EAI Endorsed Transactions
on Security and Safety Research Article EALEU

Adaptive Deception: Real-Time, AI-Powered
Cybersecurity for Modern Threat Landscapes

Dhaya R!, Kanthavel R"”

!'School of ECE, PNG University of Technology, Lae-411, Papua New Guinea

Abstract

INTRODUCTION: The current volume and sophistication of cyber threats are beyond overshadowing the security
capabilities of traditional reactive security approaches. Herein, we present a new cybersecurity framework that incorporates
real-time threat intelligence with adaptive deception technologies for the proactive defense of digital infrastructures.
OBJECTIVES: The objectives of this research include: (1) develop an Al-driven cybersecurity framework, (2) incorporate
real-time threat intelligence and deception-based active defense approaches, and (3) assess performance in simulated and
real-world cyber-attack scenarios.

METHODS: The proposed cyber-defense framework uses machine learning approaches, automated deception technologies
(e.g., honeypots, moving target defense), and real-time threat intelligence feeds. The framework is constructed in a modular
architecture and tested in simulation environments with real-time attack emulation.

RESULTS: The framework performed with over 93% of threats visible, an adaptive response time < 2 seconds, and < 12%
overhead imposed on the system. The framework achieved > 85% threat prevention, measured long recovery time, and
measured system integrity improvements.

CONCLUSION: The conclusion of this work illustrates that a proactive cybersecurity framework can be achieved through
the integration of Al-enabled adaptive response with real-time threat intelligence. This work represents an advancement
toward intelligent, self-learning systems capable of anticipating and responding to developing cyber threats with minimal
human intervention.
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deception technologies, honeypots, and moving target
defense have become rather successful instruments. These
tactics mislead, confuse, or slow down attackers, therefore
giving defenders useful time to react [3]. Deception
technologies, for instance, build decoy systems or data to

entice attackers, therefore allowing companies to identify
and examine harmful behaviour without revealing sensitive
data or assets [4]. Concurrently, the integration of threat
intelligence has been increasingly important for improving
cybersecurity posture. Threat intelligence is the gathering,
evaluation, and sharing of data on possible or actual
assaults endangering a company. Knowing the strategies,
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1. Introduction

Driven by the rising sophistication and frequency of cyber
threats, which have outperformed conventional security
measures, the cybersecurity scene has changed from
traditional, reactive defence mechanisms to more dynamic
and proactive techniques [1]. Companies today understand
the requirement of adaptive defence systems that can
predict, identify, and react to hazards in real-time [2]. In
this proactive approach, active defence strategies including
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tools, and methods (TTPs) of enemies helps companies to
effectively protect against cyberattacks by means of
preparation [5].

Combining active defence strategies with threat
intelligence produces a synergistic effect that enables a
complete and flexible cybersecurity framework. Deploying
sensible, proactive, and adaptive cybersecurity systems
depends on addressing these difficulties [6]. This work
presents a new framework combining real-time threat
intelligence with active defence techniques. Leveraging
machine learning and artificial intelligence, the system
constantly changes defence measures in response to
developing hazards, hence strengthening organisational
resilience against cyberattacks [7]. Hence, the Research
Objectives of this paper are threefold:

. To create a whole framework combining real-
time threat intelligence with active defence techniques.

. To create dynamic adaptive defence systems
responding to newly developing hazards.

. To assess, in practical settings, the success of the
suggested framework.

2. Literature Review

The evolving picture of cyberthreats demands innovative
defensive measures outside traditional perimeter-based
security systems. Active defensive strategies have attracted
a lot of interest since they are proactive and offer better
protection by confusing or distracting attackers. Two
examples of deception technologies that have been closely
examined for their ability to draw attackers into controlled
environments, thereby enabling the collection of
intelligence and early threat detection, are honeypots and
honeynets [8,9]. These technologies provide intelligence
about attacker behaviours, plans, and approaches without
exposing basic assets.

Moving target defence (MTD) is another well-known
active defence approach that constantly changes system
configurations such as IP addresses, network topologies, or
software platforms, thus increasing attack complexity. This
dynamic adaptation puts adversaries in uncertainty, hence
reducing the window of opportunity for efficient
exploitation [10]. Mostly depending on threat intelligence,
modern cybersecurity enables businesses to more precisely
predict and manage threats. Combining and evaluating
Indicators of Compromise (IoCs), threat actor profiles, and
Tactics, Techniques, and Procedures (TTPs) helps to
improve situational awareness, thereby guiding defence
decisions [11]. Early and relevant intelligence distribution
among businesses helps to improve detection capacities
even further through cooperative sharing systems [12].

Integration of threat intelligence with active defence

systems offers an interesting field of research. This
integration enables adaptive defence, allowing systems to
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dynamically adjust decoys, response actions, and defence
postures based on real-time intelligence inputs [13].
Machine learning and artificial intelligence techniques
support this process by evaluating vast volumes of data,
identifying trends, and projecting potential attacks. Al-
powered threat hunting automates the discovery of
abnormalities and suspicious conduct, hence drastically
reducing response times. Many solutions propose building
powerful cybersecurity systems by combining active
protection with threat intelligence. While some studies
highlight phishing minimisation using integrated detection
and intelligence systems [14], others discuss proactive
cybercrime models employing real-time monitoring and
reaction. These models illustrate the benefits of adaptive,
intelligence-driven defences as well as the challenges,
including system complexity, data accuracy, and the
expertise needed for successful deployment [15].

Recent advances in artificial intelligence and automated
incident response systems further confirm the feasibility of
intelligent adaptive defences. For instance, Al-driven
threat intelligence combined with deception techniques
increases threat hunting efficiency [16], while deep
learning models enable proactive threat detection and
mitigation [17]. Research gaps in seamless integration,
scalability, and evaluation of these frameworks under real-
world conditions still exist, even though Al-enhanced
active defence integrated with threat intelligence can
significantly improve cybersecurity resilience. Future
studies must address these issues to create fully adaptive
and autonomous cybersecurity systems capable of
thwarting ever-evolving adversaries.

3. Methodology

This methodology outlines the development,
construction, and evaluation of a whole cybersecurity
framework that creates real-time threat intelligence with
active defence strategies to generate security-aware,
proactive strategies against new and emerging cyber
threats.

3.1 Designing an Integrated Framework

We provide an entire framework that merges active
defence strategies like deception technologies and moving
target defence with a strong threat intelligence system so
that a holistic security approach can be facilitated. The
framework architecture consists of three primary functions:
The Active Defence Module uses dynamic deception tools
(e.g., honeypots, honeynets, decoy data) and moving target
defence strategies to deceive attackers by increasing attack
surface complexity.

Threat Intelligence continuously ingests, processes, and
analyzes data from internal monitoring systems and
external threat intelligence feeds to produce contextual,
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actionable results such as Indicators of Compromise (IoCs)
and tactical techniques and procedures (TTPs) of attackers.
The Adaptive Engine utilizes artificial intelligence and
machine learning methods to analyze threat intelligence
data and coordinate adaptive alterations to active defence
strategies.

This integrated architecture ensures that real-time threat
intelligence is used to adapt active defence strategies,
which facilitates proactive and informed decision-making.
Three elements integrated create a dynamic wargame
adaptation and continuous self-feedback, and therefore,
meet the call for a coherent action plan.

Table 1: Core Components of the Proposed

Framework
Component o Technologies Primary
Name Description Used Function
Deploys
. deception Mislead
gzg;ese (honeypots, ﬁ?—%}pog’eco attackers,
Module honeynets) and Svs ten’1s Y delay
moving target y intrusion
defenses
Threat S;illleﬁess in te?l?a(} SIEM, CTI Generate real-
Intelligence Yz feeds, ML time  threat
and external . o
Module threat data classifiers insights
Adaptive Dynamically AML models Orchestrate
Response adjusts  defense automated > rapid,  data-
En Ii)ne strategies  based Javbooks driven
J on threat data play responses

Table 1 lists the main elements of the suggested
architecture together with their purposes, underlying
technology, and specific responsibilities in supporting
proactive cybersecurity. Deception, threat intelligence, and
adaptive reaction taken together guarantee a layered,
dynamic defence able to react intelligently to changing
threats.

Figure 1 shows a three-connected module of the
cybersecurity framework. Using moving target defence and
deception, such as honeypots, Active Defence Module
seeks to confuse and slow down attackers. To find dangers,
the Threat Intelligence Module constantly gathers and
examines data from both inside and outside sources. Uses
artificial intelligence and machine learning to instantly
modify defences depending on threat intelligence.
Collectively, they create a dynamic, proactive security
system that real-time detects, responds to, and adapts
against changing cyber threats.

2 EA

/_ Real-time Threat \

Intelligence with
Active Defense

Active Defense Threat Intelligence
Module mModule
1
Adaptive
Response Engine
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Figure 1: Integrated Cybersecurity Framework with
Real-Time Threat Intelligence and Active Defense

We define the proactive defense framework through four
components: (1) Threat Scoring, (2) Adaptive Response
Triggering, (3) System Adaptation Feedback, and (4)
System Resilience Index.
Threat Score Calculation: Let:
e  T;=threat instance i
e R(T;)=risk level of T;
e  V(T;)= vulnerability exposure associated with T;
e  ((T;)= confidence level from threat intelligence
e  O(T;)= computed threat priority score
The overall threat score is:
0(T;) = aR(Ty) + BV(T;) +v C(T)

Where: a,8,y € [0,1,a+B+y =1

This score determines prioritization within the Adaptive
Response Engine.

Adaptive Defense Response Trigger: Let:
e .= critical threat score threshold
e A(T;)= automated response action triggered for
T;
e  §=system response delay
® O allowable maximum delay
Response activation condition:
0(T;) = 8, = A(T;) activated with § < 6.k

Examples of A(T;): honeypots, decoys, configuration
shifting, access throttling, micro-segmentation, or
deceptive routing.

System Adaptation Feedback Loop: Let:
e D,=deception or defense configuration at time ¢
e [,=incoming threat intelligence at time t
e  F(-)=adaptive strategy update function
Then the update rule is:
Dy1 = F(lt, Dy)

This represents a closed-loop defense mechanism where
new intelligence iteratively improves deception strategy
and defense posture.
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System Resilience Index: Let:
e 7,=detection time
e T,=response/mitigation time
e L= expected or measured loss/damage
e R,=resilience index
A more standard resilience representation would be:
1

Ry=——
$ (tg+1,+L)

Here:

e lower 74, 7, and L =higher R,

e higher Ry =more resilient system
Depending on the paper’s domain (cyber, ICS, IoT, 6G,
SDN, etc.), one may also normalize Lor use:

1
RR=—
S ol+tgtT,+L

to ensure boundedness in [0’ 1].

3.2 Design of Adaptive Defense
Mechanisms

The dynamic capacity of the system to adapt defence
capabilities to changing units of hazard demonstrates its
adaptive capability.  This is achieved through the
following:

- Machine learning algorithms track and anticipate
threats based upon continuous updates of
intelligence data; this results in the timely
recognition of new trends in attacks.

- Adaptively, based upon the threat environment
that has been studied, the Adaptive Response
Engine alters security policies, modifies network
settings, and alters what deception assets to use.
To enact a shifting target defence, it might adjust
parameters in the system or establish new
honeypots targeted at certain patterns of attack
behaviour.

- The data generated by the ongoing active defence
operations is reintegrated into the threat
intelligence module, which contributes to more
accurate assessments of future threat predictions
and defence responses.

Due to this adaptability, the system will remain resilient
against advanced and unidentified attacks

Table 2: Framework Mapping to Research Objectives

Research Mapped Supporting
.. Framework .
Objective Technologies/Methods
Component(s)
Develop a .
comprehensive The entire Modular design, scalable
. framework . .
integrated . Integration
architecture
framework.
Design  adaptive . .
defense Adaptive AI/ML algorithms,
. Response dynamic reconfiguration
mechanisms

2 EA

Research gzﬁi ev(viork Supporting

Objective Technologies/Methods
Component(s)
Engine, Active
Defense

Evaluate the Evaluation Layer

effectiveness  in oo Yl Simulated attacks, threat
(Testbed, Metrics

real-world models, and benchmarks

. Capture)
scenarios.

Table 2 shows the particular components of the framework
the study objectives fall. The path of development of the
system and adaptive behaviour design appropriately leads
to evaluation under simulated experiences within the
framework that demonstrates the purposefulness of the
development about a study objective.
Direct mapping of the framework to each study objective
ensures consistent methodological alignment from design
step to evaluation.
Adaptive Defense Adjustment: Let:
* Dt = Defense configuration at time t
*  Tt=Current threat vector at time t
* It =Real-time threat intelligence at time t
* F (Tt, It) = Function that adapts defense strategy
based on threat and intelligence
*  AD;= Change in defense configuration at time t
* 0 = Adaptation threshold (minimum change
required to trigger adjustment)
Then:
AD=F(T L), if AD>6
Where F (Ty, It) could be any combination of algorithms
(e.g., decision trees, reinforcement learning) used to adapt
the defense configuration. * Equation 1 models, using real-
time intelligence and threat data, the decision-making
process of the adaptive system. It -clarifies how
dynamically defence systems change in response to
projected or discovered new threats.
The equation models the adaptive capacity of the
framework to change defence configurations depending on
changing attack paths and arriving threat intelligence. The
system starts a fresh defence adjustment if the change
AD—that is, the reconfiguration—exceeds the specified
threshold F (Tt, It) will explain how the system recalculates
parameters, including updating honeypot settings or
modifying system behaviours to counter a discovered
attack.
Threat Anticipation and Adaptation through Machine
Learning: Let:
* P(T;) = Probability of threat Tt occurring
(predicted by machine learning model)
*  Diew = New defense configuration based on
predicted threat
*  A(P(Ty) = Action taken based on predicted threat
probability  (i.e., deploy new  defense
mechanisms)
Then:
P(Ty)=ML Model(l), if P(T)>a, Dnew=A(P(T}))
Where a is the prediction confidence threshold. This
formula ties adaptive defensive options to threat prediction
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based on machine learning. Using machine learning
models, the system estimates the likelihood of an attack
P(T); if P(T) > a, the system will respond in a dynamic
manner (for example, change network settings or create
new honeypots). Using this proactive strategy, the defence
system may see and prepare itself for new attack plans. In
equation 2, machine learning conserves risks and adapts
defensive plans in response to those predictions.
Continually learning from new data assists in highlighting
the adaptability of the system.

3.3 Evaluation of Framework Effectiveness

We validate the suggested approach by means of
comprehensive assessments under both real-world and
simulated cyber-attack environments. The evaluation
process consists of’

Measuring detection accuracy, response time, attacker
dwell time reduction, and false positive/negative rates from
performance metrics.  Deploying the framework in
controlled environments, imitating common and advanced
persistent threat (APT) attacks, helps to observe adaptive
behaviour and defence efficacy under scenario-based
testing. Testing framework performance inside several IT
systems and its compatibility with current security
technologies helps to determine scalability and integration
assessment. Including qualitative comments from
cybersecurity experts helps one evaluate usability and
practical value.

Table 3: Evaluation Metrics for System Performance

Metric Measurement Approach Desired
Outcome

Threat % of  successfully

Detection identified threats in test > 90%

Rate scenarios

False Positive % of benign events

o
Rate incorrectly flagged <%

Adaptive Time taken to modify the

Response defense upon detecting a <2 seconds
Time new threat

System CPU/Memory load added < 15%
Overhead by defense modules =0
Resilience Time and impact required S..hor.t recovery
Score for recovery post- time; minimal

simulated attack data loss

Table 3 shows the evaluation criteria to be applied in
assessing the performance of the framework. Under
reasonable cyberattack scenarios, metrics including
detection rate, response time, false positives, and system
overhead offer a quantitative basis for verifying the
efficiency and effectiveness of the proposed solution. The
framework will be evaluated using comprehensive and

quantifiable metrics, ensuring a balanced trade-off between
detection efficiency, system performance, and operational
impact.

Threat Detection Rate: Let:

¢ Detected = Number of detected threats

*  Diww = Total number of threats in the test
environment

* TDR = Threat Detection Rate (percentage)

Then, the Threat Detection Rate is calculated as:

TDR (Ddelected Dtotal) X 100
This formula computes, from the total number of hazards
in the test environment, the proportion of threats found. A
better system for spotting and reducing possible hazards is
indicated by a higher detection rate.
Let:

* FP = Number of false positives (benign events
incorrectly flagged as threats)

e T = Total number of events processed by the
system (both benign and malicious)

*  FPR = False Positive Rate (percentage)

Then, the False Positive Rate is calculated as:
FPR=(FPTo)x100

This equation finds the proportion of innocuous events that

are wrongly identified as threats. A smaller false positive

rate guarantees that the system does not overload managers

with pointless alarms and lightens their workload.

Let:

*  ATrsponse = Time taken by the system to
modify its defense upon detecting a new
threat (in seconds)

* ARTARTART = Adaptive Response Time
(in seconds)

Then, the Adaptive Response Time is given by:
ART=AT esponse Where ART<2 seconds

This statistic gauges the system's fast adaptation of its
defence upon fresh threat identification. A smaller
response time points to a more agile and effective defence
mechanism.
Let:
*  Recovery = Time taken for the system to recover
post-attack (in seconds)
*  Limpact = Severity of the attack (quantified as data
loss or system downtime)
*  RSRSRS = Resilience Score (higher is better)
Then, the Resilience Score can be calculated as:
l{S:'1_‘1'6:(:0Very'i_Limpact1
Combining impact with recovery time, this equation
reflects the robustness of the system. A higher resilience
score indicates a system able to rapidly recover and
minimise the consequences of an attack, causing little
damage. The following is the proposed Proactive Cyber
Defense Framework algorithm.

Algorithm 1: Proactive Cyber Defense Framework
Input:
e Internal system logs, network and host activity,
sensor data
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e External cyber threat intelligence (CTI) feeds
(ToCs, TTPs, indicators)
e Predefined thresholds: 6., @, 6 ax
Output:
e Adaptive defense responses
e Updated deception and mitigation strategies
e System resilience metrics
Step 1: Initialization
1. Load defense configuration parameters.
2. Set operating thresholds:
o  Threat score threshold 6,
o ML-based threat prediction threshold a
o Adaptation threshold 6
o Maximum response delay 8y,ax
Step 2: Continuous Threat Monitoring
3. Collect internal and external threat data,
including:
o Network activity, logs, host behavior
o CTI feeds (e.g., STIX/TAXII,
ATT&CK-based indicators)
4. Preprocess data (normalization, filtering, feature
extraction).
Step 3: Threat Score Computation
For each detected threat instance T;:
5. Compute:
o R(T;): risk level
o V(T;): vulnerability exposure
o C(T;): confidence score from CTI
6. Calculate threat score:
0(T;) = aR(T;) + BV(T;) +yC(T),a + B +v
=1
Step 4: Threat Prediction via Machine Learning
7. Input threat intelligence to ML model:
P(T;) = MLModel(l,)
8. IfP(Ty) =z a:
o Generate adaptive defense adjustment:
Dncw = A(P(Tt))
Step 5: Adaptive Response Trigger
9. If6(Ty) = 6,:
o Activate response A(T;)with:
8 < Omax
10. Log and track triggered response(s).
Step 6: Update Deception Strategies
11. Update deception strategy using:
D1 = F(lt, Dy)
12. Deploy or reconfigure decoys, honeypots, or
Moving Target Defense (MTD).
Step 7: Feedback Loop & Learning
13. Feed response outcomes and new data to:
e  Threat Intelligence Module
e ML model (for retraining / fine-tuning)
e  Deception configuration module
Step 8: Evaluation & Metrics Logging
14. Compute system performance metrics:
e  Threat Detection Rate (TDR)
o False Positive Rate (FPR)
e Adaptive Response Time (ART)
e Resilience Score R

2 EA

Step 9: Continuous Loop
15. Return to Step 2 for ongoing monitoring and

adaptation.

Go to Step 2 (continuous monitoring loop)
From threat data collecting and analysis to adaptive
reaction and system learning, Figure 2 shows the
consecutive actions of the proactive cyber defence
framework. It emphasises the real-time interplay among
dynamic defence modification, machine learning, and

threat intelligence.
( st )

‘ {5.:} Step 1: Initialization |

v

EE.’ Step 2: Continuous Threat Monitoring

|;-¢=J’\ Step 3: Threat Score Computation
|

| ;@ Step 4: Threat Prediction via Machine Learning

1

Step 5! No

~ Trigger Adaptive
Response
Yes
[ .
Yy P

Q . Step 7: Feedback | "\ Step 6: Update

Loop & Learning EE Deception Strategies
v !

| _-‘Gj; Step 7: Feedback Step 8: Evaluation
; |

Loop & Learning ﬂmﬂ & Metrics Logging

L Q Step 8: Evaluation & ‘

Metrics Logglng

C( Repeati:onunuously ;l .

Figure 2: Flowchart of the Proactive Cyber Defense
Framework Algorithm

4. Results

The simulation results are explained in this section, and
they cover the main aspects such as
*  Proactive Detection and Preventive Offense (early
threat visibility, prevention rate)
* Adaptive Systems with Machine Learning
(response time, adaptability)
*  System Resilience (recovery time, attack impact)
*  Operational Performance (automation, system
overhead)
* Scalability and Integration (compatibility,
deployment time)
These benchmarks offer a clear, fact-based means to
confirm the success, efficiency, and scalability of your
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system across several real-world and simulated attack
environments.

Proactive Detection Adaptive Systems
& Preventive Offense & Machine Learning

SO T=

Response time
adaptability

Early threat visibility
Prevention rate

System Resilience Operational

~E E

Automation
System overhead

Recovery time
Attack impact

Figure 3: Outcome Visualization of Cybersecurity
Framework Simulation

Four key findings from the simulation study are shown in
Figure 3. It emphasizes the resilience of the system,
adaptive machine learning response to changing
environments, and proactive formation of environment-
aware alerts. Low overhead in the system and automation
support also contribute to visualized operational
performance. These images, in total together demonstrate
the real-time effectiveness and reliability of the system.

4 .1 Preventive Offence

The framework seeks to move cybersecurity methods from
reactive responses to proactive defence systems. Early
indicators of malicious behaviour will be able to be
detected by the system by combining real-time threat data
with active defence mechanisms, including deception and
changing target tactics. This anticipatory capacity helps the
system to act pre-emptively, therefore upsetting danger
actors before they can effectively use system weaknesses.
Proactive detection improves threat visibility over the
network environment, lowers dwell time, and minimizes
the window of exposure.

Table 4: Proactive Detection and Preventive Offense

Measurement Desired Simulation Outcome

Metric Approach Outcome  Result Evaluation

Measurement Desired Simulation Outcome

Metric Approach Outcome  Result Evaluation
Atack e igh
Surface prexity & . Very high Improved
.. duetoactive complexity
Complexity
defenses
. % of attacks
Prevention evented
Success p > 80% 85% Successful
before
Rate o
exploitation

% of threats
Threat detected
Visibility  before

exploitation

>90%  93% High

Average time

from attack <15
initiation to  minutes
detection

Dwell Time 10 minutes Excellent

The average

time an
<
Ex'posure attacker has .30
Window minutes
access to the

system

20 minutes Excellent

2 EA

Table 4 shows how proactive defence techniques enhanced
the preventative offence metrics threat visibility, dwell
time, and exposure window. The simulation results show
that early in the attack lifetime, the system effectively
detects and stops assaults.

Simulation Results vs Desired Outcomes
100

Performance Value

-8~ Desired Outcome
—&— Simulation Result

&

Figure 4: Simulation Results vs. Desired Outcomes

After evaluating the suggested cybersecurity framework
against simulation results, there was a very good alignment
to the desired outcomes across every performance goal, as
shown in Figure 4. The system achieved a 93% threat
visibility rate, outperforming the 90% goal, demonstrating
superior early threat detection ability. Dwell time shrank to
10 minutes and the exposure time to 20 minutes, below the
intended thresholds of 15 and 30 minutes, respectively,
showing quick detection and effective containment. The
attacker surface complexity resulted in a “very high”
rating, exceeding expectations, and demonstrating that our
dynamic operations (deception and moving target
syntheses) present enough of a challenge that an annotator
could not demonstrate an improved chance of success.
Finally, the framework achieved an 85% prevention
effectiveness rating compared to the intended 80% target,
closing out our efficiency expectations in stopping threats
before harm. Overall, the framework's simulation results
illuminated its preemptive, adaptive assertions and
indicated a quantifiable enhancement in resilience,
visibility, and response time in comparison to the
traditional methodologies.

4.2 Adaptive Systems of Thought

One of the key innovations with this framework is its
ability to change its defence posture dynamically based on
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shifting hazards. The framework continuously assesses
threat data via machine learning models, behaviour-based
analytics, and uses this information to inform new policy,
new network designs, and manipulated/decoy deployment.
The framework allows the system to grow once real-time
data is available, rather than depending on stale rules or
signatures, so that it reflects the adaptability of
contemporary cyber adversaries. This self-healing aspect
of the framework allows the system to be highly effective
even in the face of advanced persistent threats (APTs) and
zero-day threats.

Table 5: Adaptive Defense System Performance

Measurement Desired Simulation  Outcome

Metric Approach Outcome Result Evaluation
Adaptive Tlme taken to
adjust  the < 2
Response 1.8 seconds Excellent
. defense seconds
Time
strategy
Machine Qi:;tracy of
Learning . >95% 97% Excellent
detection and
Accuracy
response
The rate of
Policy defense . .
Modification policy Adapt}ve Rapl.d . High
behavior modifications
Rate changes after
threats
% of
successful
Deception ~ decoys o o
>85% 90% Successful
Deployment deployed
post-threat
detection
Ability of the
system to
Real-time  modify ~90%  93% High

Adaptation  defense
strategies in
real-time

Table 5 shows the real-time function of the adaptive
defence systems. The dynamic and responsive character of
the system is shown by its capacity to change its defence
posture in under two seconds, great machine learning
accuracy, and efficient deployment of deception.

Simulation Results vs Desired Outcomes (Adaptive Capabilities)

100 -e= Desired Outcome
—a— Simulation Result

Performance Scale

&

<

o

0052 N ped e Oev\a‘i . 09

« 20® WA
2o 9 ) 06:99 e

e

Figure 5: Adaptive Defense System Performance
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The simulation evaluation results from the adaptive
processes incorporated in the designed cybersecurity
framework produced strong results for all metrics
evaluated, as illustrated in Figure 5, which exceeded the
defined desired outcome when possible. The adaptive
response time was measured at 1.8 seconds, which is below
the desired goal of less than 2 seconds, and justifies the
technology's ability to reconfigure its defenses during
threat situations. The outcomes of the Machine Learning
system's accuracy were 97% as applied to threats it
detected and reacted to, which exceeds the defined goal of
95%, indicating an accurate and reliable Al-based
analytical process. The metrics for adaptive strategy policy
modification indicate that there were rapid and several
responses and updates for most, if not all, threats
considered, indicating good adaptive processes. For
deceiving behavior, the successful use of decoys after the
detected threats had a success rate of 90%, which exceeded
the desired goal of 85%, indicating effective deception for
misdirecting threats. Lastly, the framework had a capacity
for a 93% real-time adaptive strategy, which exceeded the
conceptual goal of a minimum of 90%, indicating the
innate ability of the framework to make immediate updates
when changes in the threat occurred. Overall, these results
validate the strength of the framework for maintaining
resiliency and adaptability.

4.3 Improved Vulnerability

The power of a system to contain and recover from events
with little disturbance defines resilience not only by its
capacity to prevent breaches but also by this aspect. Active
deception combined with adaptive response systems will
help to separate hostile activities, slow down attacker
progress, and protect core system integrity. Furthermore,
the feedback loop of the architecture always includes fresh
danger insights into its intelligence module, thereby
improving future reactions and increasing the
organisational resilience over time. This produces a
security architecture that improves continuity of operations
following a cyber event by being both responsive and self-
reinforcing, hence lowering recovery times.

Table 6: System Resilience and Recovery

Measurement Desired Simulation Outcome

Metric Approach Outcome Result Evaluation

Time taken to

R fi < 5 .
eeovery - recover from 4 minutes Excellent

Time a simulated minutes
attack
Average data
loss or .. . .
Impact  of Minimal Negligible
Attack system damage  (0.5%) Excellent
damage from
the attack
Resilience  Recovery High o .
Score efficiency  resilience 95% Very High
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Measurement Desired Simulation Outcome

Metric Approach Outcome Result Evaluation
considering
time and
impact
Ability  to
System maintain
Integrity system 100% 100% Excellent
Maintenance integrity
post-attack
Rate of
Self—. improvement Rapid N
learning in system High . Positive
1mprovement

Feedback  response
post-attack

Table 6 emphasises how strong the system is following an
attack. Important indicators of the framework's fast
recovery from assaults, thereby reducing data loss and
guaranteeing continuous system functioning, are recovery
time, attack impact, and system integrity. The mechanism
of self-learning guarantees that the system develops across
time.

System Resilience and Recovery: Simulation vs Desired Outcomes

100} -#- Desired Outcome _ —
—=— Simulation Result — ——

Performance Scale

Figure 6: System Resilience and Recovery

The simulation results for system resilience and recovery
assist in supporting the value of the cybersecurity
framework suggested in reducing impacts and recovering
from cyber disruption, as shown in Figure 6. The system
recovered in 4 minutes to return to normal operations,
brightly exceeding the 5-minute recovery target, and
demonstrating it could conduct operations without further
delay after conducting the response steps to recover its
form of functional operation. The attack damage was also
assessed to be small, estimating only 0.5% damage, which
coincided with the criterion of maximum damage to system
operational capacity. The resilience score was 95%, which,
encompassing speed of recovery and damage, suggests
very high overall resilience. Furthermore, the system
maintained a high degree of full integrity after attack
recovery, scoring 100% for functionality and data integrity
following the attack. Finally, the framework was able to
show a rapid self-learning feedback response, indicating
improvements in strategy after each incident, which
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collectively supports the proposition of a fully adaptable
and intelligent framework. Ultimately, the results suggest
the proposed framework can protect against threats
effectively but can recover in the most efficient manner
possible, while maintaining continuity and integrity, even
within a high-paced risk environment.

Impact of the attack: 0.5% - no impact to data or system
integrity projected. The 95% recovery effective score of
resilience is high. Complete (100%), the integrity of the
system after the attack is preserved. The rapid
improvement of systems due to the attack indicates the
adaptive learning attributes of the systems. These
indicators demonstrate the ability of the cyber system to
mitigate impact, provide resilience, and self-improve over
time.

4.4 Operational Performance

By automating multiple aspects of threat identification and
remediation, the framework may help ease the burden on
human analysts. Both automated decisions and rapid threat
intelligence processing will assist in saving time and effort
for incident analysis, planning the response, and taking
remedial action. This allows security teams to focus on
high-priority tasks as the automated system will
independently deal with lower-level or routine decisions.

Table 7: Operational Performance and Efficiency

Measurement Desired Simulation Outcome

Metric Approach Outcome  Result Evaluation
% of decisions
Automation automated
. without >T75% 78% Excellent
Efficiency
human
intervention
Incident Time taken for
. 325
Analysis automated . - Excellent
. minutes minutes
Speed analysis
o .
Manual r/g (ilt; rliIIIICldemS
Intervention . 4 & <15% 12% Low
human
Rate . .
intervention
CPU/Memory
System usage added
Y by active <15%  12% Efficient
Overhead
defense
modules
User User
. . o
Feedback sat isfaction > . 8QA) 85% High
on Usability w1th. . system satisfaction
usability

Table 7 assesses operational performance covering system
overhead, decision-making process automation, and user
comments. The technology lets security teams concentrate
on important activities since it shows great automation
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efficiency with minimal requirements for manual
intervention. The system overhead stays inside reasonable
bounds.

The operational performance and efficiency assessment of
the proposed cybersecurity framework yielded uniformly
positive results in all significant metrics, as shown in
Figure 7. Automation efficiency was at a measurable 78%,
comfortably above the 75% target, which indicates the
extent to which the framework can automate decisions and
actions autonomously from a human operator. The speed
of automated incident analysis was evaluated at 2.5
minutes, well within the 3-minute goal, demonstrating that
the framework evaluated threats and responded promptly.
There were no incidents in which the human operator was
required to intervene in more than 15% of the incidents,
which reflects the degree of automation that was effective
in reducing any human work effort. The CPU/memory
overhead of the system was only at 12%, well within the
15% efficiency limit, indicating that there was little cost in
implementing the active defense function. Finally, user
input on the usability of the framework was good, with
85% (more than 80%) classifying the technology and
function as satisfactory, demonstrating that the framework
design shows promise for usable technology for people
who work as security analysts. Together, these results
confirm that the cybersecurity framework not only operates
securely but also efficiently with a usable function.

Operational Performance and Efficiency: Simulation vs Desired Outcomes
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Figure 7: Operational Performance and Efficiency

4.5 Scalability and Methodical

Implementation

The modular and interoperable design of the framework is
intended to facilitate seamless integration with a wide
spectrum of IT systems presently on the market. Its
flexibility guarantees a fit for a variety of specific
organizational sizes, industries, and types of risk profiles,
thus offering a practical solution for mutual benefit
between small and enterprise-sized organizations.
Additionally, constant learning in a system will improve
deployment effectiveness in other systems.
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Table 8: Scalability and Integration

Metric Measurement Desired Simulation =~ Outcome
Approach Outcome Result Evaluation
aACt;g;Zy to scale High Seamless

Scalability different  IT scalability across all Excellent

. environments
environments
. Compatibility Full

Integration - - . .

. . . with existing Fully integration ~ Seamless

with Existing . . . . .
IT security compatible with  legacy integration

Systems .
infrastructure systems

Deplovment Time taken for

cploy system <1 hour 45 minutes  Quick

Time
deployment
Resources

0,

Resource ) con§umed Minimal }OA; TESOUICe o ¢

Consumption during increase
integration

Learning Rate Rate of . .

Post- improvement Rapid Immediate igh
post- improvement improvement

Deployment . .
integration

Table 8 shows how successfully the framework fits and
combines with current systems. The system fits companies
of different sizes since it is versatile and efficient with low
resource usage and quick implementation time.

Scalability and Integration: Simulation vs Desired Outcomes
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Figure 8: Scalability and Integration
All aspects of performance yielded outstanding

performance in figure 8. The system scaled in various
environments and fully integrated into the underlying
legacy infrastructure  without encountering any
compatibility problems. The deployment occurred in just
45 minutes, which is much faster than the I-hour
deployment target. Resource utilization was remarkably
efficient, with just a 10% increase in consumption; which
was well below the acceptable threshold. Additionally, the
system also provided immediate improvement through
rapid post-deployment learning, indicating strong adaptive
responses.

Overall, these results confirm that the system has a strong
potential for real-world deployment. The capability to scale
and to integrate seamlessly into underlying infrastructure
provides assurance that it can be implemented in
heterogeneous organizational environments with minimal
disruption. The speed of the deployment and the low
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resource overhead make it highly efficient for operational
implementation, while the adaptive response to developing
and dynamic threat landscapes assures continued utility
and effectiveness. In conclusion, the system is not only nil
practical, but it is also extremely robust and met critical
requirements for flexibility and efficiency that enterprises
are looking for in cybersecurity.

5. Summary and Contributions

This paper outlines an integrated cybersecurity framework
that combines real-time threat intelligence, along with
active defence tactics, including moving target defence and
deception technologies, to develop a proactive and flexible
defence posture. Whereas traditional systems are reactive,
the proposed architecture assumes the existence of attacks,
adapts defence techniques in an agile manner, and
improves across time in dynamic cycles of defence which
incorporate feedback loops, as well as Al-based analyses.
This paper makes contributions primarily in three areas:

* Development of a modular/scalable architecture that
merges real-time threat data with active defence strategies
contributes to improvements in situational awareness and
defensive agility.

» Adaptive Response Engine: An engine based on machine
learning, able to visualize and organize dynamic defence
activities based on real-time threat data, allows for faster,
automated decision-making.

* The integration of a feedback system that continually
updates the threat intelligence module by using the
experience from active defence encounters provides a
built-in structure for an iterative-improvement process of
detecting and responding to attack threats.

* Evaluation Framework: A structured approach for
assessing the performance of the system in realistic
cyberattack scenarios based on criteria including detection
effectiveness, false positive ratios, reaction latency, etc.
By demonstrating the potential for active deception and
threat intelligence to work together to create a truly
adaptive and proactive defence system, this paper furthers
the field of intelligent cybersecurity.

6. Conclusion

This paper proposed a new, flexible cybersecurity
framework that combines real-time threat intelligence with
more active defence mechanisms such as moving target
defence and deception technologies, allowing for a
proactive and stalwart security posture. Adopting a
dynamic approach through the use of artificial intelligence,
machine learning, and flexible security measures, the
proposed system can analyse and react to emerging threats,
and therefore is able to surpass the customary reactive
security approaches. The architecture proposed focuses on
predicting,  recognizing, and countering cyber
vulnerabilities through continuous learning and automatic
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adaptation. The modular systems architecture, with the
capability to link with existing systems, provides both
scalability and applicability across many organizational
contexts. The key intended benefits of the architecture
include improved resilience to sophisticated attacks,
prevention of threats ahead of time, and an adaptive system
of defence capable of constantly evolving in real-time.. The
framework has many potential benefits, however, there are
certain aspects of it we would like to further investigate and
develop. Real-world deployment and validation under real
conditions are necessary to evaluate performance metrics
with specific emphasis on detection performance, false-
positive rates, active-response speed, etc. More advanced
and complex Al models, including deep learning
architectures and reinforcement learning, may improve the
depth and speed of threat forecasting. Future work will also
investigate active threat intelligence sharing across
enterprises  utilising standardised protocols (e.g.,
STIX/TAXII. Incorporating user-centric features like
interactive dashboards and analyst feedback loops would
also bring automated responses in line with human
knowledge and increase general system trust and
transparency. Overall, the proposed architecture lays the
groundwork for a shift toward intelligent, automatic, and
adaptive cybersecurity systems. Ongoing research and
development will continually enhance this approach and
maintain its effectiveness against a changing threat
landscape.
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