Minor Privacy Protection by Real-time Children Identification and Face Scrambling at the Edge
DOI:
https://doi.org/10.4108/eai.13-7-2018.164560Keywords:
Child Detection, Minor Privacy Protection, Smart Surveillance, Video Feature Extraction, DecentralizationAbstract
The collection of personal information about individuals, including the minor members of a family, by closed circuit television (CCTV) cameras creates a lot of privacy concerns. Revealing children’s identifications or activities may compromise their well-being. In this paper, we propose a novel Minor Privacy protection solution using Real-time video processing at the Edge (MiPRE). It is refined to be feasible and accurate to identify minors and apply appropriate privacy-preserving measures accordingly. State of the art deep learning architectures are modified and repurposed to maximize the accuracy of MiPRE. A pipeline extracts face from the input frames and identify minors. Then, a lightweight algorithm scrambles the faces of the minors to anonymize them. Over 20,000 labeled sample points collected from open sources are used for classification. The quantitative experimental results show the superiority of MiPRE with an accuracy of 92.1% with near real-time performance.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Security and Safety
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.