Differentially Private High-Dimensional Data Publication via Markov Network
DOI:
https://doi.org/10.4108/eai.29-7-2019.159626Keywords:
Differential privacy, High-dimensional, Data publication, Markov networkAbstract
Differentially private data publication has recently received considerable attention. However, it faces some challenges in differentially private high-dimensional data publication, such as the complex attribute relationships, the high computational complexity and data sparsity. Therefore, we propose PrivMN, a novel method to publish high-dimensional data with differential privacy guarantee. We first use the Markov model to represent the mutual relationships between attributes to solve the problem that the direction of relationship between variables cannot be determined in practical application. We then take advantage of approximate inference to calculate the joint distribution of high-dimensional data under differential privacy to figure out the computational and spatial complexity of accurate reasoning. Extensive experiments on real datasets demonstrate that our solution makes the published high-dimensional synthetic datasets more efficient under the guarantee of differential privacy.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Security and Safety
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.