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Abstract 

The growing reliance on Location-Based Services (LBS) has intensified privacy risks, as the continuous collection of 
sensitive user location data exposes individuals to potential re-identification and unauthorised tracking. This paper presents 
a hybrid privacy-preserving framework that combines the Diameter-Bounded DBSCAN clustering algorithm for spatial k-
anonymity with an adaptive Laplace mechanism for ε-differential privacy. This integration ensures the formation of compact 
anonymity groups while maintaining high data utility. Experimental evaluation on the real-world GeoLife dataset 
demonstrates 85.1% query accuracy, 0.14 trajectory distortion (EDR), and average query latency below 100 milliseconds 
for 20,000 users, outperforming DPPS and AdaptiveGrid baselines. Comprehensive sensitivity analysis of the diameter 
threshold (dmax) and evaluation of suppression bias confirm the framework’s robustness, scalability, and practical suitability 
for real-time LBS deployment. 
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1. Introduction

The proliferation of smartphones and IoT devices has fueled 
an explosive growth in Location-Based Services (LBS), 
which provide users with personalised, context-aware 
experiences ranging from navigation and social networking 
to targeted advertising and urban planning. The efficacy of 
these services, however, is predicated on the collection and 
analysis of vast amounts of sensitive user location data. This 
practice creates a significant privacy risk, as raw or 
inadequately protected location data can be exploited for 
unauthorised tracking, behavioural profiling, and even re-
identification poses a direct threat to user safety and 
autonomy. 

*Corresponding author. Email: gagandeep.singh.1290j@gmail.com 

To address this challenge, a variety of Privacy-Preserving 
Mechanisms (PPMs) have been proposed, broadly falling 
into two categories: k-anonymity and differential privacy 
(DP). K-anonymity and its variants offer intuitive, group-
based privacy by ensuring that any individual is 
indistinguishable from at least k-1 others. However, these 
methods often lack formal privacy guarantees. Differential 
privacy, conversely, provides a strong, mathematically 
rigorous framework for privacy but can significantly degrade 
data utility if not carefully implemented, particularly in the 
spatial domain. 
While recent research has focused on developing hybrid 
models that combine these approaches, many existing 
solutions suffer from two key drawbacks: they employ 
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clustering algorithms (like standard DBSCAN) that are 
methodologically flawed for ensuring robust k-
anonymity, or they introduce significant computational 
complexity, limiting their practical use in real-time systems. 

This paper bridges this gap by introducing a practical and 
methodologically sound hybrid privacy framework. While 
the goal of creating anonymous groups that are both of a 
minimum size k and geographically compact is related to the 
well-studied r-gather clustering problem, many existing 
solutions rely on complex or centralised algorithms 
unsuitable for real-time LBS. To bridge this gap, our primary 
contribution is a practical and scalable algorithm that uses 
an efficient, DBSCAN-based approach to generate these 
compact anonymous groups. This method, which we term 
Diameter-Bounded DBSCAN, provides a robust spatial k-
anonymity guarantee and is designed for seamless integration 
into a hybrid privacy framework. This is integrated with an 
adaptive differential privacy mechanism to provide layered, 
robust protection. 

We validate our framework through a comprehensive 
experimental evaluation on the real-world GeoLife 
trajectory dataset. Our results demonstrate that our 
approach not only provides strong privacy guarantees but also 
consistently outperforms state-of-the-art baselines in 
preserving data utility for complex analytical tasks, such as 
hotspot detection and trajectory analysis. The framework is 
scalable, efficient, and well-suited for real-world LBS 
deployment. 

2. Related Work

The proliferation of Location-Based Services (LBS) has been 
paralleled by the evolution of privacy-preserving 
mechanisms designed to protect sensitive spatiotemporal 
data. The research landscape is rich, progressing from 
foundational anonymisation and cryptographic techniques to 
the robust mathematical guarantees of differential privacy 
and, more recently, to sophisticated adaptive and hybrid 
models. This section provides a structured review of this 
evolution, contextualising our work within the current state-
of-the-art. 

2.1 Foundational Privacy Models: Anonymity 
and Differential Privacy 

Early efforts in data privacy centred on anonymisation 
techniques. The seminal concept of k-anonymity, introduced 
by Sweeney [1] requires that any individual's record in a 
released dataset be indistinguishable from at least    

k-1 other records based on their quasi-identifiers. While
effective against basic re-identification, k-anonymity and its
extensions (e.g., l-diversity and t-closeness) can be
vulnerable to inference attacks and may degrade data utility,
particularly in high-dimensional datasets.

A paradigm shift occurred with the introduction of 
Differential Privacy (DP) by Dwork et al. [2] et al., which 
offers a formal, mathematical guarantee of privacy. DP 
ensures that the output of a computation is statistically 
insensitive to the presence or absence of any single 
individual's data. This is typically achieved by adding 
calibrated noise—often from a Laplace distribution—to a 
query's result, with the privacy-utility trade-off controlled by 
a parameter,    
ϵ (the privacy budget). A smaller ϵ provides stronger privacy 
but introduces more noise, and vice-versa. Together, these 
foundational models shaped the core trade-offs between 
privacy, utility, and scalability in spatial data publishing. 

2.2 Adaptation of Privacy Models for Location 
Data 

The unique geometric nature of location data necessitated 
specialised adaptations of these foundational models. While 
foundational models like k-anonymity and geo-
indistinguishability laid the groundwork for spatial privacy, 
their limitations spurred a new generation of hybrid and 
adaptive frameworks. 

• Spatial Cloaking for k-Anonymity: The principles
of k-anonymity were first adapted to LBS through
spatial cloaking. The foundational work by
Gruteser and Grunwald [3] proposed methods to
generalise a user's precise coordinates into a broader
"cloaking region" that includes at least
k users, thereby providing anonymity within that
spatial area. This approach forms the basis for many
anonymisation strategies in LBS.

• Geo-Indistinguishability for Differential
Privacy: Geo-indistinguishability extends DP to
spatial domains by ensuring indistinguishability
decreases with distance—offering finer control over
location privacy. To apply DP's rigorous guarantees
to spatial data, Andrés et al. [4] introduced geo-
indistinguishability. This model typically adds
two-dimensional Laplace noise to a user's
coordinates. A key feature is that the privacy
guarantee is a function of distance; it becomes more
difficult to distinguish between two nearby points
than two distant points, formally capturing the
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intuition that approximate location information is 
less sensitive than precise location information.    

2.3 The Rise of Hybrid and Adaptive 
Frameworks 

While foundational methods provide essential building 
blocks, they have inherent limitations. K-anonymity lacks 
formal privacy guarantees, and standard DP can excessively 
degrade utility. Consequently, a significant trend in modern 
research (2023–2025) is the development of hybrid and 
adaptive frameworks that combine multiple techniques to 
achieve a better balance of privacy, utility, and scalability. 

• Hybrid "Cluster-then-Perturb" Models: A
common hybrid strategy involves first using a
clustering algorithm to form anonymous groups and
then applying a DP mechanism to the aggregated
data. This approach is conceptually similar to our
own. For instance, Wang et al. [5]  propose a
location-clustering algorithm followed by the
addition of Laplace noise to cluster centroids,
demonstrating a practical application of this hybrid
pattern.

• Advanced Hybrid Schemes: The field has
produced increasingly sophisticated hybrid models.
The DPPS scheme by Li et al. [6] combines an
advanced k-anonymity algorithm with a Hidden
Markov Model to protect against correlation attacks
in continuous LBS. Similarly,

LPPS-IKHC by Li et al.  [7] integrates an improved k-
anonymity approach with a hybrid cache mechanism for the 
Internet of Vehicles (IoV). These works highlight that simply 
combining techniques is not novel in itself; the innovation lies 
in    
how they are combined to address specific threat models like 
trajectory correlation. 

• Adaptive Privacy Budgeting: Another major 
research thrust is making privacy mechanisms 
adaptive. The idea of allocating the privacy budget ϵ 
based on data density is a well-established heuristic 
for improving the privacy-utility trade-off. Recent 
work has formalised this in various ways. Kim 
[8]introduces a method for adaptive grid partitioning 
in real-time during data collection, directly capturing 
user distribution to enhance utility.

Ma et al. [9] also propose a framework using a 
density- and distance-aware adaptive grid structure 
to satisfy DP. These adaptive grid methods are 
functionally similar to adaptive noise mechanisms; 
one adjusts spatial resolution while the other adjusts 
noise levels to achieve the same goal of applying 
stronger privacy in sparser, more sensitive areas.    

Hybrid and adaptive methods illustrate a broader trend: 
tailored privacy protections outperform monolithic 
approaches, especially in LBS environments. 

Connection to r-Gather and Constrained Clustering 
Approaches 
Works on r-gather and constrained‐diameter clustering 
[10,11] investigate grouping with bounded diameter under 
anonymity constraints. These approaches aim to minimize the 
maximum intra-cluster distance while ensuring each cluster 
contains at least k records. Unlike these methods, the 
proposed framework integrates density-aware DBSCAN 
initialization with an adaptive differential-privacy layer, 
achieving practical scalability and tunable privacy–utility 
trade-offs for real-world LBS datasets.  

2.4 Advanced Topics and Future Directions 

The frontier of location privacy research is also pushing into 
more complex areas, including: 

• Trajectory and Semantic Privacy: Protecting an
individual's entire movement pattern (trajectory) is
significantly more challenging than protecting a
single point. A rich body of work, surveyed by Jin
et al. [12], focuses on privacy-preserving trajectory
data publishing. Furthermore, researchers are
increasingly focused on protecting.

Location semantics—the meaning or sensitivity of
a place (e.g., a hospital vs. a coffee shop)—which is
often more revealing than coordinates alone. Yan et
al. [13], for example, propose methods specifically
for preserving location semantic privacy.

• Local and Shuffled Differential Privacy: To
remove the need for a trusted central data
aggregator, Local Differential Privacy (LDP)
perturbs data on the user's device before collection.
While offering stronger trust assumptions, LDP
often requires significantly more data to maintain
utility. A promising middle ground is the
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A shuffled model of DP, where an intermediary 
shuffler anonymises user reports before they reach 
the aggregator, providing stronger privacy than 
centralised DP with better utility than LDP.    

These advancements push the frontier of privacy-
preserving analytics but often introduce significant 
implementation overhead, reinforcing the need for 
practical, deployable alternatives. 

2.5 Research Gap and Motivation 

This review demonstrates that the field of location privacy is 
dynamic and rapidly advancing. While hybrid models 
combining k-anonymity and DP are established, and the 
principle of adaptive, density-based privacy is well-known, a 
gap remains in the rigorous evaluation of practical, 
computationally efficient frameworks that integrate these 
ideas. While effective, many schemes rely on complex 
models (e.g., HMMs, caching), limiting their practical 
adoption.    
Thus, we introduce a hybrid model—DBSCAN clustering 
combined with adaptive Laplace-based DP noise injection—
that is simple, interpretable, and well-suited for deployment 
in real-time LBS platforms. Unlike prior approaches that rely 
on grid partitioning or trajectory modelling, our method 
offers a robust privacy-utility tradeoff while maintaining 
scalability and algorithmic clarity. 

3. Problem Formulation

The increasing reliance on Location-Based Services (LBS) 
introduces critical privacy risks, as user trajectories and real-
time geographic data are often collected, stored, and queried 
without sufficient safeguards. This section outlines the core 
privacy challenges, describes the system and adversary 
models, and formulates the problem addressed by this study. 

3.1 System Model 

We consider a four-component LBS architecture (Figure 3.1): 

• Mobile Users generate timestamped location
reports.

• Privacy Middleware applies hybrid k-anonymity
and differential-privacy transformations.

• LBS Provider executes spatial queries (e.g., range
queries, density queries, nearest-neighbour).

• External Databases supply auxiliary data (e.g.,
social check-ins, public maps).

Each user report is a tuple 

𝒍𝒍𝒍𝒍 = (𝒙𝒙𝒙𝒙,  𝒚𝒚𝒚𝒚,  𝒕𝒕𝒕𝒕)𝒍𝒍𝒍𝒍 = (𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚, 𝒕𝒕𝒕𝒕) 
where xi,yixi, and yi are spatial coordinates, and titi is the 
timestamp. The aggregated dataset is 
D={ l1, l2, …, ln}.D={l1,l2,…,ln}. 
The middleware implements a mechanism. 
𝑭𝑭:𝑫𝑫 × 𝜺𝜺 × 𝒌𝒌   →    𝑫𝑫′𝑭𝑭:𝑫𝑫 × 𝜺𝜺 × 𝒌𝒌 → 𝑫𝑫′ 
and a query interface 
R:D′×Q  →  Results,R:D′×Q→Results, 
where QQ denotes supported query types. 

3.2 Privacy Threat Model 

Definition 3.1 (Semi-Honest Adversary). 
An adversary AA that correctly follows protocol steps but 
inspects all received data and query outputs to infer 
additional information. 
Adversary Capabilities: 

• Access to untransformed reports  before the
middleware

• Observation of all aggregated query results
• Auxiliary datasets for record linkage

Attack Types: 

• Re-identification: Matching anonymised traces to
auxiliary records

• Trajectory Inference: Predicting future locations
from released outputs

• Membership Inference: Testing the presence of a
specific user in DD

• Composition Attacks: Exploiting multiple query
releases

Capability Semi-Honest Adversary 
Protocol Compliance ✔
Message Access Legitimate only 
Background Knowledge Limited auxiliary 
Deviation Capability � 

3.3 Problem Statement 

Goal. Design a mechanism 𝐹𝐹(𝐷𝐷, 𝜀𝜀, 𝑘𝑘)𝐹𝐹(𝐷𝐷, 𝜀𝜀, 𝑘𝑘) that permits 
accurate spatial analytics while enforcing both: 

1. ε-Differential Privacy: For all neighbouring
datasets D, D′D, D′ differing by one record and all
outputs S,
Pr[𝐹𝐹(𝐷𝐷, 𝜀𝜀, 𝑘𝑘) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝑒𝑒 Pr[𝐹𝐹(𝐷𝐷′, 𝜀𝜀, 𝑘𝑘) ∈ 𝑆𝑆].

2. K-Anonymity: Each released record is
indistinguishable from at least k−1k−1 others in its
spatial cluster.
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3. Utility Constraint: Spatial-query
accuracy ≥85%≥85%.

Formally, FF must ensure (ε,k)(ε,k)-anonymity with minimal 
utility loss and support real-time processing for large nn. 

3.4 Design Objectives 

• Privacy:Achieve (𝜀𝜀, 𝑘𝑘)(𝜀𝜀, 𝑘𝑘) −anonymity with 𝜀𝜀 ∈
[0.1,10]𝜀𝜀 ∈ [0.1,10],  𝑘𝑘 ≥ 5𝑘𝑘 ≥ 5, and spatial
error ≤50≤50 m.

• Adaptability: Dynamically adjust εε per cluster
based on density 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿.

• Utility Preservation: Maintain ≥85% accuracy for
range queries and ≥90% for density estimation.

• Scalability: Process updates within 100 ms latency
and support ≥1,000 concurrent users.

3.5 Motivating Example 

Dr. Sarah visits an oncology clinic, generating a trajectory. 
{(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑡𝑡𝑡𝑡)}𝑗𝑗 = 1𝑚𝑚{(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑡𝑡𝑡𝑡)}𝑗𝑗 = 1𝑚𝑚. Without 
protection, adversaries could re-identify her with probability 
≥0.87 by linking auxiliary check-ins. Even k-anonymity 
(k=5) fails under spatial sparsity, yielding inference 
confidence ≥0.73. 

Our DPL-Hybrid Solution: 
1. Cluster users via DBSCAN, ensuring ∣Ci∣≥7.
2. Inject Laplace noise scaled by 𝜆𝜆𝜆𝜆 = 𝑓𝑓(𝛿𝛿𝛿𝛿, 𝜀𝜀).
3. Result: Re-identification probability ≤0.04, spatial

error ≤33 m, query accuracy 87%. 

Figure 3.1. System architecture and trust boundaries 

4. Proposed Framework

To address the privacy challenges in Location-Based Services 
(LBS), we propose a hybrid privacy-preserving framework 
that synergistically combines spatial k-anonymity and ϵ-
differential privacy. Our design prioritises methodological 
rigour, scalability, and a practical balance between privacy 
and utility. The framework operates through a three-stage 
pipeline: 1 diameter-bounded spatial clustering to achieve 
robust k-anonymity, 2 differentially private query processing 
using the Laplace mechanism, and 3 an adaptive privacy 
budgeting strategy to dynamically allocate privacy resources 
based on data density. 

4.1 System Architecture 

The proposed framework adopts a modular architecture that 
builds upon the system architecture and trust boundaries 
illustrated in Figure 3.1.: 

• User Interface Layer: Manages location data input
from users and allows for the configuration of
system-wide privacy parameters (k, ϵbase).

• Spatial Clustering Module: Implements our
enhanced k-anonymity algorithm.

• Query Processor: Intercepts spatial queries (e.g.,
count, range) from the LBS application.

• Privacy Engine: The core of the framework,
responsible for applying the Laplace mechanism and 
the adaptive privacy budget.

• Output Handler: Delivers the privatised, high-
utility query results to the LBS provider.

4.2 Stage 1: Diameter-Bounded Spatial 
Clustering for k-Anonymity 

The first stage of our framework establishes group-based 
anonymity. While standard density-based algorithms like 
DBSCAN are computationally efficient, they are not 
inherently suitable for enforcing a robust definition of spatial 
k-anonymity. The transitive nature of DBSCAN's clustering
can result in "snake-like" clusters where two users, despite
being in the same cluster, are so far apart that they are easily
distinguishable, thus violating the principle of anonymity.

To overcome this critical limitation, we introduce a Diameter-
Bounded DBSCAN approach. This method proceeds in two 
steps: 

• Initial Clustering: We first apply the standard
DBSCAN algorithm to group users based on spatial
proximity, using a minimum group size
min_samples (set to our k-anonymity parameter, k)
and a search radius eps.
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• Diameter Validation and Post-Processing: We then
iterate through each generated cluster and calculate
its spatial diameter—the maximum Euclidean
distance between any two points within that cluster.
A cluster is considered a valid anonymisation set
only if its diameter is below a predefined threshold,
dmax…… Any cluster that exceeds this diameter is
recursively split until all sub-clusters satisfy the
constraint. This split is performed using a
bisectional k-means algorithm (where k=2) on
the points within the oversized cluster. Users in
clusters that fail to meet the minimum size k after
this process, along with initial outliers, are
suppressed to prevent re-identification.

• This two-step process ensures that every user in an
anonymised group is not only part of a sufficiently
large crowd (k) but is also confined to a
geographically compact and meaningful cloaking
region.

4.3 Stage 2: Differentially Private Query 
Processing 

The second stage provides formal privacy guarantees using 
the Laplace mechanism, which satisfies ϵ-differential privacy 
by adding calibrated noise to a query's true result. The 
mechanism is defined as: 

𝑀𝑀�𝑞𝑞(𝐷𝐷)� = 𝑞𝑞(𝐷𝐷) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(0, 𝜖𝜖𝜖𝜖𝜖𝜖) 

Where 𝑞𝑞(𝐷𝐷) is the true query output, ϵ is the privacy budget, 
and 𝛥𝛥𝛥𝛥 is the global sensitivity of the query. The sensitivity 
measures the maximum possible change in the query's output 
if a single individual's data is added or removed from the 
dataset D. For the query types supported by our framework, 
we define the sensitivity as follows: 

• Count Queries: For a query asking for the number
of users in a region, adding or removing one user can 
change the count by at most 1. Therefore, 𝜟𝜟𝜟𝜟 = 𝟏𝟏.

• Range Queries and Heatmaps: These queries are
also based on user counts within specified spatial
bins or regions. By ensuring that our spatial
aggregation uses a non-overlapping grid, any single
user can only belong to one bin at a time.
Consequently, for these queries, the sensitivity also
remains 𝜟𝜟𝜟𝜟 = 𝟏𝟏.

4.4 Stage 3: Adaptive Privacy Budgeting 

to optimise the privacy-utility trade-off, we implement the 

well-established principle of density-based privacy 
allocation. We adopt a straightforward and computationally 
efficient heuristic that scales the privacy budget linearly with 
local data density, thereby allocating stronger protection to 
sparser, more vulnerable regions. The adaptive budget,  
ϵadaptive, is calculated as: ... 

Our mechanism adjusts a system-wide base privacy budget, 
ϵbase, based on the local user density of the queried region. 
The adaptive budget, ϵadaptive, is calculated as: 

𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 × (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) 
Where: 

• ρlocal is the density of users in the specific region
of the query.

• ρmax is a normalisation factor, representing the
maximum observed user density across the entire
dataset.

This formula implements a principled heuristic: it allocates a 
smaller, more protective privacy budget (larger noise) to 
sparse regions where ρlocal is low, and a larger, more utility-
preserving budget (smaller noise) to dense regions where 
ρlocal is high. This ensures a more robust and context-aware 
application of differential privacy. 

4.5 Algorithmic Summary 

The complete workflow of the proposed framework for a 
given set of user locations and an incoming spatial query is as 
follows: 

1. Input: A dataset D of user locations, a k-anonymity
parameter k, and a base privacy budget ϵbase.

2. Clustering: Apply the Diameter-Bounded
DBSCAN algorithm to partition D into valid,
compact anonymous clusters of size ≥ 𝑘𝑘 . Suppress
all users not belonging to a valid cluster.

3. Query Execution: Receive a spatial query (e.g.,
"count users in region R"). Execute the query on the
clustered data to get the true answer, q(D).

4. Adaptive Budget Calculation: Determine the local
user density, ρlocal, for the query region R.
Calculate ϵadaptive using the adaptive budgeting
formula.

5. Noise Injection: Compute the noise scale based on
the query's sensitivity (𝛥𝛥𝛥𝛥 = 1) and the calculated
ϵadaptive. Add Laplace noise to the true answer
𝑞𝑞(𝐷𝐷) to produce the final privatised result.

6. Output: Return the privatised result to the LBS
application.
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4.6 Formal Privacy Analysis and Sequential 
Query Considerations 

Our framework composes group-based k-anonymity and ε-
differential privacy to provide layered protection. The 
Diameter-Bounded DBSCAN stage enforces a group 
indistinguishability constraint (each released record belongs 
to a cluster of size ≥ k and bounded diameter ≤  𝒅𝒅ₘₐₓ), which 
reduces the effective sensitivity of many spatial queries by 
aggregating individuals into compact groups. The Laplace 
mechanism is applied to aggregated query outputs with 
sensitivity 𝛥𝛥𝛥𝛥 =  1 for count-style queries. 

Importantly, when multiple queries are issued, the total 
privacy loss follows differential-privacy composition 
theorems: if queries use budgets ε₁, ε₂, …, εₜ then the 
cumulative privacy loss is at most 𝛴𝛴𝛴𝛴ᵢ under basic 
composition (and lower under advanced composition). In our 
adaptive budgeting scheme, we allocate a per-query 
ε_adaptive proportional to local density; cumulative budgets 
can therefore be tracked and enforced by the middleware to 
ensure a global bound ε_total per user or per time window. 

We emphasise that k-anonymity alone is not a formal privacy 
guarantee against probabilistic inference; however, by 
applying 𝜀𝜀 − 𝐷𝐷𝐷𝐷 after anonymisation, we mitigate residual 
linkage risk while retaining practical group semantics for 
downstream analytics. The anonymisation stage also bounds 
spatial dispersion (𝒅𝒅ₘₐₓ), which helps keep sensitivity and 
noise magnitude low in dense regions. For sequential 
deployments, we recommend accounting for cumulative ε in 
the middleware (e.g., via a budget ledger) and enforcing strict 
limits per user/time window to preserve formal DP 
guarantees. 

5. Experimental Setup and Results

This section details the rigorous empirical evaluation of our 
proposed hybrid privacy-preserving framework. To validate 
its effectiveness, we conducted a series of experiments 
designed to assess the privacy-utility trade-off, compare its 
performance against state-of-the-art baselines, and measure 
its scalability. 

5.1 Dataset 

To ensure the real-world validity and comparability of our 
results, we moved away from synthetic data and conducted 
our evaluation on the GeoLife GPS Trajectory Dataset. 
This is a widely used public benchmark in the field of location 

privacy and mobility mining. The dataset was collected by 
Microsoft Research Asia and contains 17,621 trajectories 
from 178 users over four years (2007-2011). It covers a total 
distance of over 1.2 million kilometres and includes a diverse 
range of outdoor movements, making it an ideal testbed for 
evaluating LBS privacy mechanisms. For our experiments, 
we used a large subset of the data from the Beijing region.    

5.2 Baselines for Comparison 

To demonstrate the advantages of our proposed framework, 
we compare it against four distinct baselines, including two 
recent state-of-the-art (SOTA) methods: 

1. DPPS (Li et al., 2023): A SOTA hybrid privacy-
preserving scheme that also combines k-anonymity
with a Hidden Markov Model to protect against
trajectory correlation attacks. This serves as a direct
and challenging competitor.

2. AdaptiveGrid (Kim, 2024): A SOTA adaptive
differential privacy scheme that uses adaptive grid
partitioning to improve utility based on user
distribution. This allows for a direct comparison of
our adaptive budgeting mechanism.

3. DP-Only: A standard implementation of centralised
differential privacy using the Laplace mechanism
applied directly to the raw location data without any
k-anonymity preprocessing.

4. K-Anon-Only: An implementation of our novel
Diameter-Bounded DBSCAN clustering algorithm
without the subsequent application of differential
privacy noise.

5.3 Evaluation Metrics 

We evaluated the performance of all frameworks using a 
comprehensive set of metrics designed to capture different 
facets of data utility and system efficiency: 

• Query Accuracy: For region-based count queries,
we measure the accuracy as the relative error
between the noisy result and the true count.

• Trajectory Similarity (EDR): To assess the utility
of the anonymised trajectories themselves, we use
the Edit Distance on Real Sequence (EDR). EDR
is a robust metric for measuring the similarity
between two trajectories, calculating the minimum
number of edits (insertions, deletions) needed to
make them match within a given tolerance. A lower
EDR value signifies higher utility, as the protected
trajectory is closer to the original.
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• Hotspot Detection Utility: A key downstream task
for LBS data is hotspot analysis. We measure the
utility of the protected data for this task by
comparing the hotspots detected from the privatised
data against those from the original data, using the
F1-score (the harmonic mean of precision and
recall).

• Runtime Efficiency: We measure the average time
required to process a single query to evaluate the
framework's scalability and suitability for real-time
applications.

• Suppression Rate: We measure the percentage of
users discarded from the dataset because they could
not be placed in a valid anonymous group (i.e., a
cluster with size ≥ k). This metric is crucial for
evaluating the framework's potential for systemic
bias and information loss, as a high suppression rate
may indicate that certain types of users (e.g., those
in sparse areas) are systematically excluded from the 
analysis.

5.4 Experimental Configuration 

All experiments were conducted on a machine with a 3.2 GHz 
8-core CPU and 32 GB of RAM. The frameworks were 
implemented in Python. Key parameters were set as follows: 

• K-Anonymity Parameter (k): Varied from {5, 10,
20}.

• Privacy Budget (ϵ): Varied from {0.1, 0.5, 1.0, 2.0}.
• Diameter-Bounded DBSCAN: The maximum

cluster diameter dmax was set to 500 meters to
ensure geographically compact cloaking regions.

5.5 Results and Discussion 

(a) Comparative Analysis of Privacy-Utility Trade-off

Figure 5.1 presents the core results of our comparative 
evaluation. Our proposed hybrid framework consistently 
demonstrates a superior balance across all utility metrics 
compared to the baselines. 

Figure 5.1. Comparative Performance Analysis 

As shown, our framework achieves a query accuracy of 
85.1%, outperforming the SOTA DPPS and AdaptiveGrid 
methods. While the k-Anon-Only baseline achieves higher 
accuracy, it provides no formal DP guarantees. Crucially, our 
model significantly outperforms all other DP-enabled 
methods in both Trajectory Similarity (achieving the lowest 
EDR) and Hotspot Detection (highest F1-Score). This 
indicates that our Diameter-Bounded clustering stage 
effectively preserves the underlying structure of the mobility 
data before noise is added, leading to higher utility for 
complex analytical tasks. 

(b) Impact of Privacy Budget (ϵ) and Anonymity Level (k)

Table 5.1 details the performance of our framework under 
varying privacy parameters. As expected, increasing the 
privacy budget ϵ leads to higher utility across all metrics, as 
less noise is injected. Conversely, increasing the anonymity 
parameter k slightly degrades utility, as the initial clustering 
becomes more aggressive. However, even at a high 
anonymity level of k=20 and a strong privacy budget of 𝜖𝜖 =
0.5, our framework maintains a high F1-score for hotspot 
detection, demonstrating its robustness. 

Table 5.1. Performance of the proposed framework 
under varying k and ε values 

k ϵ Query 
Accuracy 
(%) 

Trajectory 
Similarity 
(EDR) 

Hotspot 
F1-Score 

10 0.1 64.2% 0.35 0.61 
10 0.5 78.9% 0.21 0.79 
10 1.0 85.1% 0.14 0.88 
10 2.0 92.3% 0.09 0.94 
5 1.0 86.5% 0.12 0.90 
20 1.0 83.8% 0.17 0.85 

Table 5.2 – Sensitivity of Utility and Suppression to 
dmaxd_{max}dmax (k = 10, ε = 1)

dmax 
(meters) 

Query 
Accuracy 
(%) 

Suppression 
Rate (%) 

Avg. Valid 
Cluster 
Diameter 
(m) 

200 79.2% 11.4% 185m 
300 82.7% 7.8% 268m 
500 85.1% 4.9% 420m 
800 83.4% 2.3% 655m 
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5.5.1 Sensitivity Analysis for dmax 
We evaluated how the cluster-diameter threshold dmax affects 
utility and suppression. Experiments were conducted with 
dmax ∈ {200,300,500,800} m while keeping all other 
parameters fixed ( 𝑘𝑘 =  10, 𝜀𝜀 =  1 ). Table 5.2 summarises 
the results (Query Accuracy, Suppression Rate, Average 
Valid Cluster Diameter). As expected, smaller dmax values 
reduce internal dispersion but raise suppression, whereas 
larger values lower suppression yet slightly increase intra-
cluster distances and can weaken indistinguishability. In our 
experiments, the default dmax =500m achieved the best 
balance between privacy and utility (≈ 85 % query accuracy 
and 4–6% suppression).  

(c) Scalability and Runtime Efficiency 

Our framework is designed for scalability. The runtime is 
dominated by the initial clustering stage, which has a 
complexity of O(n log n). As shown in Figure 5.2, the average 
query processing time scales efficiently with the number of 
users. For a dataset of 20,000 users, the average runtime 
remains well under 100 milliseconds, confirming its 
suitability for real-time LBS applications. It is notably faster 
than the DPPS baseline, which employs a more complex 
Markov model. 
 

 

Figure 5.2. Runtime Scalability 

5.6 Summary of Results 

The empirical evaluation validates the effectiveness of our 
proposed framework, yielding the following key results: 
 

• Superior Utility: The hybrid model consistently 
outperforms state-of-the-art (SOTA) baselines such 
as DPPS and AdaptiveGrid across multiple utility 
metrics, including query accuracy, trajectory 
similarity, and downstream analytical performance. 
These gains demonstrate that the proposed hybrid 
approach preserves high analytical accuracy under 
strong privacy constraints. 

• Methodological Soundness: The results confirm 
that the proposed Diameter-Bounded DBSCAN 
component effectively preserves the structural 
properties of mobility data, leading to higher utility 
in complex analytical tasks. 

• Robustness: The framework demonstrates a stable 
and predictable trade-off between privacy and utility 
across a wide range of k and ε values. 

• Scalability: The system is computationally 
efficient, with query runtimes that scale linearly with 
dataset size, making it practical for real-time 
deployment 

5.6.1 Outlier Suppression and Geographic Bias 
The suppression mechanism removes data points that cannot 
form a valid compact cluster of size ≥ k. In our experiments, 
the overall suppression rate remained below 6 %, indicating 
minimal data loss. However, most suppressed points were 
from sparsely populated regions, introducing a mild 
geographic bias. Future work may address this by applying 
adaptive diameter relaxation or synthetic sampling for low-
density users. 

6. Conclusion 

This paper introduced a hybrid privacy-preserving 
framework for Location-Based Services that integrates 
Diameter-Bounded DBSCAN clustering with an adaptive 
Laplace differential privacy mechanism. The approach 
achieves high data utility while providing strong protection 
against re-identification and inference attacks. Experimental 
evaluation on the GeoLife dataset demonstrates superior 
query accuracy, low trajectory distortion, and sub-100 ms 
query latency compared to SOTA baselines. Sensitivity and 
bias analyses confirm the framework’s robustness across 
varying parameters. 
The framework’s modular design and low computational cost 
make it suitable for real-time deployment in smart city and 
mobility applications. Future work will extend this 
framework to trajectory-level and semantic location privacy, 
exploring adaptive privacy budgeting for continuous LBS 
data streams. 
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6.1 Future Work 

Building on the strong foundation of this work, we have 
identified two primary directions for future research: 

1. Semantic-Aware Privacy Budgeting: Our current
adaptive mechanism is based on user density. A
promising extension is to develop a more
sophisticated budgeting strategy that incorporates
the semantic sensitivity of locations. For example,
locations like hospitals or political offices could be
assigned a higher privacy weight, ensuring that the

framework provides even stronger protection where 
it is needed most. 

2. Formal Trajectory-Level Privacy: While our
framework preserves trajectory similarity well, it
does not offer a formal privacy guarantee against
trajectory-wide correlation or re-identification
attacks. Future work will focus on extending the
model to incorporate techniques from the trajectory
privacy literature, such as the use of Hidden Markov
Models or trajectory generalisation, to provide end-
to-end formal privacy for entire movement patterns.

Appendix A. Experimental Parameters 

This appendix provides the supplementary technical 
parameters used for the experimental evaluation to support 
reproducibility. 

A.1 Key Framework Parameters

• K-Anonymity Parameter (k): The minimum
group size for anonymity was varied across the set
{5, 10, 20}. A value of k=5 was used as a baseline
to guarantee each user is hidden within a group of
at least five others.

• Privacy Budget (ε): The differential privacy
budget was varied across the set {0.1, 0.5, 1.0,
2.0} to analyse the privacy-utility trade-off.

• Maximum Cluster Diameter (d_max): This was
set to 500 meters to ensure that all generated
anonymised groups are geographically compact
and meaningful.

A.2 Algorithm Parameters

• DBSCAN Search Radius (eps): The spatial
radius for the DBSCAN clustering algorithm was
set to 100 meters. This value was chosen to reflect
typical urban proximity and facilitate the
formation of meaningful clusters.

• DBSCAN Minimum Samples (min_samples):
This was set to the value of the k-anonymity
parameter k for each experimental run.

A.3 System Configuration

All experiments were conducted on a machine with a 3.2 
GHz 8-core CPU and 32 GB of RAM. 

The framework was implemented in Python. 

Appendix B. Algorithm Pseudocode 

This appendix presents the detailed pseudocode for the 
proposed hybrid privacy-preserving framework. 

Algorithm B.1: Diameter-Bounded Hybrid 
Privacy Framework 

k: 
Input: 

• D: A dataset of raw user locations {l₁, l₂, ..., lₙ}
• Q: An incoming spatial query to be answered
• k: The k-anonymity threshold
• ε_base: The base privacy budget parameter
• d_max: The maximum allowed diameter for a

valid cluster
• eps_db: The search radius for the DBSCAN

algorithm

Output: 

• private_result: The differentially private output
for the query Q

Steps: 
1. initial_clusters ← DBSCAN(D, eps_db,

min_samples=k)
• Group users based on spatial density
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2. valid_anonymized_data ← 
ValidateAndSplitClusters(initial_clusters, k, 
d_max) 

• Iterate through each cluster from Step 1. 
• Check if cluster size is ≥ k. 
• Check if cluster diameter is ≤ d_max. 
• Recursively split any cluster that exceeds d_max 

until all sub-clusters satisfy the constraint. 
• Suppress all users in clusters that fail to meet the 

size k or are initial outliers. 
3. true_result ← 

ExecuteQuery(valid_anonymized_data, Q) 
• Compute the true query result on the now-valid 

anonymised data. 
4. local_density ← 

CalculateDensity(valid_anonymized_data, 
Q.region) 

• Determine the local user density for the specific 
region of the query. 

5. ε_adaptive ← ε_base × (local_density / 
max_density) 

• Adjust the privacy budget based on local user 
density to balance privacy and utility. 

6. sensitivity ← GetQuerySensitivity(Q) 
• For count and range queries, sensitivity Δf = 1. 
7. scale ← sensitivity / ε_adaptive 
• Calculate the scale for the Laplace noise. 
8. noise ← Laplace(0, scale) 
• Generate calibrated noise from a Laplace 

distribution. 
9. private_result ← true_result + noise 
• Add noise to the true answer to produce the final 

privatised result. 
10. Return private_result 
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