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Abstract

The growing reliance on Location-Based Services (LBS) has intensified privacy risks, as the continuous collection of]
sensitive user location data exposes individuals to potential re-identification and unauthorised tracking. This paper presents
a hybrid privacy-preserving framework that combines the Diameter-Bounded DBSCAN clustering algorithm for spatial k-
anonymity with an adaptive Laplace mechanism for e-differential privacy. This integration ensures the formation of compact

anonymity groups while maintaining high data utility. Experimental evaluation on the real-world GeoLife dataset
demonstrates 85.1% query accuracy, 0.14 trajectory distortion (EDR), and average query latency below 100 milliseconds
for 20,000 users, outperforming DPPS and AdaptiveGrid baselines. Comprehensive sensitivity analysis of the diameter
threshold (dmax) and evaluation of suppression bias confirm the framework’s robustness, scalability, and practical suitability
for real-time LBS deployment.
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1. Introduction , . . .
To address this challenge, a variety of Privacy-Preserving

Mechanisms (PPMs) have been proposed, broadly falling
into two categories: k-anonymity and differential privacy
(DP). K-anonymity and its variants offer intuitive, group-
based privacy by ensuring that any individual is
indistinguishable from at least k-1 others. However, these
methods often lack formal privacy guarantees. Differential
privacy, conversely, provides a strong, mathematically
rigorous framework for privacy but can significantly degrade
data utility if not carefully implemented, particularly in the

The proliferation of smartphones and IoT devices has fueled
an explosive growth in Location-Based Services (LBS),
which provide users with personalised, context-aware
experiences ranging from navigation and social networking
to targeted advertising and urban planning. The efficacy of
these services, however, is predicated on the collection and
analysis of vast amounts of sensitive user location data. This
practice creates a significant privacy risk, as raw or
inadequately protected location data can be exploited for
unauthorised tracking, behavioural profiling, and even re-
identification poses a direct threat to user safety and
autonomy.

spatial domain.

While recent research has focused on developing hybrid
models that combine these approaches, many existing
solutions suffer from two key drawbacks: they employ

"Corresponding author. Email: gagandeep.singh.1290j@gmail.com

EAI Endorsed Transactions on
Q Security and Safety
1 | Volume 9 | 2025 |


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

G. Singh, A. Gupta

clustering algorithms (like standard DBSCAN) that are
methodologically flawed for ensuring robust k-
anonymity, or they introduce significant computational
complexity, limiting their practical use in real-time systems.

This paper bridges this gap by introducing a practical and
methodologically sound hybrid privacy framework. While
the goal of creating anonymous groups that are both of a
minimum size k and geographically compact is related to the
well-studied r-gather clustering problem, many existing
solutions rely on complex or centralised algorithms
unsuitable for real-time LBS. To bridge this gap, our primary
contribution is a practical and scalable algorithm that uses
an efficient, DBSCAN-based approach to generate these
compact anonymous groups. This method, which we term
Diameter-Bounded DBSCAN, provides a robust spatial k-
anonymity guarantee and is designed for seamless integration
into a hybrid privacy framework. This is integrated with an
adaptive differential privacy mechanism to provide layered,
robust protection.

We validate our framework through a comprehensive
experimental evaluation on the real-world GeoLife
trajectory dataset.
approach not only provides strong privacy guarantees but also
consistently outperforms state-of-the-art baselines in
preserving data utility for complex analytical tasks, such as
hotspot detection and trajectory analysis. The framework is
scalable, efficient, and well-suited for real-world LBS
deployment.

Our results demonstrate that our

2. Related Work

The proliferation of Location-Based Services (LBS) has been
paralleled by the evolution of privacy-preserving
mechanisms designed to protect sensitive spatiotemporal
data. The research landscape is rich, progressing from
foundational anonymisation and cryptographic techniques to
the robust mathematical guarantees of differential privacy
and, more recently, to sophisticated adaptive and hybrid
models. This section provides a structured review of this
evolution, contextualising our work within the current state-
of-the-art.

2.1 Foundational Privacy Models: Anonymity
and Differential Privacy

Early efforts in data privacy centred on anonymisation
techniques. The seminal concept of k-anonymity, introduced
by Sweeney [1] requires that any individual's record in a
released dataset be indistinguishable from at least

k-1 other records based on their quasi-identifiers. While
effective against basic re-identification, k-anonymity and its
(e.g., l-diversity and t-closeness) can be
vulnerable to inference attacks and may degrade data utility,
particularly in high-dimensional datasets.

extensions

A paradigm shift occurred with the introduction of
Differential Privacy (DP) by Dwork et al. [2] et al., which
offers a formal, mathematical guarantee of privacy. DP
ensures that the output of a computation is statistically
insensitive to the presence or absence of any single
individual's data. This is typically achieved by adding
calibrated noise—often from a Laplace distribution—to a
query's result, with the privacy-utility trade-off controlled by
a parameter,

€ (the privacy budget). A smaller € provides stronger privacy
but introduces more noise, and vice-versa. Together, these
foundational models shaped the core trade-offs between
privacy, utility, and scalability in spatial data publishing.

2.2 Adaptation of Privacy Models for Location
Data

The unique geometric nature of location data necessitated
specialised adaptations of these foundational models. While
foundational models like k-anonymity and geo-
indistinguishability laid the groundwork for spatial privacy,
their limitations spurred a new generation of hybrid and
adaptive frameworks.

e Spatial Cloaking for k-Anonymity: The principles
of k-anonymity were first adapted to LBS through
spatial cloaking. The foundational
Gruteser and Grunwald [3] proposed methods to
generalise a user's precise coordinates into a broader
"cloaking region" that includes at least
k users, thereby providing anonymity within that

work by

spatial area. This approach forms the basis for many
anonymisation strategies in LBS.

e  Geo-Indistinguishability for Differential
Privacy: Geo-indistinguishability extends DP to
spatial domains by ensuring indistinguishability
decreases with distance—offering finer control over
location privacy. To apply DP's rigorous guarantees
to spatial data, Andrés et al. [4] introduced geo-
indistinguishability. This model typically adds
two-dimensional Laplace noise to a wuser's

coordinates. A key feature is that the privacy

guarantee is a function of distance; it becomes more
difficult to distinguish between two nearby points

than two distant points, formally capturing the
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intuition that approximate location information is
less sensitive than precise location information.

2.3 The Rise of Hybrid and Adaptive
Frameworks

While foundational methods provide essential building
blocks, they have inherent limitations. K-anonymity lacks
formal privacy guarantees, and standard DP can excessively
degrade utility. Consequently, a significant trend in modern
research (2023-2025) is the development of hybrid and
adaptive frameworks that combine multiple techniques to
achieve a better balance of privacy, utility, and scalability.

e Hybrid "Cluster-then-Perturb" Models: A
common hybrid strategy involves first using a
clustering algorithm to form anonymous groups and
then applying a DP mechanism to the aggregated
data. This approach is conceptually similar to our
own. For instance, Wang et al. [5] propose a

location-clustering algorithm followed by the

addition of Laplace noise to cluster centroids,
demonstrating a practical application of this hybrid
pattern.

e Advanced Hybrid Schemes: The field has
produced increasingly sophisticated hybrid models.
The DPPS scheme by Li et al. [6] combines an
advanced k-anonymity algorithm with a Hidden
Markov Model to protect against correlation attacks
in continuous LBS. Similarly,
LPPS-IKHC by Li et al. [7] integrates an improved k-
anonymity approach with a hybrid cache mechanism for the
Internet of Vehicles (IoV). These works highlight that simply
combining techniques is not novel in itself; the innovation lies
in
how they are combined to address specific threat models like
trajectory correlation.
e Adaptive Budgeting: Another
research thrust is making privacy mechanisms
adaptive. The idea of allocating the privacy budget €
based on data density is a well-established heuristic
for improving the privacy-utility trade-off. Recent

Privacy

work has formalised this in various ways. Kim
[8]introduces a method for adaptive grid partitioning
in real-time during data collection, directly capturing
user distribution to enhance utility.

2 EA
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Ma et al. [9] also propose a framework using a
density- and distance-aware adaptive grid structure
to satisfy DP. These adaptive grid methods are
functionally similar to adaptive noise mechanisms;
one adjusts spatial resolution while the other adjusts
noise levels to achieve the same goal of applying
stronger privacy in sparser, more sensitive areas.

Hybrid and adaptive methods illustrate a broader trend:
tailored privacy protections outperform  monolithic
approaches, especially in LBS environments.

Connection to r-Gather and Constrained Clustering
Approaches

Works on r-gather and constrained-diameter clustering
[10,11] investigate grouping with bounded diameter under
anonymity constraints. These approaches aim to minimize the
maximum intra-cluster distance while ensuring each cluster
contains at least k records. Unlike these methods, the
proposed framework integrates density-aware DBSCAN
initialization with an adaptive differential-privacy layer,
achieving practical scalability and tunable privacy—utility
trade-offs for real-world LBS datasets.

2.4 Advanced Topics and Future Directions

The frontier of location privacy research is also pushing into
more complex areas, including:

e Trajectory and Semantic Privacy: Protecting an
individual's entire movement pattern (trajectory) is
significantly more challenging than protecting a
single point. A rich body of work, surveyed by Jin
et al. [12], focuses on privacy-preserving trajectory
data publishing. Furthermore, researchers are
increasingly focused on protecting.

Location semantics—the meaning or sensitivity of
aplace (e.g., a hospital vs. a coffee shop)—which is
often more revealing than coordinates alone. Yan et
al. [13], for example, propose methods specifically
for preserving location semantic privacy.

e Local and Shuffled Differential Privacy: To
remove the need for a trusted central data
aggregator, Local Differential Privacy (LDP)
perturbs data on the user's device before collection.
While offering stronger trust assumptions, LDP
often requires significantly more data to maintain
utility. A promising middle ground is the
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A shuffled model of DP, where an intermediary
shuffler anonymises user reports before they reach
the aggregator, providing stronger privacy than
centralised DP with better utility than LDP.

These advancements push the frontier of privacy-
preserving analytics but often introduce significant
implementation overhead, reinforcing the need for
practical, deployable alternatives.

2.5 Research Gap and Motivation

This review demonstrates that the field of location privacy is
dynamic and rapidly advancing. While hybrid models
combining k-anonymity and DP are established, and the
principle of adaptive, density-based privacy is well-known, a
gap remains in the rigorous evaluation of practical,
computationally efficient frameworks that integrate these
ideas. While effective, many schemes rely on complex
models (e.g., HMMs, caching), limiting their practical
adoption.

Thus, we introduce a hybrid model—DBSCAN clustering
combined with adaptive Laplace-based DP noise injection—
that is simple, interpretable, and well-suited for deployment
in real-time LBS platforms. Unlike prior approaches that rely
on grid partitioning or trajectory modelling, our method
offers a robust privacy-utility tradeoff while maintaining
scalability and algorithmic clarity.

3. Problem Formulation

The increasing reliance on Location-Based Services (LBS)
introduces critical privacy risks, as user trajectories and real-
time geographic data are often collected, stored, and queried
without sufficient safeguards. This section outlines the core
privacy challenges, describes the system and adversary
models, and formulates the problem addressed by this study.

3.1 System Model

We consider a four-component LBS architecture (Figure 3.1):

e Mobile Users
reports.

generate timestamped location

e Privacy Middleware applies hybrid k-anonymity
and differential-privacy transformations.

e LBS Provider executes spatial queries (e.g., range
queries, density queries, nearest-neighbour).

e External Databases supply auxiliary data (e.g.,
social check-ins, public maps).

Each user report is a tuple

2 EA

li = (xi, yi, ti)li = (xi, yi, ti)
where xi,yixi, and yi are spatial coordinates, and titiis the
timestamp. The aggregated dataset is
D={I11,12, ..., In}.D={11,12,...,In}.
The middleware implements a mechanism.
F:Dxegxk - D'F:DX&exk— D'
and a query interface
R:D’'xQ — Results,R:D’'xQ—Results,
where QQ denotes supported query types.

3.2 Privacy Threat Model

Definition 3.1 (Semi-Honest Adversary).
An adversary AA that correctly follows protocol steps but
inspects all received data and query outputs to infer
additional information.
Adversary Capabilities:

e Access to untransformed reports before the

middleware

e Observation of all aggregated query results

e Auxiliary datasets for record linkage
Attack Types:

e Re-identification: Matching anonymised traces to
auxiliary records

e Trajectory Inference: Predicting future locations
from released outputs

e  Membership Inference: Testing the presence of a
specific user in DD

e Composition Attacks: Exploiting multiple query

releases
Capability Semi-Honest Adversary
Protocol Compliance v

Message Access
Background Knowledge Limited auxiliary
Deviation Capability X

Legitimate only

3.3 Problem Statement

Goal. Design a mechanism F(D, €, k)F (D, ¢, k) that permits
accurate spatial analytics while enforcing both:

1. e-Differential Privacy: For all neighbouring
datasets D, D'D, D’ differing by one record and all
outputs S,

Pr[F(D, e k) € S] < esPr[F(D', g, k) € S].

2. K-Anonymity: Each released record s
indistinguishable from at least k—1k—1 others in its
spatial cluster.
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3. Utility Constraint: Spatial-query
accuracy >85%>85%.

Formally, FF must ensure (&,k)(g,k)-anonymity with minimal
utility loss and support real-time processing for large nn.

3.4 Design Objectives

e  Privacy:Achieve (g, k) (g, k) —anonymity with € €
[0.1,10]¢ € [0.1,10], k = 5k = 5, and spatial
error <50<50 m.

e Adaptability: Dynamically adjust g€ per cluster
based on density §idi.

o Utility Preservation: Maintain >85% accuracy for
range queries and >90% for density estimation.

e  Scalability: Process updates within 100 ms latency
and support >1,000 concurrent users.

3.5 Motivating Example

Dr. Sarah visits an oncology clinic, generating a trajectory.
{(latj, lonj, t))}j = 1m{(latj,lonj, tj)}j = 1m.  Without
protection, adversaries could re-identify her with probability
>0.87 by linking auxiliary check-ins. Even k-anonymity
(k=5) fails under spatial sparsity, yielding inference
confidence >0.73.

Our DPL-Hybrid Solution:
1. Cluster users via DBSCAN, ensuring |Ci|>7.
2. Inject Laplace noise scaled by Ai = f(8i, €).
3. Result: Re-identification probability <0.04, spatial
error <33 m, query accuracy 87%.

Privacy-Preserving LBS Framework

2 (o8

AR

LBS Provider

Mabile Users Privacy Middleware

Trusted
et e . N
| Semi-Trusted Maps
L
[ Untrusted databases

Figure 3.1. System architecture and trust boundaries

4. Proposed Framework

To address the privacy challenges in Location-Based Services
(LBS), we propose a hybrid privacy-preserving framework
that synergistically combines spatial k-anonymity and e-
differential privacy. Our design prioritises methodological
rigour, scalability, and a practical balance between privacy
and utility. The framework operates through a three-stage
pipeline: 1 diameter-bounded spatial clustering to achieve
robust k-anonymity, 2 differentially private query processing
using the Laplace mechanism, and 3 an adaptive privacy
budgeting strategy to dynamically allocate privacy resources
based on data density.

4.1 System Architecture

The proposed framework adopts a modular architecture that
builds upon the system architecture and trust boundaries
illustrated in Figure 3.1.:

o  User Interface Layer: Manages location data input
from users and allows for the configuration of
system-wide privacy parameters (k, ebase).

e Spatial Clustering Module:
enhanced k-anonymity algorithm.

Implements our

e Query Processor: Intercepts spatial queries (e.g.,
count, range) from the LBS application.

e Privacy Engine: The core of the framework,
responsible for applying the Laplace mechanism and
the adaptive privacy budget.

e  Output Handler: Delivers the privatised, high-
utility query results to the LBS provider.

4.2 Stage 1: Diameter-Bounded Spatial
Clustering for k-Anonymity

The first stage of our framework establishes group-based
anonymity. While standard density-based algorithms like
DBSCAN are computationally efficient, they are not
inherently suitable for enforcing a robust definition of spatial
k-anonymity. The transitive nature of DBSCAN's clustering
can result in "snake-like" clusters where two users, despite
being in the same cluster, are so far apart that they are easily
distinguishable, thus violating the principle of anonymity.

To overcome this critical limitation, we introduce a Diameter-
Bounded DBSCAN approach. This method proceeds in two
steps:

e Initial Clustering: We first apply the standard
DBSCAN algorithm to group users based on spatial
proximity, using a minimum group size

min_samples (set to our k-anonymity parameter, k)

and a search radius eps.
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e Diameter Validation and Post-Processing: We then
iterate through each generated cluster and calculate
its spatial diameter—the maximum Euclidean
distance between any two points within that cluster.
A cluster is considered a valid anonymisation set
only if its diameter is below a predefined threshold,
dmax...... Any cluster that exceeds this diameter is
recursively split until all sub-clusters satisfy the
constraint. This split is performed using a
bisectional k-means algorithm (where k=2) on
the points within the oversized cluster. Users in
clusters that fail to meet the minimum size k after
this process, along with initial outliers, are
suppressed to prevent re-identification.

e This two-step process ensures that every user in an
anonymised group is not only part of a sufficiently
large crowd (k) but is also confined to a
geographically compact and meaningful cloaking
region.

4.3 Stage 2: Differentially Private Query
Processing

The second stage provides formal privacy guarantees using
the Laplace mechanism, which satisfies e-differential privacy
by adding calibrated noise to a query's true result. The
mechanism is defined as:

M(q(D)) = q(D) + Laplace(0, eAf)

Where q(D) is the true query output, € is the privacy budget,
and Af is the global sensitivity of the query. The sensitivity
measures the maximum possible change in the query's output
if a single individual's data is added or removed from the
dataset D. For the query types supported by our framework,
we define the sensitivity as follows:

e Count Queries: For a query asking for the number
of users in a region, adding or removing one user can
change the count by at most 1. Therefore, Af = 1.

e Range Queries and Heatmaps: These queries are
also based on user counts within specified spatial
bins or regions. By ensuring that our spatial
aggregation uses a non-overlapping grid, any single
user can only belong to one bin at a time.
Consequently, for these queries, the sensitivity also
remains Af = 1.

4.4 Stage 3: Adaptive Privacy Budgeting

to optimise the privacy-utility trade-off, we implement the

well-established principle of density-based privacy
allocation. We adopt a straightforward and computationally
efficient heuristic that scales the privacy budget linearly with
local data density, thereby allocating stronger protection to
sparser, more vulnerable regions. The adaptive budget,
eadaptive, is calculated as: ...

Our mechanism adjusts a system-wide base privacy budget,
ebase, based on the local user density of the queried region.
The adaptive budget, eadaptive, is calculated as:

eadaptive = ebase X (localmax)
Where:

e plocal is the density of users in the specific region
of the query.

e pmax is a normalisation factor, representing the
maximum observed user density across the entire
dataset.

This formula implements a principled heuristic: it allocates a
smaller, more protective privacy budget (larger noise) to
sparse regions where plocal is low, and a larger, more utility-
preserving budget (smaller noise) to dense regions where
plocal is high. This ensures a more robust and context-aware
application of differential privacy.

4.5 Algorithmic Summary

The complete workflow of the proposed framework for a
given set of user locations and an incoming spatial query is as
follows:

1. Input: A dataset D of user locations, a k-anonymity

parameter k, and a base privacy budget ebase.

2. Clustering: Apply the Diameter-Bounded
DBSCAN algorithm to partition D into valid,
compact anonymous clusters of size = k . Suppress
all users not belonging to a valid cluster.

3. Query Execution: Receive a spatial query (e.g.,
"count users in region R"). Execute the query on the
clustered data to get the true answer, q(D).

4. Adaptive Budget Calculation: Determine the local
user density, plocal, for the query region R.
Calculate eadaptive using the adaptive budgeting
formula.

5. Noise Injection: Compute the noise scale based on
the query's sensitivity (Af = 1) and the calculated
eadaptive. Add Laplace noise to the true answer
q(D) to produce the final privatised result.

6. Output: Return the privatised result to the LBS
application.
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4.6 Formal Privacy Analysis and Sequential
Query Considerations

Our framework composes group-based k-anonymity and &-
differential privacy to provide layered protection. The
Diameter-Bounded DBSCAN stage enforces a group
indistinguishability constraint (each released record belongs
to a cluster of size >k and bounded diameter < dy,ax), which
reduces the effective sensitivity of many spatial queries by
aggregating individuals into compact groups. The Laplace
mechanism is applied to aggregated query outputs with
sensitivity Af = 1 for count-style queries.

Importantly, when multiple queries are issued, the total
privacy loss follows differential-privacy composition
theorems: if queries use budgets €1, €2, ..., & then the
cumulative privacy loss is at most Y& under basic
composition (and lower under advanced composition). In our
adaptive budgeting scheme, we allocate a per-query
¢ _adaptive proportional to local density; cumulative budgets
can therefore be tracked and enforced by the middleware to
ensure a global bound ¢_total per user or per time window.

We emphasise that k-anonymity alone is not a formal privacy
guarantee against probabilistic inference; however, by
applying € — DP after anonymisation, we mitigate residual
linkage risk while retaining practical group semantics for
downstream analytics. The anonymisation stage also bounds
spatial dispersion (dynax), Which helps keep sensitivity and
noise magnitude low in dense regions. For sequential
deployments, we recommend accounting for cumulative € in
the middleware (e.g., via a budget ledger) and enforcing strict
limits per user/time window to preserve formal DP
guarantees.

5. Experimental Setup and Results

This section details the rigorous empirical evaluation of our
proposed hybrid privacy-preserving framework. To validate
its effectiveness, we conducted a series of experiments
designed to assess the privacy-utility trade-off, compare its
performance against state-of-the-art baselines, and measure
its scalability.

5.1 Dataset

To ensure the real-world validity and comparability of our
results, we moved away from synthetic data and conducted
our evaluation on the GeoLife GPS Trajectory Dataset.
This is a widely used public benchmark in the field of location

privacy and mobility mining. The dataset was collected by
Microsoft Research Asia and contains 17,621 trajectories
from 178 users over four years (2007-2011). It covers a total
distance of over 1.2 million kilometres and includes a diverse
range of outdoor movements, making it an ideal testbed for
evaluating LBS privacy mechanisms. For our experiments,
we used a large subset of the data from the Beijing region.

5.2 Baselines for Comparison

To demonstrate the advantages of our proposed framework,
we compare it against four distinct baselines, including two
recent state-of-the-art (SOTA) methods:

1. DPPS (Li et al., 2023): A SOTA hybrid privacy-
preserving scheme that also combines k-anonymity
with a Hidden Markov Model to protect against
trajectory correlation attacks. This serves as a direct
and challenging competitor.

2. AdaptiveGrid (Kim, 2024): A SOTA adaptive
differential privacy scheme that uses adaptive grid
partitioning to improve utility based on user
distribution. This allows for a direct comparison of
our adaptive budgeting mechanism.

3. DP-Only: A standard implementation of centralised
differential privacy using the Laplace mechanism
applied directly to the raw location data without any
k-anonymity preprocessing.

4. K-Anon-Only: An implementation of our novel
Diameter-Bounded DBSCAN clustering algorithm
without the subsequent application of differential
privacy noise.

5.3 Evaluation Metrics

We evaluated the performance of all frameworks using a
comprehensive set of metrics designed to capture different
facets of data utility and system efficiency:

e  Query Accuracy: For region-based count queries,
we measure the accuracy as the relative error
between the noisy result and the true count.

e Trajectory Similarity (EDR): To assess the utility
of the anonymised trajectories themselves, we use
the Edit Distance on Real Sequence (EDR). EDR
is a robust metric for measuring the similarity
between two trajectories, calculating the minimum
number of edits (insertions, deletions) needed to
make them match within a given tolerance. A lower
EDR value signifies higher utility, as the protected
trajectory is closer to the original.
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o Hotspot Detection Utility: A key downstream task
for LBS data is hotspot analysis. We measure the
utility of the protected data for this task by
comparing the hotspots detected from the privatised
data against those from the original data, using the
Fl-score (the harmonic mean of precision and
recall).

e Runtime Efficiency: We measure the average time
required to process a single query to evaluate the
framework's scalability and suitability for real-time
applications.

e Suppression Rate: We measure the percentage of
users discarded from the dataset because they could
not be placed in a valid anonymous group (i.e., a
cluster with size > k). This metric is crucial for
evaluating the framework's potential for systemic
bias and information loss, as a high suppression rate
may indicate that certain types of users (e.g., those
in sparse areas) are systematically excluded from the
analysis.

5.4 Experimental Configuration

All experiments were conducted on a machine with a 3.2 GHz

8-core CPU and 32 GB of RAM. The frameworks were

implemented in Python. Key parameters were set as follows:

e K-Anonymity Parameter (k): Varied from {5, 10,
20}.

e Privacy Budget (€): Varied from {0.1, 0.5, 1.0, 2.0}.

e Diameter-Bounded DBSCAN: The

cluster diameter dmax was set to 500 meters to

maximum

ensure geographically compact cloaking regions.

5.5 Results and Discussion
(a) Comparative Analysis of Privacy-Utility Trade-off

Figure 5.1 presents the core results of our comparative
evaluation. Our proposed hybrid framework consistently
demonstrates a superior balance across all utility metrics
compared to the baselines.

Figura 5.1 - Comaarative Pariormance Analys s
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Figure 5.1. Comparative Performance Analysis
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As shown, our framework achieves a query accuracy of
85.1%, outperforming the SOTA DPPS and AdaptiveGrid
methods. While the k-Anon-Only baseline achieves higher
accuracy, it provides no formal DP guarantees. Crucially, our
model significantly outperforms all other DP-enabled
methods in both Trajectory Similarity (achieving the lowest
EDR) and Hotspot Detection (highest F1-Score). This
indicates that our Diameter-Bounded clustering stage
effectively preserves the underlying structure of the mobility
data before noise is added, leading to higher utility for
complex analytical tasks.

(b) Impact of Privacy Budget (¢) and Anonymity Level (k)

Table 5.1 details the performance of our framework under
varying privacy parameters. As expected, increasing the
privacy budget € leads to higher utility across all metrics, as
less noise is injected. Conversely, increasing the anonymity
parameter k slightly degrades utility, as the initial clustering
becomes more aggressive. However, even at a high
anonymity level of k=20 and a strong privacy budget of € =
0.5, our framework maintains a high Fl-score for hotspot
detection, demonstrating its robustness.

Table 5.1. Performance of the proposed framework
under varying k and ¢ values

k € Query Trajectory Hotspot
Accuracy Similarity F1-Score
(“o) (EDR)

10 0.1 64.2% 0.35 0.61

10 0.5 78.9% 0.21 0.79

10 1.0 85.1% 0.14 0.88

10 2.0 92.3% 0.09 0.94

5 1.0 86.5% 0.12 0.90

20 1.0 83.8% 0.17 0.85

Table 5.2 — Sensitivity of Utility and Suppression to
dmaxd_{max}dmax (k =10, € = 1)

dmax Query Suppression = Avg. Valid
(meters) = Accuracy Rate (%) Cluster
(%) Diameter
(m)

200 79.2% 11.4% 185m

300 82.7% 7.8% 268m

500 85.1% 4.9% 420m

800 83.4% 2.3% 655m
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5.5.1 Sensitivity Analysis for dmax

We evaluated how the cluster-diameter threshold dmax affects
utility and suppression. Experiments were conducted with
dmax € {200,300,500,800} m while keeping all other
parameters fixed (k = 10,& = 1). Table 5.2 summarises
the results (Query Accuracy, Suppression Rate, Average
Valid Cluster Diameter). As expected, smaller dmax values
reduce internal dispersion but raise suppression, whereas
larger values lower suppression yet slightly increase intra-
cluster distances and can weaken indistinguishability. In our
experiments, the default dmax =500m achieved the best
balance between privacy and utility (= 85 % query accuracy
and 4—6% suppression).

(c) Scalability and Runtime Efficiency

Our framework is designed for scalability. The runtime is
dominated by the initial clustering stage, which has a
complexity of O(n log n). As shown in Figure 5.2, the average
query processing time scales efficiently with the number of
users. For a dataset of 20,000 users, the average runtime
remains well under 100 milliseconds, confirming its
suitability for real-time LBS applications. It is notably faster
than the DPPS baseline, which employs a more complex
Markov model.

Figure 5.2 - Runtime Scalability Analysis

Proposed Hybrid
DPPS

120 —x— AdaptiveGrid

100

80

Average Query Processing Time {ms)
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Number of Users

Figure 5.2. Runtime Scalability

5.6 Summary of Results

The empirical evaluation validates the effectiveness of our
proposed framework, yielding the following key results:

e Superior Utility: The hybrid model consistently
outperforms state-of-the-art (SOTA) baselines such
as DPPS and AdaptiveGrid across multiple utility
metrics, including query accuracy, trajectory
similarity, and downstream analytical performance.
These gains demonstrate that the proposed hybrid
approach preserves high analytical accuracy under
strong privacy constraints.

e Methodological Soundness: The results confirm
that the proposed Diameter-Bounded DBSCAN
component effectively preserves the structural
properties of mobility data, leading to higher utility
in complex analytical tasks.

¢ Robustness: The framework demonstrates a stable
and predictable trade-off between privacy and utility
across a wide range of k and ¢ values.

e Scalability: The system is computationally
efficient, with query runtimes that scale linearly with
dataset size, making it practical for real-time
deployment

5.6.1 Outlier Suppression and Geographic Bias
The suppression mechanism removes data points that cannot

form a valid compact cluster of size > k. In our experiments,
the overall suppression rate remained below 6 %, indicating
minimal data loss. However, most suppressed points were
from sparsely populated regions, introducing a mild
geographic bias. Future work may address this by applying
adaptive diameter relaxation or synthetic sampling for low-
density users.

6. Conclusion

This paper introduced a hybrid privacy-preserving
framework for Location-Based Services that integrates
Diameter-Bounded DBSCAN clustering with an adaptive
Laplace differential privacy mechanism. The approach
achieves high data utility while providing strong protection
against re-identification and inference attacks. Experimental
evaluation on the GeoLife dataset demonstrates superior
query accuracy, low trajectory distortion, and sub-100 ms
query latency compared to SOTA baselines. Sensitivity and
bias analyses confirm the framework’s robustness across
varying parameters.

The framework’s modular design and low computational cost
make it suitable for real-time deployment in smart city and
mobility applications.
framework to trajectory-level and semantic location privacy,
exploring adaptive privacy budgeting for continuous LBS
data streams.

Future work will extend this
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6.1 Future Work

Building on the strong foundation of this work, we have
identified two primary directions for future research:

1. Semantic-Aware Privacy Budgeting: Our current
adaptive mechanism is based on user density. A
promising extension is to develop a more
sophisticated budgeting strategy that incorporates
the semantic sensitivity of locations. For example,
locations like hospitals or political offices could be
assigned a higher privacy weight, ensuring that the

Appendix A. Experimental Parameters

This appendix provides the supplementary technical
parameters used for the experimental evaluation to support
reproducibility.

A.1 Key Framework Parameters

e K-Anonymity Parameter (k): The minimum
group size for anonymity was varied across the set
{5, 10, 20}. A value of k=5 was used as a baseline
to guarantee each user is hidden within a group of
at least five others.

e Privacy Budget (¢): The differential privacy
budget was varied across the set {0.1, 0.5, 1.0,
2.0} to analyse the privacy-utility trade-off.

e  Maximum Cluster Diameter (d_max): This was
set to 500 meters to ensure that all generated
anonymised groups are geographically compact
and meaningful.

A.2 Algorithm Parameters

e DBSCAN Search Radius (eps): The spatial
radius for the DBSCAN clustering algorithm was
set to 100 meters. This value was chosen to reflect
typical urban proximity and facilitate the
formation of meaningful clusters.

e DBSCAN Minimum Samples (min_samples):
This was set to the value of the k-anonymity
parameter k for each experimental run.

framework provides even stronger protection where
it is needed most.

2 EA

2. Formal Trajectory-Level Privacy: While our
framework preserves trajectory similarity well, it
does not offer a formal privacy guarantee against
trajectory-wide correlation or re-identification
attacks. Future work will focus on extending the
model to incorporate techniques from the trajectory
privacy literature, such as the use of Hidden Markov
Models or trajectory generalisation, to provide end-
to-end formal privacy for entire movement patterns.

A.3 System Configuration

All experiments were conducted on a machine with a 3.2
GHz 8-core CPU and 32 GB of RAM.

The framework was implemented in Python.

Appendix B. Algorithm Pseudocode

This appendix presents the detailed pseudocode for the
proposed hybrid privacy-preserving framework.

Algorithm B.1: Diameter-Bounded Hybrid
Privacy Framework

k:
Input:

e D: A dataset of raw user locations {li, L, ..., I}

e Q: An incoming spatial query to be answered

e k: The k-anonymity threshold

e ¢ base: The base privacy budget parameter

e d max: The maximum allowed diameter for a
valid cluster

eps_db: The search radius for the DBSCAN
algorithm

Output:

e private result: The differentially private output
for the query Q

Steps:
1. initial_clusters < DBSCAN(D, eps_db,
min_samples=k)
e  Group users based on spatial density
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2. valid_anonymized data «
ValidateAndSplitClusters(initial clusters, k,
d max)

e Iterate through each cluster from Step 1.

e  Check if cluster size is > k.

e  Check if cluster diameter is < d_max.

e  Recursively split any cluster that exceeds d_max
until all sub-clusters satisfy the constraint.

e  Suppress all users in clusters that fail to meet the
size k or are initial outliers.

3. true_result —
ExecuteQuery(valid _anonymized data, Q)

e  Compute the true query result on the now-valid
anonymised data.

4. local_density «—
CalculateDensity(valid anonymized data,
Q.region)

e Determine the local user density for the specific
region of the query.

5. &_adaptive « ¢ base x (local density /
max_density)

e  Adjust the privacy budget based on local user
density to balance privacy and utility.

6. sensitivity < GetQuerySensitivity(Q)

e For count and range queries, sensitivity Af = 1.
7. scale < sensitivity / ¢ _adaptive

e Calculate the scale for the Laplace noise.

8. noise < Laplace(0, scale)

e  Generate calibrated noise from a Laplace
distribution.

9. private_result < true result + noise

e Add noise to the true answer to produce the final
privatised result.

10. Return private_result
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