A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN)
DOI:
https://doi.org/10.4108/eai.28-12-2017.153515Keywords:
Network security, Deep Learning, Multi-vector DDoS detection, Software Defined NetworkingAbstract
Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network infrastructure comes across nowadays. Poor network management, low-priced Internet subscriptions, and readily available attack tools can be attributed to their rise. The recently emerged software-defined networking (SDN) and deep learning (DL) concepts promise to revolutionize their respective domains. SDN keeps the global view of the entire managed the network from a single point, i.e., the controller, thus making the network management easier. DL-based approaches improve feature extraction/reduction from a high-dimensional dataset such as network traffic headers. This work proposes a deep learning based multi-vector DDoS detection system in an SDN environment. The detection system is implemented as a network application on top of the SDN controller and can monitor the managed network traÿc. Performance evaluation is based on different metrics by applying the system on traÿc traces collected from different scenarios. A high accuracy with low false-positive rate is observed in attack detection for the proposed system.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Security and Safety
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.