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Abstract 

INTRODUCTION: The current volume and sophistication of cyber threats are beyond overshadowing the security 
capabilities of traditional reactive security approaches. Herein, we present a new cybersecurity framework that incorporates 
real-time threat intelligence with adaptive deception technologies for the proactive defense of digital infrastructures. 
OBJECTIVES: The objectives of this research include: (1) develop an AI-driven cybersecurity framework, (2) incorporate 
real-time threat intelligence and deception-based active defense approaches, and (3) assess performance in simulated and 
real-world cyber-attack scenarios. 
METHODS: The proposed cyber-defense framework uses machine learning approaches, automated deception technologies 
(e.g., honeypots, moving target defense), and real-time threat intelligence feeds. The framework is constructed in a modular 
architecture and tested in simulation environments with real-time attack emulation. 
RESULTS: The framework performed with over 93% of threats visible, an adaptive response time < 2 seconds, and < 12% 
overhead imposed on the system. The framework achieved > 85% threat prevention, measured long recovery time, and 
measured system integrity improvements. 
CONCLUSION: The conclusion of this work illustrates that a proactive cybersecurity framework can be achieved through 
the integration of AI-enabled adaptive response with real-time threat intelligence. This work represents an advancement 
toward intelligent, self-learning systems capable of anticipating and responding to developing cyber threats with minimal 
human intervention. 
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1. Introduction

Driven by the rising sophistication and frequency of cyber 
threats, which have outperformed conventional security 
measures, the cybersecurity scene has changed from 
traditional, reactive defence mechanisms to more dynamic 
and proactive techniques [1]. Companies today understand 
the requirement of adaptive defence systems that can 
predict, identify, and react to hazards in real-time [2]. In 
this proactive approach, active defence strategies including 

deception technologies, honeypots, and moving target 
defense have become rather successful instruments. These 
tactics mislead, confuse, or slow down attackers, therefore 
giving defenders useful time to react [3]. Deception 
technologies, for instance, build decoy systems or data to  
entice attackers, therefore allowing companies to identify 
and examine harmful behaviour without revealing sensitive 
data or assets [4]. Concurrently, the integration of threat 
intelligence has been increasingly important for improving 
cybersecurity posture. Threat intelligence is the gathering, 
evaluation, and sharing of data on possible or actual 
assaults endangering a company. Knowing the strategies, 

EAI Endorsed Transactions on 
Security and Safety 
| Volume 9 | 2025 | 

https://creativecommons.org/licenses/by-nc-sa/4.0/


 Dhaya R., Kanthavel R. 

2 

tools, and methods (TTPs) of enemies helps companies to 
effectively protect against cyberattacks by means of 
preparation [5].  

Combining active defence strategies with threat 
intelligence produces a synergistic effect that enables a 
complete and flexible cybersecurity framework. Deploying 
sensible, proactive, and adaptive cybersecurity systems 
depends on addressing these difficulties [6]. This work 
presents a new framework combining real-time threat 
intelligence with active defence techniques. Leveraging 
machine learning and artificial intelligence, the system 
constantly changes defence measures in response to 
developing hazards, hence strengthening organisational 
resilience against cyberattacks [7]. Hence, the Research 
Objectives of this paper are threefold: 
• To create a whole framework combining real-
time threat intelligence with active defence techniques.
• To create dynamic adaptive defence systems
responding to newly developing hazards. 
• To assess, in practical settings, the success of the
suggested framework.

2. Literature Review

The evolving picture of cyberthreats demands innovative
defensive measures outside traditional perimeter-based 
security systems. Active defensive strategies have attracted 
a lot of interest since they are proactive and offer better 
protection by confusing or distracting attackers. Two 
examples of deception technologies that have been closely 
examined for their ability to draw attackers into controlled 
environments, thereby enabling the collection of 
intelligence and early threat detection, are honeypots and 
honeynets [8,9]. These technologies provide intelligence 
about attacker behaviours, plans, and approaches without 
exposing basic assets. 

Moving target defence (MTD) is another well-known 
active defence approach that constantly changes system 
configurations such as IP addresses, network topologies, or 
software platforms, thus increasing attack complexity. This 
dynamic adaptation puts adversaries in uncertainty, hence 
reducing the window of opportunity for efficient 
exploitation [10]. Mostly depending on threat intelligence, 
modern cybersecurity enables businesses to more precisely 
predict and manage threats. Combining and evaluating 
Indicators of Compromise (IoCs), threat actor profiles, and 
Tactics, Techniques, and Procedures (TTPs) helps to 
improve situational awareness, thereby guiding defence 
decisions [11]. Early and relevant intelligence distribution 
among businesses helps to improve detection capacities 
even further through cooperative sharing systems [12]. 

Integration of threat intelligence with active defence 
systems offers an interesting field of research. This 
integration enables adaptive defence, allowing systems to 

dynamically adjust decoys, response actions, and defence 
postures based on real-time intelligence inputs [13]. 
Machine learning and artificial intelligence techniques 
support this process by evaluating vast volumes of data, 
identifying trends, and projecting potential attacks. AI-
powered threat hunting automates the discovery of 
abnormalities and suspicious conduct, hence drastically 
reducing response times. Many solutions propose building 
powerful cybersecurity systems by combining active 
protection with threat intelligence. While some studies 
highlight phishing minimisation using integrated detection 
and intelligence systems [14], others discuss proactive 
cybercrime models employing real-time monitoring and 
reaction. These models illustrate the benefits of adaptive, 
intelligence-driven defences as well as the challenges, 
including system complexity, data accuracy, and the 
expertise needed for successful deployment [15]. 

Recent advances in artificial intelligence and automated 
incident response systems further confirm the feasibility of 
intelligent adaptive defences. For instance, AI-driven 
threat intelligence combined with deception techniques 
increases threat hunting efficiency [16], while deep 
learning models enable proactive threat detection and 
mitigation [17]. Research gaps in seamless integration, 
scalability, and evaluation of these frameworks under real-
world conditions still exist, even though AI-enhanced 
active defence integrated with threat intelligence can 
significantly improve cybersecurity resilience. Future 
studies must address these issues to create fully adaptive 
and autonomous cybersecurity systems capable of 
thwarting ever-evolving adversaries. 

3. Methodology

This methodology outlines the development,
construction, and evaluation of a whole cybersecurity 
framework that creates real-time threat intelligence with 
active defence strategies to generate security-aware, 
proactive strategies against new and emerging cyber 
threats.   

3.1 Designing an Integrated Framework 

We provide an entire framework that merges active 
defence strategies like deception technologies and moving 
target defence with a strong threat intelligence system so 
that a holistic security approach can be facilitated. The 
framework architecture consists of three primary functions: 
The Active Defence Module uses dynamic deception tools 
(e.g., honeypots, honeynets, decoy data) and moving target 
defence strategies to deceive attackers by increasing attack 
surface complexity.  

Threat Intelligence continuously ingests, processes, and 
analyzes data from internal monitoring systems and 
external threat intelligence feeds to produce contextual, 
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actionable results such as Indicators of Compromise (IoCs) 
and tactical techniques and procedures (TTPs) of attackers. 
The Adaptive Engine utilizes artificial intelligence and 
machine learning methods to analyze threat intelligence 
data and coordinate adaptive alterations to active defence 
strategies.  

This integrated architecture ensures that real-time threat 
intelligence is used to adapt active defence strategies, 
which facilitates proactive and informed decision-making. 
Three elements integrated create a dynamic wargame 
adaptation and continuous self-feedback, and therefore, 
meet the call for a coherent action plan. 

Table 1: Core Components of the Proposed 
Framework 

Component 
Name Description Technologies 

Used 
Primary 
Function 

Active 
Defense 
Module 

Deploys 
deception 
(honeypots, 
honeynets) and 
moving target 
defenses 

Honeypots, 
MT-D, Decoy 
Systems 

Mislead 
attackers, 
delay 
intrusion 

Threat 
Intelligence 
Module 

Collects and 
analyzes internal 
and external 
threat data 

SIEM, CTI 
feeds, ML 
classifiers 

Generate real-
time threat 
insights 

Adaptive 
Response 
Engine 

Dynamically 
adjusts defense 
strategies based 
on threat data 

AI/ML models, 
automated 
playbooks 

Orchestrate 
rapid, data-
driven 
responses 

Table 1 lists the main elements of the suggested 
architecture together with their purposes, underlying 
technology, and specific responsibilities in supporting 
proactive cybersecurity. Deception, threat intelligence, and 
adaptive reaction taken together guarantee a layered, 
dynamic defence able to react intelligently to changing 
threats. 

Figure 1 shows a three-connected module of the 
cybersecurity framework. Using moving target defence and 
deception, such as honeypots, Active Defence Module 
seeks to confuse and slow down attackers. To find dangers, 
the Threat Intelligence Module constantly gathers and 
examines data from both inside and outside sources. Uses 
artificial intelligence and machine learning to instantly 
modify defences depending on threat intelligence. 
Collectively, they create a dynamic, proactive security 
system that real-time detects, responds to, and adapts 
against changing cyber threats. 

Figure 1: Integrated Cybersecurity Framework with 
Real-Time Threat Intelligence and Active Defense 

We define the proactive defense framework through four 
components: (1) Threat Scoring, (2) Adaptive Response 
Triggering, (3) System Adaptation Feedback, and (4) 
System Resilience Index. 
Threat Score Calculation: Let: 

• 𝑇𝑇𝑖𝑖= threat instance 𝑖𝑖
• 𝑅𝑅(𝑇𝑇𝑖𝑖)= risk level of 𝑇𝑇𝑖𝑖
• 𝑉𝑉(𝑇𝑇𝑖𝑖)= vulnerability exposure associated with 𝑇𝑇𝑖𝑖
• 𝐶𝐶(𝑇𝑇𝑖𝑖)= confidence level from threat intelligence
• 𝜃𝜃(𝑇𝑇𝑖𝑖)= computed threat priority score

The overall threat score is: 
𝜃𝜃(𝑇𝑇𝑖𝑖) = 𝛼𝛼 𝑅𝑅(𝑇𝑇𝑖𝑖) + 𝛽𝛽 𝑉𝑉(𝑇𝑇𝑖𝑖) + 𝛾𝛾 𝐶𝐶(𝑇𝑇𝑖𝑖) 

Where: 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ [0,1],𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1 

This score determines prioritization within the Adaptive 
Response Engine. 

Adaptive Defense Response Trigger: Let: 
• 𝜃𝜃𝑐𝑐= critical threat score threshold
• 𝐴𝐴(𝑇𝑇𝑖𝑖)= automated response action triggered for

𝑇𝑇𝑖𝑖
• 𝛿𝛿= system response delay
• 𝛿𝛿max= allowable maximum delay

Response activation condition: 
𝜃𝜃(𝑇𝑇𝑖𝑖) ≥ 𝜃𝜃𝑐𝑐 ⇒ 𝐴𝐴(𝑇𝑇𝑖𝑖) activated with 𝛿𝛿 ≤ 𝛿𝛿max 

Examples of 𝐴𝐴(𝑇𝑇𝑖𝑖): honeypots, decoys, configuration 
shifting, access throttling, micro-segmentation, or 
deceptive routing. 

System Adaptation Feedback Loop: Let: 
• 𝐷𝐷𝑡𝑡= deception or defense configuration at time 𝑡𝑡
• 𝐼𝐼𝑡𝑡= incoming threat intelligence at time 𝑡𝑡
• 𝐹𝐹(⋅)= adaptive strategy update function

Then the update rule is: 
𝐷𝐷𝑡𝑡+1 = 𝐹𝐹(𝐼𝐼𝑡𝑡 ,𝐷𝐷𝑡𝑡) 

This represents a closed-loop defense mechanism where 
new intelligence iteratively improves deception strategy 
and defense posture. 
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System Resilience Index: Let: 
• 𝜏𝜏𝑑𝑑= detection time
• 𝜏𝜏𝑟𝑟= response/mitigation time
• 𝐿𝐿= expected or measured loss/damage
• 𝑅𝑅𝑠𝑠= resilience index

A more standard resilience representation would be: 

𝑅𝑅𝑠𝑠 =
1

(𝜏𝜏𝑑𝑑+𝜏𝜏𝑟𝑟+𝐿𝐿)

Here: 
• lower 𝜏𝜏𝑑𝑑, 𝜏𝜏𝑟𝑟, and 𝐿𝐿 ⇒higher 𝑅𝑅𝑠𝑠
• higher 𝑅𝑅𝑠𝑠 ⇒more resilient system

Depending on the paper’s domain (cyber, ICS, IoT, 6G, 
SDN, etc.), one may also normalize 𝐿𝐿or use: 

𝑅𝑅𝑠𝑠 =
1

1 + 𝜏𝜏𝑑𝑑 + 𝜏𝜏𝑟𝑟 + 𝐿𝐿

to ensure boundedness in [0, 1]. 

3.2 Design of Adaptive Defense 
Mechanisms 

The dynamic capacity of the system to adapt defence 
capabilities to changing units of hazard demonstrates its 
adaptive capability.  This is achieved through the 
following: 

- Machine learning algorithms track and anticipate
threats based upon continuous updates of
intelligence data; this results in the timely
recognition of new trends in attacks.

- Adaptively, based upon the threat environment
that has been studied, the Adaptive Response
Engine alters security policies, modifies network
settings, and alters what deception assets to use.
To enact a shifting target defence, it might adjust
parameters in the system or establish new
honeypots targeted at certain patterns of attack
behaviour.

- The data generated by the ongoing active defence
operations is reintegrated into the threat
intelligence module, which contributes to more
accurate assessments of future threat predictions
and defence responses.

Due to this adaptability, the system will remain resilient 
against advanced and unidentified attacks 

Table 2: Framework Mapping to Research Objectives 

Research 
Objective 

Mapped 
Framework 
Component(s) 

Supporting 
Technologies/Methods 

Develop a 
comprehensive 
integrated 
framework. 

The entire 
framework 
architecture 

Modular design, scalable 
integration 

Design adaptive 
defense 
mechanisms 

Adaptive 
Response 

AI/ML algorithms, 
dynamic reconfiguration 

Research 
Objective 

Mapped 
Framework 
Component(s) 

Supporting 
Technologies/Methods 

Engine, Active 
Defense 

Evaluate the 
effectiveness in 
real-world 
scenarios. 

Evaluation Layer 
(Testbed, Metrics 
Capture) 

Simulated attacks, threat 
models, and benchmarks 

Table 2 shows the particular components of the framework 
the study objectives fall. The path of development of the 
system and adaptive behaviour design appropriately leads 
to evaluation under simulated experiences within the 
framework that demonstrates the purposefulness of the 
development about a study objective. 
Direct mapping of the framework to each study objective 
ensures consistent methodological alignment from design 
step to evaluation. 
Adaptive Defense Adjustment: Let: 

• Dt = Defense configuration at time t
• Tt = Current threat vector at time t
• It = Real-time threat intelligence at time t
• F (Tt, It) = Function that adapts defense strategy

based on threat and intelligence
• ΔDt = Change in defense configuration at time t
• θ = Adaptation threshold (minimum change

required to trigger adjustment)
Then: 

         ΔDt=F(Tt,It), if ΔDt≥θ  
Where F (Tt, It) could be any combination of algorithms 
(e.g., decision trees, reinforcement learning) used to adapt 
the defense configuration. • Equation 1 models, using real-
time intelligence and threat data, the decision-making 
process of the adaptive system. It clarifies how 
dynamically defence systems change in response to 
projected or discovered new threats. 
The equation models the adaptive capacity of the 
framework to change defence configurations depending on 
changing attack paths and arriving threat intelligence. The 
system starts a fresh defence adjustment if the change 
ΔDt—that is, the reconfiguration—exceeds the specified 
threshold F (Tt, It) will explain how the system recalculates 
parameters, including updating honeypot settings or 
modifying system behaviours to counter a discovered 
attack.  
Threat Anticipation and Adaptation through Machine 
Learning: Let: 

• P(Tt) = Probability of threat Tt occurring
(predicted by machine learning model)

• Dnew = New defense configuration based on
predicted threat

• A(P(Tt)) = Action taken based on predicted threat
probability (i.e., deploy new defense
mechanisms)

Then: 
P(Tt)=ML Model(It), if P(Tt)≥α, Dnew=A(P(Tt))  
Where α is the prediction confidence threshold. This 
formula ties adaptive defensive options to threat prediction 
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based on machine learning. Using machine learning 
models, the system estimates the likelihood of an attack 
P(T); if P(T) > α, the system will respond in a dynamic 
manner (for example, change network settings or create 
new honeypots). Using this proactive strategy, the defence 
system may see and prepare itself for new attack plans. In 
equation 2, machine learning conserves risks and adapts 
defensive plans in response to those predictions. 
Continually learning from new data assists in highlighting 
the adaptability of the system. 

3.3 Evaluation of Framework Effectiveness 

We validate the suggested approach by means of 
comprehensive assessments under both real-world and 
simulated cyber-attack environments. The evaluation 
process consists of:  

Measuring detection accuracy, response time, attacker 
dwell time reduction, and false positive/negative rates from 
performance metrics.  Deploying the framework in 
controlled environments, imitating common and advanced 
persistent threat (APT) attacks, helps to observe adaptive 
behaviour and defence efficacy under scenario-based 
testing.  Testing framework performance inside several IT 
systems and its compatibility with current security 
technologies helps to determine scalability and integration 
assessment.  Including qualitative comments from 
cybersecurity experts helps one evaluate usability and 
practical value. 

Table 3: Evaluation Metrics for System Performance 

Metric Measurement Approach Desired
Outcome 

Threat 
Detection 
Rate 

% of successfully 
identified threats in test 
scenarios 

> 90%

False Positive 
Rate 

% of benign events 
incorrectly flagged < 5% 

Adaptive 
Response 
Time 

Time taken to modify the 
defense upon detecting a 
new threat 

< 2 seconds 

System 
Overhead 

CPU/Memory load added 
by defense modules ≤ 15% 

Resilience 
Score 

Time and impact required 
for recovery post-
simulated attack 

Short recovery 
time; minimal 
data loss 

Table 3 shows the evaluation criteria to be applied in 
assessing the performance of the framework. Under 
reasonable cyberattack scenarios, metrics including 
detection rate, response time, false positives, and system 
overhead offer a quantitative basis for verifying the 
efficiency and effectiveness of the proposed solution. The 
framework will be evaluated using comprehensive and 

quantifiable metrics, ensuring a balanced trade-off between 
detection efficiency, system performance, and operational 
impact. 
Threat Detection Rate: Let: 

• Detected = Number of detected threats
• Dtotal = Total number of threats in the test

environment
• TDR = Threat Detection Rate (percentage)

Then, the Threat Detection Rate is calculated as: 
          TDR (Ddetected Dtotal) ×100  
This formula computes, from the total number of hazards 
in the test environment, the proportion of threats found. A 
better system for spotting and reducing possible hazards is 
indicated by a higher detection rate.  
Let: 

• FP = Number of false positives (benign events
incorrectly flagged as threats)

• Ttotal = Total number of events processed by the
system (both benign and malicious)

• FPR = False Positive Rate (percentage)
Then, the False Positive Rate is calculated as: 
          FPR=(FPTtotal)×100  
This equation finds the proportion of innocuous events that 
are wrongly identified as threats. A smaller false positive 
rate guarantees that the system does not overload managers 
with pointless alarms and lightens their workload.  
Let: 

• ΔTresponse = Time taken by the system to
modify its defense upon detecting a new
threat (in seconds)

• ARTARTART = Adaptive Response Time
(in seconds)

Then, the Adaptive Response Time is given by: 
ART=ΔTresponse where ART≤2 seconds  

This statistic gauges the system's fast adaptation of its 
defence upon fresh threat identification. A smaller 
response time points to a more agile and effective defence 
mechanism.  
Let: 

• Recovery = Time taken for the system to recover
post-attack (in seconds)

• Limpact = Severity of the attack (quantified as data
loss or system downtime)

• RSRSRS = Resilience Score (higher is better)
Then, the Resilience Score can be calculated as: 

     RS=Trecovery+Limpact1 
Combining impact with recovery time, this equation 
reflects the robustness of the system. A higher resilience 
score indicates a system able to rapidly recover and 
minimise the consequences of an attack, causing little 
damage. The following is the proposed Proactive Cyber 
Defense Framework algorithm. 

Algorithm 1: Proactive Cyber Defense Framework 
Input: 

• Internal system logs, network and host activity,
sensor data
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• External cyber threat intelligence (CTI) feeds
(IoCs, TTPs, indicators)

• Predefined thresholds: 𝜃𝜃𝑐𝑐 ,𝛼𝛼, 𝛿𝛿max
Output:

• Adaptive defense responses
• Updated deception and mitigation strategies
• System resilience metrics

Step 1: Initialization 
1. Load defense configuration parameters.
2. Set operating thresholds:

o Threat score threshold 𝜃𝜃𝑐𝑐
o ML-based threat prediction threshold 𝛼𝛼
o Adaptation threshold 𝜃𝜃
o Maximum response delay 𝛿𝛿max

Step 2: Continuous Threat Monitoring 
3. Collect internal and external threat data,

including:
o Network activity, logs, host behavior
o CTI feeds (e.g., STIX/TAXII,

ATT&CK-based indicators)
4. Preprocess data (normalization, filtering, feature

extraction).
Step 3: Threat Score Computation 

For each detected threat instance 𝑇𝑇𝑖𝑖: 
5. Compute:

o 𝑅𝑅(𝑇𝑇𝑖𝑖): risk level
o 𝑉𝑉(𝑇𝑇𝑖𝑖): vulnerability exposure
o 𝐶𝐶(𝑇𝑇𝑖𝑖): confidence score from CTI

6. Calculate threat score:
𝜃𝜃(𝑇𝑇𝑖𝑖) = 𝛼𝛼𝛼𝛼(𝑇𝑇𝑖𝑖) + 𝛽𝛽𝛽𝛽(𝑇𝑇𝑖𝑖) + 𝛾𝛾𝛾𝛾(𝑇𝑇𝑖𝑖),𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾

= 1 
Step 4: Threat Prediction via Machine Learning 

7. Input threat intelligence to ML model:
𝑃𝑃(𝑇𝑇𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐼𝐼𝑡𝑡) 

8. If 𝑃𝑃(𝑇𝑇𝑡𝑡) ≥ 𝛼𝛼:
o Generate adaptive defense adjustment:

𝐷𝐷new = 𝐴𝐴(𝑃𝑃(𝑇𝑇𝑡𝑡)) 
Step 5: Adaptive Response Trigger 

9. If 𝜃𝜃(𝑇𝑇𝑖𝑖) ≥ 𝜃𝜃𝑐𝑐:
o Activate response 𝐴𝐴(𝑇𝑇𝑖𝑖)with:

𝛿𝛿 ≤ 𝛿𝛿max 
10. Log and track triggered response(s).

Step 6: Update Deception Strategies 
11. Update deception strategy using:

𝐷𝐷𝑡𝑡+1 = 𝐹𝐹(𝐼𝐼𝑡𝑡 ,𝐷𝐷𝑡𝑡) 
12. Deploy or reconfigure decoys, honeypots, or

Moving Target Defense (MTD).
Step 7: Feedback Loop & Learning 

13. Feed response outcomes and new data to:
• Threat Intelligence Module
• ML model (for retraining / fine-tuning)
• Deception configuration module

Step 8: Evaluation & Metrics Logging 
14. Compute system performance metrics:

• Threat Detection Rate (TDR)
• False Positive Rate (FPR)
• Adaptive Response Time (ART)
• Resilience Score 𝑅𝑅𝑠𝑠

Step 9: Continuous Loop 
15. Return to Step 2 for ongoing monitoring and

adaptation.
Go to Step 2 (continuous monitoring loop)

From threat data collecting and analysis to adaptive 
reaction and system learning, Figure 2 shows the 
consecutive actions of the proactive cyber defence 
framework. It emphasises the real-time interplay among 
dynamic defence modification, machine learning, and 
threat intelligence. 

Figure 2: Flowchart of the Proactive Cyber Defense 
Framework Algorithm 

4. Results

The simulation results are explained in this section, and
they cover the main aspects such as 

• Proactive Detection and Preventive Offense (early
threat visibility, prevention rate)

• Adaptive Systems with Machine Learning
(response time, adaptability)

• System Resilience (recovery time, attack impact)
• Operational Performance (automation, system

overhead)
• Scalability and Integration (compatibility,

deployment time)
These benchmarks offer a clear, fact-based means to 
confirm the success, efficiency, and scalability of your 
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system across several real-world and simulated attack 
environments. 

Figure 3: Outcome Visualization of Cybersecurity 
Framework Simulation 

Four key findings from the simulation study are shown in 
Figure 3. It emphasizes the resilience of the system, 
adaptive machine learning response to changing 
environments, and proactive formation of environment-
aware alerts. Low overhead in the system and automation 
support also contribute to visualized operational 
performance. These images, in total together demonstrate 
the real-time effectiveness and reliability of the system. 

4.1 Preventive Offence 

The framework seeks to move cybersecurity methods from 
reactive responses to proactive defence systems. Early 
indicators of malicious behaviour will be able to be 
detected by the system by combining real-time threat data 
with active defence mechanisms, including deception and 
changing target tactics. This anticipatory capacity helps the 
system to act pre-emptively, therefore upsetting danger 
actors before they can effectively use system weaknesses. 
Proactive detection improves threat visibility over the 
network environment, lowers dwell time, and minimizes 
the window of exposure. 

Table 4: Proactive Detection and Preventive Offense 

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Threat 
Visibility 

% of threats 
detected 
before 
exploitation 

> 90% 93% High 

Dwell Time 

Average time 
from attack 
initiation to 
detection 

< 15
minutes 10 minutes Excellent

Exposure 
Window 

The average 
time an 
attacker has 
access to the 
system 

< 30
minutes 20 minutes Excellent

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Attack 
Surface 
Complexity 

Increase in 
complexity 
due to active 
defenses 

High
complexity Very high Improved

Prevention 
Success 
Rate 

% of attacks 
prevented 
before 
exploitation 

> 80% 85% Successful 

Table 4 shows how proactive defence techniques enhanced 
the preventative offence metrics threat visibility, dwell 
time, and exposure window. The simulation results show 
that early in the attack lifetime, the system effectively 
detects and stops assaults. 

Figure 4: Simulation Results vs. Desired Outcomes 

 After evaluating the suggested cybersecurity framework 
against simulation results, there was a very good alignment 
to the desired outcomes across every performance goal, as 
shown in Figure 4. The system achieved a 93% threat 
visibility rate, outperforming the 90% goal, demonstrating 
superior early threat detection ability. Dwell time shrank to 
10 minutes and the exposure time to 20 minutes, below the 
intended thresholds of 15 and 30 minutes, respectively, 
showing quick detection and effective containment. The 
attacker surface complexity resulted in a “very high” 
rating, exceeding expectations, and demonstrating that our 
dynamic operations (deception and moving target 
syntheses) present enough of a challenge that an annotator 
could not demonstrate an improved chance of success. 
Finally, the framework achieved an 85% prevention 
effectiveness rating compared to the intended 80% target, 
closing out our efficiency expectations in stopping threats 
before harm. Overall, the framework's simulation results 
illuminated its preemptive, adaptive assertions and 
indicated a quantifiable enhancement in resilience, 
visibility, and response time in comparison to the 
traditional methodologies. 

4.2 Adaptive Systems of Thought 

 One of the key innovations with this framework is its 
ability to change its defence posture dynamically based on 

EAI Endorsed Transactions on 
Security and Safety 
| Volume 9 | 2025 | 



 Dhaya R., Kanthavel R. 

8 

shifting hazards. The framework continuously assesses 
threat data via machine learning models, behaviour-based 
analytics, and uses this information to inform new policy, 
new network designs, and manipulated/decoy deployment. 
The framework allows the system to grow once real-time 
data is available, rather than depending on stale rules or 
signatures, so that it reflects the adaptability of 
contemporary cyber adversaries. This self-healing aspect 
of the framework allows the system to be highly effective 
even in the face of advanced persistent threats (APTs) and 
zero-day threats. 

Table 5: Adaptive Defense System Performance 

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Adaptive 
Response 
Time 

Time taken to 
adjust the 
defense 
strategy 

< 2 
seconds 1.8 seconds Excellent

Machine 
Learning 
Accuracy 

Accuracy of 
threat 
detection and 
response 

> 95% 97% Excellent 

Policy 
Modification 
Rate 

The rate of 
defense 
policy 
changes after 
threats 

Adaptive 
behavior 

Rapid
modifications High

Deception 
Deployment 

% of 
successful 
decoys 
deployed 
post-threat 
detection 

> 85% 90% Successful 

Real-time 
Adaptation 

Ability of the 
system to 
modify 
defense 
strategies in 
real-time 

> 90% 93% High 

Table 5 shows the real-time function of the adaptive 
defence systems. The dynamic and responsive character of 
the system is shown by its capacity to change its defence 
posture in under two seconds, great machine learning 
accuracy, and efficient deployment of deception. 

Figure 5: Adaptive Defense System Performance 

The simulation evaluation results from the adaptive 
processes incorporated in the designed cybersecurity 
framework produced strong results for all metrics 
evaluated, as illustrated in Figure 5, which exceeded the 
defined desired outcome when possible. The adaptive 
response time was measured at 1.8 seconds, which is below 
the desired goal of less than 2 seconds, and justifies the 
technology's ability to reconfigure its defenses during 
threat situations. The outcomes of the Machine Learning 
system's accuracy were 97% as applied to threats it 
detected and reacted to, which exceeds the defined goal of 
95%, indicating an accurate and reliable AI-based 
analytical process. The metrics for adaptive strategy policy 
modification indicate that there were rapid and several 
responses and updates for most, if not all, threats 
considered, indicating good adaptive processes. For 
deceiving behavior, the successful use of decoys after the 
detected threats had a success rate of 90%, which exceeded 
the desired goal of 85%, indicating effective deception for 
misdirecting threats. Lastly, the framework had a capacity 
for a 93% real-time adaptive strategy, which exceeded the 
conceptual goal of a minimum of 90%, indicating the 
innate ability of the framework to make immediate updates 
when changes in the threat occurred. Overall, these results 
validate the strength of the framework for maintaining 
resiliency and adaptability. 

4.3 Improved Vulnerability 

The power of a system to contain and recover from events 
with little disturbance defines resilience not only by its 
capacity to prevent breaches but also by this aspect. Active 
deception combined with adaptive response systems will 
help to separate hostile activities, slow down attacker 
progress, and protect core system integrity. Furthermore, 
the feedback loop of the architecture always includes fresh 
danger insights into its intelligence module, thereby 
improving future reactions and increasing the 
organisational resilience over time. This produces a 
security architecture that improves continuity of operations 
following a cyber event by being both responsive and self-
reinforcing, hence lowering recovery times. 

Table 6:  System Resilience and Recovery 

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Recovery 
Time 

Time taken to 
recover from 
a simulated 
attack 

< 5 
minutes 4 minutes Excellent

Impact of 
Attack 

Average data 
loss or 
system 
damage from 
the attack 

Minimal 
damage 

Negligible 
(0.5%) Excellent 

Resilience 
Score 

Recovery 
efficiency 

High 
resilience 95% Very High 
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Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

considering 
time and 
impact 

System 
Integrity 
Maintenance 

Ability to 
maintain 
system 
integrity 
post-attack 

100% 100% Excellent 

Self-
learning 
Feedback 

Rate of 
improvement 
in system 
response 
post-attack 

High Rapid
improvement Positive

Table 6 emphasises how strong the system is following an 
attack. Important indicators of the framework's fast 
recovery from assaults, thereby reducing data loss and 
guaranteeing continuous system functioning, are recovery 
time, attack impact, and system integrity. The mechanism 
of self-learning guarantees that the system develops across 
time.  

Figure 6: System Resilience and Recovery 

The simulation results for system resilience and recovery 
assist in supporting the value of the cybersecurity 
framework suggested in reducing impacts and recovering 
from cyber disruption, as shown in Figure 6. The system 
recovered in 4 minutes to return to normal operations, 
brightly exceeding the 5-minute recovery target, and 
demonstrating it could conduct operations without further 
delay after conducting the response steps to recover its 
form of functional operation. The attack damage was also 
assessed to be small, estimating only 0.5% damage, which 
coincided with the criterion of maximum damage to system 
operational capacity. The resilience score was 95%, which, 
encompassing speed of recovery and damage, suggests 
very high overall resilience. Furthermore, the system 
maintained a high degree of full integrity after attack 
recovery, scoring 100% for functionality and data integrity 
following the attack. Finally, the framework was able to 
show a rapid self-learning feedback response, indicating 
improvements in strategy after each incident, which 

collectively supports the proposition of a fully adaptable 
and intelligent framework. Ultimately, the results suggest 
the proposed framework can protect against threats 
effectively but can recover in the most efficient manner 
possible, while maintaining continuity and integrity, even 
within a high-paced risk environment. 

Impact of the attack: 0.5% - no impact to data or system 
integrity projected. The 95% recovery effective score of 
resilience is high. Complete (100%), the integrity of the 
system after the attack is preserved. The rapid 
improvement of systems due to the attack indicates the 
adaptive learning attributes of the systems. These 
indicators demonstrate the ability of the cyber system to 
mitigate impact, provide resilience, and self-improve over 
time. 

4.4 Operational Performance 

By automating multiple aspects of threat identification and 
remediation, the framework may help ease the burden on 
human analysts. Both automated decisions and rapid threat 
intelligence processing will assist in saving time and effort 
for incident analysis, planning the response, and taking 
remedial action. This allows security teams to focus on 
high-priority tasks as the automated system will 
independently deal with lower-level or routine decisions. 

Table 7: Operational Performance and Efficiency 

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Automation 
Efficiency 

% of decisions 
automated 
without 
human 
intervention 

> 75% 78% Excellent 

Incident 
Analysis 
Speed 

Time taken for 
automated 
analysis 

< 3 
minutes 

2.5
minutes Excellent

Manual 
Intervention 
Rate 

% of incidents 
requiring 
human 
intervention 

< 15% 12% Low 

System 
Overhead 

CPU/Memory 
usage added 
by active 
defense 
modules 

≤ 15% 12% Efficient 

User 
Feedback 
on Usability 

User 
satisfaction 
with system 
usability 

> 80% 
satisfaction 85% High 

Table 7 assesses operational performance covering system 
overhead, decision-making process automation, and user 
comments. The technology lets security teams concentrate 
on important activities since it shows great automation 
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efficiency with minimal requirements for manual 
intervention. The system overhead stays inside reasonable 
bounds. 
The operational performance and efficiency assessment of 
the proposed cybersecurity framework yielded uniformly 
positive results in all significant metrics, as shown in 
Figure 7. Automation efficiency was at a measurable 78%, 
comfortably above the 75% target, which indicates the 
extent to which the framework can automate decisions and 
actions autonomously from a human operator. The speed 
of automated incident analysis was evaluated at 2.5 
minutes, well within the 3-minute goal, demonstrating that 
the framework evaluated threats and responded promptly. 
There were no incidents in which the human operator was 
required to intervene in more than 15% of the incidents, 
which reflects the degree of automation that was effective 
in reducing any human work effort. The CPU/memory 
overhead of the system was only at 12%, well within the 
15% efficiency limit, indicating that there was little cost in 
implementing the active defense function. Finally, user 
input on the usability of the framework was good, with 
85% (more than 80%) classifying the technology and 
function as satisfactory, demonstrating that the framework 
design shows promise for usable technology for people 
who work as security analysts. Together, these results 
confirm that the cybersecurity framework not only operates 
securely but also efficiently with a usable function. 
 

 
 

Figure 7: Operational Performance and Efficiency 

4.5 Scalability and Methodical 
Implementation 

The modular and interoperable design of the framework is 
intended to facilitate seamless integration with a wide 
spectrum of IT systems presently on the market. Its 
flexibility guarantees a fit for a variety of specific 
organizational sizes, industries, and types of risk profiles, 
thus offering a practical solution for mutual benefit 
between small and enterprise-sized organizations. 
Additionally, constant learning in a system will improve 
deployment effectiveness in other systems. 
 

 
 

Table 8: Scalability and Integration 
 

Metric Measurement 
Approach 

Desired 
Outcome 

Simulation 
Result 

Outcome 
Evaluation 

Scalability 

Ability to scale 
across 
different IT 
environments 

High 
scalability 

Seamless 
across all 
environments 

Excellent 

Integration 
with Existing 
Systems 

Compatibility 
with existing 
IT security 
infrastructure 

Fully 
compatible 

Full 
integration 
with legacy 
systems 

Seamless 
integration 

Deployment 
Time 

Time taken for 
system 
deployment 

< 1 hour 45 minutes Quick 

Resource 
Consumption 

Resources 
consumed 
during 
integration 

Minimal 10% resource 
increase Efficient 

Learning Rate 
Post-
Deployment 

Rate of 
improvement 
post-
integration 

Rapid 
improvement 

Immediate 
improvement High 

 
Table 8 shows how successfully the framework fits and 
combines with current systems. The system fits companies 
of different sizes since it is versatile and efficient with low 
resource usage and quick implementation time. 
 

 
Figure 8: Scalability and Integration 

 
All aspects of performance yielded outstanding 
performance in figure 8. The system scaled in various 
environments and fully integrated into the underlying 
legacy infrastructure without encountering any 
compatibility problems. The deployment occurred in just 
45 minutes, which is much faster than the I-hour 
deployment target. Resource utilization was remarkably 
efficient, with just a 10% increase in consumption; which 
was well below the acceptable threshold. Additionally, the 
system also provided immediate improvement through 
rapid post-deployment learning, indicating strong adaptive 
responses. 
Overall, these results confirm that the system has a strong 
potential for real-world deployment. The capability to scale 
and to integrate seamlessly into underlying infrastructure 
provides assurance that it can be implemented in 
heterogeneous organizational environments with minimal 
disruption. The speed of the deployment and the low 
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resource overhead make it highly efficient for operational 
implementation, while the adaptive response to developing 
and dynamic threat landscapes assures continued utility 
and effectiveness. In conclusion, the system is not only nil 
practical, but it is also extremely robust and met critical 
requirements for flexibility and efficiency that enterprises 
are looking for in cybersecurity. 

5. Summary and Contributions 

This paper outlines an integrated cybersecurity framework 
that combines real-time threat intelligence, along with 
active defence tactics, including moving target defence and 
deception technologies, to develop a proactive and flexible 
defence posture. Whereas traditional systems are reactive, 
the proposed architecture assumes the existence of attacks, 
adapts defence techniques in an agile manner, and 
improves across time in dynamic cycles of defence which 
incorporate feedback loops, as well as AI-based analyses.  
This paper makes contributions primarily in three areas:  
• Development of a modular/scalable architecture that 
merges real-time threat data with active defence strategies 
contributes to improvements in situational awareness and 
defensive agility.  
• Adaptive Response Engine: An engine based on machine 
learning, able to visualize and organize dynamic defence 
activities based on real-time threat data, allows for faster, 
automated decision-making.  
• The integration of a feedback system that continually 
updates the threat intelligence module by using the 
experience from active defence encounters provides a 
built-in structure for an iterative-improvement process of 
detecting and responding to attack threats.  
• Evaluation Framework: A structured approach for 
assessing the performance of the system in realistic 
cyberattack scenarios based on criteria including detection 
effectiveness, false positive ratios, reaction latency, etc.  
By demonstrating the potential for active deception and 
threat intelligence to work together to create a truly 
adaptive and proactive defence system, this paper furthers 
the field of intelligent cybersecurity. 

6. Conclusion 

       This paper proposed a new, flexible cybersecurity 
framework that combines real-time threat intelligence with 
more active defence mechanisms such as moving target 
defence and deception technologies, allowing for a 
proactive and stalwart security posture. Adopting a 
dynamic approach through the use of artificial intelligence, 
machine learning, and flexible security measures, the 
proposed system can analyse and react to emerging threats, 
and therefore is able to surpass the customary reactive 
security approaches. The architecture proposed focuses on 
predicting, recognizing, and countering cyber 
vulnerabilities through continuous learning and automatic 

adaptation. The modular systems architecture, with the 
capability to link with existing systems, provides both 
scalability and applicability across many organizational 
contexts. The key intended benefits of the architecture 
include improved resilience to sophisticated attacks, 
prevention of threats ahead of time, and an adaptive system 
of defence capable of constantly evolving in real-time.. The 
framework has many potential benefits, however, there are 
certain aspects of it we would like to further investigate and 
develop. Real-world deployment and validation under real 
conditions are necessary to evaluate performance metrics 
with specific emphasis on detection performance, false-
positive rates, active-response speed, etc. More advanced 
and complex AI models, including deep learning 
architectures and reinforcement learning, may improve the 
depth and speed of threat forecasting. Future work will also 
investigate active threat intelligence sharing across 
enterprises utilising standardised protocols (e.g., 
STIX/TAXII. Incorporating user-centric features like 
interactive dashboards and analyst feedback loops would 
also bring automated responses in line with human 
knowledge and increase general system trust and 
transparency. Overall, the proposed architecture lays the 
groundwork for a shift toward intelligent, automatic, and 
adaptive cybersecurity systems. Ongoing research and 
development will continually enhance this approach and 
maintain its effectiveness against a changing threat 
landscape. 
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