an
anomalous flow.

7. Conclusions and Future Work

UDI detection detects different types of stealth C&C
phone home communication in an enterprise network
by the trustworthiness of contacted destinations. The
destinations of egress traffic flows are classified as
trusted or untrusted by three consecutive stages
that evaluate the origin of the involved ldi (logical
destination identifier). The detector can complement
existing network-based anomaly detection approaches,
because it works in a different way and it can classify
C&C traffic in real-time.

Partial ldi matching allows for a relatively simple and
feasible UDI-detector implementation. The results of
experiments with C&C traffic of real bots and normal
traffic support the detection approach with a low FPR
and an accurate detection of various types of C&C

traffic.

In future work we plan improvement of UDI
detection by complete ldi matching, to detect also
C&C traffic over popular social media. This requires
SSL traffic interception, payload parsing by browser
emulation, and the selection of more features and an
appropriate machine-learning algorithm for a more
accurate and adaptive classification of human input.
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