deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign
DOI:
https://doi.org/10.4108/eai.21-6-2021.170236Keywords:
Malicious web infrastructure, Server flock, Word embedding, textCNNAbstract
Nowadays, cybercriminals tend to leverage dynamic malicious infrastructures with multiple servers to conduct attacks, such as malware distribution and control. Compared with a single server, employing multiple servers allows crimes to be more efficient and stealthy. As the necessary role infrastructures play, many approaches have been proposed to detect malicious servers. However, many existing methods typically target only on the individual server and therefore fail to reveal inter-server connections of an attack campaign.In this paper, we propose a complementary system, deMSF, to identify server flocks, which are formed by infrastructures involved in the same malicious campaign. Our solution first acquires server flocks by mining relations of servers from both spatial and temporal dimensions. Further we extract the semantic vectors of servers based on word2vec and build a textCNN-based flocks classifier to recognize malicious flocks. We evaluate deMSF with real-world traffic collected from an ISP network. The result shows that it has a high precision of 99% with 90% recall.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Security and Safety
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.