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Abstract 

INTRODUCTION: Large Language Models (LLMs), a major breakthrough in artificial intelligence, have been widely 
applied across various domains in recent years. Their powerful capabilities in language comprehension and generation enable 
effective handling of diverse natural language processing tasks, such as text generation, question answering, machine 
translation, and information retrieval. This paper investigates the application of LLM technology in data integration, a core 
aspect of data governance. In contrast to end-to-end black-box approaches, we reframe data integration as a problem of 
discovering interpretable mapping rules through symbolic regression. 
OBJECTIVES: We begin by defining the fundamental problem of data integration. We then propose a general-purpose large 
model framework for data governance, built on a deep symbolic regression foundation. The framework comprises a symbolic 
expression generator and a metadata-enhanced executor, aiming to achieve both high accuracy and interpretability. 
METHODS: The model is trained using a combination of recurrent neural networks and reinforcement learning techniques, 
for expression generation and the execution of the discovered rules is structured based on a Transformer encoder architecture 
enhanced with a dedicated metadata embedding layer. To enhance performance, we incorporate metadata fine-tuning, where 
the generated symbolic expressions serve as key metadata to guide the integration process. 
RESULTS: Finally, the proposed model is evaluated on two representative data integration tasks, with experimental results 
demonstrating its effectiveness. 
CONCLUSION: The results validate its practical quality and highlight the advantage of the symbolic regression paradigm 
in enhancing interpretability. 

Keywords: large language models (LLMs), metadata fine-tuning, Transformer,data governance, reinforcement learning, symbolic 
regression. 
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1. Introduction

In recent years, the rapid advancement of artificial 
intelligence has led to the widespread application of large 
language models (LLMs) across various domains[1]. For 
instance, in healthcare, LLMs aid in disease diagnosis[2]; in 
education, they facilitate personalized learning[3]; and in 
business, they enhance customer service optimization and 
market forecasting[4]. Against this backdrop, the potential of 
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LLMs in data governance—particularly in enhancing data 
integration, quality, and accessibility—has attracted growing 
research interest[5].  

Compared with traditional machine learning methods, 
LLMs offer significant advantages in data governance due to 
their superior generalization and inference capabilities[6]. 
While conventional algorithms are often constrained by 
specific datasets, tasks, and environments, LLMs acquire 
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broad linguistic knowledge and semantic understanding 
through large-scale pre-training, enabling them to adapt to 
diverse data governance contexts[7]. For example, in 
database diagnostics, LLMs can perform contextual 
understanding and multi-step reasoning to help database 
administrators (DBAs) identify anomalies, trace the root 
causes of slow SQL queries, and propose actionable 
solutions[8, 9]. 

Moreover, LLMs facilitate natural language-based data 
analysis, allowing users without technical expertise to 
interact with databases through intuitive queries[10]. This 
lowers the barrier to data analysis and promotes broader 
participation in data governance, thereby enhancing data 
utilization and value extraction[11]. Additionally, LLMs 
contribute to data standardization and normalization by 
recognizing patterns and structures within datasets, which 
helps organizations establish consistent and accurate data 
standards. For instance, during data cleansing, LLMs can 
automatically detect and correct erroneous data patterns[12, 
13]. 

Existing research has explored LLM applications across 
various subfields of data processing, including data cleansing, 
entity matching, schema matching, and data discovery[14]. 
For example, Schick proposed a graph-enhanced 
interpretable data cleansing framework based on LLMs to 
improve cleaning effectiveness[15]. Similarly, Shinn 
investigated the use of LLMs to enhance the accuracy and 
efficiency of entity matching[16]. 

However, several challenges remain in applying LLMs to 
data governance. Issues such as model hallucination[17, 18], 
high operational costs[19], and limited accuracy in complex 
tasks[20] pose significant obstacles. Current approaches—
including chain-of-thought reasoning[21] and tool calling 
functions —have been developed to mitigate these problems. 
Nevertheless, these methods still exhibit limitations, 
including over-reliance on inherent model knowledge, which 
can lead to instability and errors, as well as a dependency on 
large amounts of task-specific fine-tuning data that increases 
costs and reduces adaptability to changes[22]. Applying 
LLMs directly as black-box function approximators for data 
integration faces challenges such as lack of interpretability 
and limited generalization. To address this, our work explores 
a novel pathway: leveraging LLMs within a symbolic 
regression framework. This approach seeks to discover 
explicit, human-understandable rules that define the data 
integration mapping, thereby combining the pattern 
recognition strength of LLMs with the transparency of 
symbolic methods. 

Therefore, this research aims to explore more robust, 
efficient, and scalable methodologies for applying LLMs in 
data integration and governance, with a focus on overcoming 
the aforementioned challenges and expanding the potential of 
LLM-driven data management systems[23]. 

2. Methodology

2.1. Problem Statement of the Data 
Governance Generalized Model 

Given a dataset D {xi, yi}, where xi  ∈  Rd   and yi  ∈ R, the 
Data Governance Generalized Model aims to find the 
mapping f *from the mapping class F (f: Rd  → R)  such that 
the number of loss functions is minimized as follows:  

f*= arg min
f∈F

l(f).    
(1) 

where f denotes a nonlinear, expressive, and parameterized 
function (e.g., a neural network) and l denotes the loss 
function, defined as: 

(f)=∑  b
i=1 l�f(xi),yi.    

(2) 

2.2. Data Integration Problem Definition 

2.2.1 Dataset Definition 
Let there exist n different data sources, and the data from each 
source can be regarded as a subset. Let D = {D1, D2,..., Dn } 
be the whole dataset where Di denotes the data of the i-th data 
source, i = 1, 2,..., n. Each can be further represented as Di  = 
{(xi1, yi1), (xi2, yi2), . . . , (ximi, yimi)}, where xij is the 
eigenvector of the i data entry in the j data source, yij is the 
corresponding label or objective value (e.g., classification of 
the data, validity or not, etc.), j = 1, 2, . . . , mi, mi + is the 
number of data in the i data source. 

2.2.2 Mapping Class Definition 
Define a mapping class F, where the mapping f is used to 
integrate and transform data from different data sources[8]. 
The mapping f should be able to handle data of different 
formats and structures, convert them to a unified format, and 
perform data cleansing, processing, and aggregation. For 
example, f can be a large and complex model (e.g., a model 
based on deep learning), which receives data from different 
data sources as input and outputs the integrated and unified 
data. 

2.2.3 Loss Function Definition 
The goal of the data integration macromodel is to find the 
mapping f *from the mapping class  such that the loss 
function (f ) is minimized. The loss function (f ) can be used 
to measure the effectiveness of data integration in several 
ways, for example: 

a. Data consistency loss
Measures the consistency of the integrated data in terms of
format, structure, and semantics. It can be defined as the
degree of difference in the key attributes of data from
different data sources after mapping. For example, let c be
a key attribute[9], for two different data sources xi1j1  and
xi2j2, their differences in attribute c can be expressed as
dc(f(xi1j1

),f(xi2j2
)), and the loss of data consistency can be

defined as the sum of the differences in all key attributes, 
i.e., Lconsistency. Summed over all key attributes, i.e.,

Lconsistency (f)= 
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∑ ∑ ∑ ∑ ∑ dc(f(xi1j1
),f(xi2j2

))
mj2=1

i2mj1=1
i1ni2=2ni1=1c  (3) 

b. Loss of data integrity
Measures whether the integrated data is complete and
whether important information is missing. It can be
defined as the extent to which information present in the
original data is missing in the integrated data[10]. For
example, if there is a field k in the original data, and the
proportion of that field that is empty in the integrated data
is pk, then the data completeness loss can be defined as
Lcompleteness (f)=Σkpk
c. Data Accuracy Loss
A measure of how close the integrated data is to the true
value. Some common error measures can be used, such as
mean square error (MSE), mean absolute error (MAE), etc. 
Let yij be the true value, andŷij = f (xij ) be the predicted
value output by mapping f, then the data accuracy loss can
be defined as LCE(f)=- 1

N
∑  N

n=1 ∑  M
m=1 yn,mlog⁡�y�n,m� ,

where N=∑ mi
n
i=1  is the number of data points in the whole 

data set. 
Considering the above aspects together, the loss 

function L(f ) can be defined as L(f ) = αLconsistency (f 
)+βLcompleteness (f )+γLaccuracy (f ), where α, β and γ 
are the weight coefficients, which satisfy α + β + γ= 1, and 
are used to regulate the importance of different loss terms. 

2.2.4 Mathematical formula expression 
The data integration problems of LLM can be formally 
defined by the following mathematical expression: 

f * =arg minf ∈F L(f )           (4)
The optimal mapping f * is defined as the minimizer of the 
loss function L(f) within the mapping class F. 

In summary, the fundamental challenge of large-scale data 
integration in data governance is to identify an optimal 
mapping f* that minimizes the loss function L(f) over a given 
dataset D and a predefined mapping class F , thereby 
achieving efficient, accurate, and comprehensive data 
integration. 

2.2.5 Function Mapping to Symbolic Regression 
The mathematical formulation in Sections 2.1 and 2.2 defines 
the objective as finding an optimal mapping function. While 
powerful, complex function approximators like deep neural 
networks often act as black boxes, lacking interpretability. To 
address this, we reframe the problem as a symbolic regression 
task. The goal is to discover a human-readable mathematical 
expression or rule that encapsulates the mapping. This 
paradigm shift aims to yield integration rules that are not only 
accurate but also interpretable and potentially generalizable. 
The subsequent sections describe our framework for 
achieving this goal. 

2.3. Generalized Model for Data Governance 

Our proposed architecture decouples the process into two 
stages: (1) Symbolic Expression Generation: A generator 
searches for the optimal integration rule expressed as a 

symbolic sequence. (2) Metadata-Enhanced Execution: An 
executor applies the discovered rule to the actual data, guided 
by the rule itself which is treated as metadata. This separation 
enhances both interpretability and performance. 

The model employed in this study adopts a recurrent neural 
network (RNN) architecture. The RNN parameterizes a 
distribution, which can be mathematically expressed as 
p(τ | 0), and allows backpropagation through a differentiable 
loss function with respect to the parameters θ. Symbols in the 
sequence τ are generated sequentially, with each symbol τi 
being sampled from a predefined mathematical operation 
library. For each symbol τi, the RNN takes as input the parent 
and sibling nodes of the symbol being sampled, and outputs 
a probability distribution over the library L conditioned on 
the preceding symbols τ1, . . . , τ(i - 1). 

The recurrent neural network is further trained using 
reinforcement learning techniques. Once a mathematical 
expression is sampled, it is evaluated by a reward function 
R(τ), defined based on the normalized root mean square error 
(RMS) as R(τ)=1⁄(1+RMS). 

In this approach, the optimization problem is reduced to 
maximizing the reward function. To achieve this, we consider 
the standard policy gradient objective defined by the expected 
reward, formulated as J(θ)=Eτ~p(τ|θ)[R(τ)] . Thus, the 
optimization task can be expressed as: 

θ*=arg maxθJ(θ)              (5) 
However, since the reward function R(τ) is non-differentiable 
with respect to the learnable parameters θ , solving this 
optimization problem is challenging. To address this, we 
employ the REINFORCE reinforcement learning algorithm, 
which transforms the gradient of the reward ∇0R(τ) into the 
gradient of the policy log-probability log(p(τ | θ,0)) , as 
follows: 

∇(θ)(E)(p)((r,θ))([R(τ)(O]=)∇θ(R)
&((τ)()p(τ,)(θ)dθ)=(R(τ)())∇(θ)

&(p(τ,)(θ)d(θ)
&=∫  j R(τ) ∇θp(τ,θ)

p(τ,θ)
p(τ,θ)dθ

&=R(τ)∇θlog⁡(p(τ,θ))p(τ,θ)p(τ,θ)dθ

=Eτ~f(τ)∣0� [R(τ)∇0log⁡p(τ,0)]

 (6) 

The gradient ∇θJ(θ) is estimated by computing the sample 
mean over a batch of N sampled expressions, as follows: 

∇θJ(θ)≈ 1
N
∑  N

i=1 R�τ(i)�∇θlog⁡p�τ(i)∣θ�  (7) 
The parameters θ are optimized using gradient ascent: 

θ←θ+αR(τ)∑  i ∇θlog⁡p(τ,θ)        (8) 
where α is the learning rate. 

A "risk-seeking policy gradient" approach is adopted to 
enhance the performance of the general model, which 
optimizes for the best-case performance of the policy rather 
than its average performance. To achieve this optimization 
objective, a new learning goal is defined by selecting a subset 
of expressions that demonstrate the highest performance 
during the training process: 

J(θ,ϵ)=Eτ∼(p(τ)∣θ)[R(τ)∣R(τ)≥Re(θ)]       (9) 
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where R∈(θ) is the (1-ϵ)-quantile of the reward distribution 
under policy p(τ|θ). 

The same reinforcement technique is employed to estimate 
the new objective function, wherein the top ϵ-percentile of 
expressions in each batch based on performance are selected 
for gradient computation. The reinforcement learning model 
training is shown in Table 1. 

Hyperparameters: 

• Batch size N: 512
• Learning rate α: 0.001
• Risk parameter ε: 0.1
• Optimizer: Adam
• Maximum iterations: 10000

Table 1: Model Training with Reinforcement Learning 

Input: Library of operations L, dataset D, batch size N, 
learning rate α, risk parameter ε 

Output: Optimized parameters θ* 

Initialize RNN parameters θ 

for iteration = 1 to MaxIterations do 

  Sample a batch of N expressions: {τ(i)}~p(τ|θ)  for 
i=1,...,N 

  Evaluate reward  R(τ(i)) for each expression 

  Compute quantile R_ε = quantile({R(τ⁽ⁱ⁾)}, 1-ε) 

  Initialize gradient estimate: g=0 

  for i = 1 to N do 

if R(τ⁽ⁱ⁾) ≥ R_ε then 

g ← g + R(τ⁽ⁱ⁾) ∇θ log p(τ⁽ⁱ⁾|θ) 

end if 

  end for 

  g ← g / (number of selected expressions) 

  θ ← θ + α ⋅ g 

end for 

return θ 
The symbolic expression τ discovered by the RNN-based 

generator defines the logic of the integration mapping. To 
apply this logic effectively to heterogeneous data, we employ 
a Transformer encoder as the execution engine. The 
expression τ  is treated as a crucial piece of metadata that 
guides the integration process. 

Reward Alignment: The reward function 
R(τ)=1/(1+RMS) is designed to be inversely related to the 
prediction error, thereby encouraging the model to generate 
expressions that minimize error. This aligns with the 
consistency and accuracy objectives in the loss function 
$\mathcal{L}(f)$. To further align with completeness, we 

incorporate a penalty term in the reward for missing or invalid 
outputs, though in this implementation, completeness is 
primarily handled via the loss function during supervised 
phases. 

The overall architecture of the general-purpose model is 
illustrated in Figure 1. 

Figure 1: Data Governance Model Architecture 

2.4. Metadata fine-tuning technique 
The general large model for data governance employs a 
metadata fine-tuning technique. Metadata fine-tuning plays 
a crucial role in ensuring that developers can accurately and 
flexibly guide and control the behavior of AI models. 
Leveraging rich metadata, the model's behavior can be 
tailored to specific contexts and tasks, thereby maximizing 
its effectiveness and mitigating potential biases. Figure 2 
illustrates the schematic diagram of the metadata fine-tuning 
process. 

Figure 2: Metadata fine-tuning schematic 
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2.4.1 Metadata Embedding Layer 
In this study, model performance is enhanced primarily 
through a fine-tuning technique that introduces a separate 
metadata embedding layer to the Transformer encoder[11]. 
This approach enables the model to learn distinct 
representations for input sequences and metadata. The 
additional metadata embedding layer learns individual 
embeddings for each metadata segment. First, the metadata is 
embedded into a vector space compatible with the model's 
input and output representations[12]. These embeddings are 
then concatenated with the input sequence embeddings fed 
into the Transformer encoder. When computing attention 
weights for each input token, the Transformer can learn to 
attend to metadata features. The hidden states of the model 
are passed to the decoder, which incorporates both the hidden 
states and the metadata embeddings while generating the 
output sequence. This operation is illustrated in Table 2. 

Formally, let the input sequence be X=[x1,x2,...,xn] and 
metadata be M=[m1,m2,...,mk] . The metadata embedding 
layer projects each metadata element mᵢ into a vector ei∈Rd 
via an embedding matrix Em∈R^{k×d} . The resulting 
metadata embeddings E=[e1,e2,...,ek] are then concatenated 
with the input embeddings Ex=Embed(X)  to form the 
augmented input [Ex;E]∈R^{(n+k)×d} . This combined 
representation is fed into the Transformer encoder. 

Parameters: 

• d: embedding dimension
• k: number of metadata elements
• n: sequence length

Table 2.  Transformer encoder operation on metadata 
embedding layer 

Operation Step Operation Content 

Input Sequence  [token1,token2,.... ,tokenN] 

Metadata [metadata1,metadata2,.... 
,metadataM] 

Metadata 
embedding layer 

[embedding1,embedding2,. .
. ,embeddingM] 

Output sequence  [output1,ouput2,... ,outputP] 

2.4.2 Participation in Attention Calculation 
This approach enables the model to attend to different parts 
of the input sequence based on the provided metadata. By 
concatenating the metadata embeddings with the query and 
key vectors, the self-attention mechanism can be conditioned 
on the metadata[13]. During the computation of attention 
weights for each input and output token, this concatenation 
operation allows the model to directly learn relevant metadata 

features without requiring prior embedding into a separate 
vector space. 

Specifically, let Q, K, V be the query, key, and value 
matrices derived from the input embeddings. The metadata 
embeddings E are projected to dimensions compatible with Q 
and K via learned matrices Wm^Q  and Wm^K , yielding 
Qm=EWm^Q and Km=EWm^K. The attention scores are then 

computed as:S= Softmax �QK⊤+QmKm
⊤

√d
� 

The context vector is computed as Z=SV. 
Parameters: 
d: dimension of key vectors 
Wₘ^Q, Wₘ^K: projection matrices for metadata 
The steps involved in the attention computation process 

are presented in Table 3. 

Table 3: Participant Attention Calculation Steps 

Steps Contents 
 Input  Query vector Q, key vector K, 

value vector V, metadata M 
Calculate self-attention score  S=QKT 

Compute the attention weights 
considering the metadata 

 A=MTS 

 Compute the context vector.  Z=V*A 

 Output  Context vector Z 

2.4.3 Gated self-attention mechanism 
This method enables the model to dynamically control the 
embeddings of different metadata components according to 
specific requirements, while incorporating task-relevant 
metadata into the computational process[14]. 

The gated self-attention mechanism introduces a gating 
function that modulates the influence of metadata on the 
attention scores. Specifically: 

Let  𝐺𝐺 = 𝜎𝜎(𝑊𝑊𝑔𝑔𝐸𝐸 + 𝑏𝑏𝑔𝑔) be a gate vector, where 𝜎𝜎 is the 
sigmoid function, 𝑊𝑊𝑔𝑔 and b𝑔𝑔 are learned parameters, and 𝐸𝐸 
is the metadata embeddings. The attention scores are 
computed as: 

S= softmax �QK⊤

�dk
�   

(10) 
A�=G⊙A+(1-G)⊙(A+EWa)   

(11) 
Where 𝑊𝑊𝑎𝑎 is a learned projection matrix, and ⊙ denotes 
element-wise multiplication. The context vector is 𝑍𝑍 = 𝑆𝑆 ⋅
𝑉𝑉. 

Parameters: 

• 𝑊𝑊𝑔𝑔, b𝑔𝑔: gating parameters.
• Wₐ: projection matrix for metadata in attention.
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The procedure involved in the attention computation is 
detailed in Table 4: 

Table 4:  Transformer encoder operation of gated self-
attention mechanism 

 Operation Steps  Operation content 

 Inputs  Query vector Q, key vector K, value 
vector V, metadata M 

 Calculate the self-
attention score. 

S=QKTM 

Compute gated self-
attention weights.   G=σ(

S

�dk
) 

 Compute attention 
weights considering 
metadata. 

A=G*S 

 Compute context 
vector 

Z=V*A 

 Output  Context vector Z 

3. Experiment Preparation

Beginning with this section, an experiment is constructed to 
evaluate a general large model for data governance. The 
objective is to employ a metadata-tuned Transformer Neural 
Network architecture (TNN-Tuner) to assess performance in 
data integration with respect to consistency, completeness, 
and accuracy, as well as to examine error identification in 
data cleaning, cleaning accuracy, and rule violation issues. 

3.1. Experimental Setting 

The computing backbone utilizes an Intel Xeon Platinum 
8380 CPU with 40 cores and 80 threads, providing strong 
serial processing capabilities to ensure smooth execution of 
computational tasks. The system integrates four NVIDIA 
A100 Tensor Core GPUs, each equipped with 6912 CUDA 
cores and 80 GB of HBM2 memory, to accelerate matrix 
and convolution operations through parallel computing and 
significantly reduce training time. A 1 TB DDR4 memory 
module operating at 3200 MHz is deployed to buffer data 
and model parameters efficiently. 

A multi-tier storage architecture is implemented, featuring 
an 8 TB enterprise-grade SSD as primary storage to minimize 
loading times, along with NAS devices to ensure data security 
and scalability. The operating system Ubuntu Server 20.04 
LTS is selected for its reliability, open-source nature, and 
extensive community support, making it well-suited for deep 
learning applications. 

In terms of software infrastructure, TensorFlow and 
PyTorch are deployed as core frameworks using official 
installation scripts. Corresponding CUDA and cuDNN 
libraries are installed and configured according to the GPU 

setup to enable hardware acceleration. For data engineering, 
a Python development environment is set up with essential 
packages including Pandas, NumPy, and Scikit-learn. Jupyter 
Notebook is installed to facilitate interactive code 
development and execution. 

To monitor system performance, the NVIDIA System 
Management Interface (nvidia-smi) is used to track GPU 
metrics, while Prometheus and Grafana are employed to 
monitor key host parameters, ensuring optimal and stable 
operation of the entire environment. 

To fully leverage our computational infrastructure —
featuring four NVIDIA A100 GPUs and a high-core-count 
Xeon CPU — we adopted a set of carefully calibrated 
hyperparameters. We employed a large global batch size, 
typically ranging from 512 to 2048, achieved through data 
parallelism and gradient accumulation to maximize GPU 
memory utilization. The learning rate was scaled linearly with 
the batch size, initialized between 1e-4 and 3e-3, and 
followed a linear warmup phase over the first 5,000 iterations 
to ensure stability before transitioning to a cosine annealing 
decay schedule. All models were optimized using AdamW (β
₁=0.9, β₂=0.999) with a weight decay of 0.05 and trained in 
mixed bfloat16 precision to accelerate computation and 
reduce memory overhead. To prevent data loading 
bottlenecks, we configured the data loader with 20 worker 
processes and enabled pinned memory for efficient host-to-
device transfer. 

3.2. Experimental Datasets 

The experimental data in this study were sourced from the 
IMDB (Internet Movie Database), one of the world’s most 
renowned and authoritative databases for films, television 
series, and entertainment content. It encompasses detailed 
information across various types of visual media, including 
movies, TV shows, and short films. Specific data points 
include basic film information (e.g., title, genre, release year), 
cast and crew details (directors, writers, actors, etc.), plot 
summaries, user ratings, and vote counts. 

The IMDb dataset is stored in compressed tab-separated 
values (TSV) format using UTF-8 encoding. The first line of 
each file contains headers describing each column. The 
special value ‘\N’ is used to indicate missing or null values in 
specific fields. 

The following key datasets were used in the experiment: 
title.akas.tsv.gz: Contains localized titles and language-

specific versions of titles along with related attributes and 
identifiers. 

title.basics.tsv.gz: Provides basic information about titles, 
including unique identifiers, title type, primary and original 
titles, adult content flag, release year, runtime, and genres. 

title.crew.tsv.gz: Includes director and writer information 
linked to titles via unique identifiers. 

title.episode.tsv.gz: Contains episode-specific 
information for TV series, such as parent series ID, season 
number, and episode number. 
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title.principals.tsv.gz: Lists principal cast and crew 
members for each title, including their roles and categories. 

title.ratings.tsv.gz: Stores user ratings and vote counts, 
facilitating analysis of popularity and reception. 

name.basics.tsv.gz: Provides biographical and 
professional details of individuals in the industry, including 
names, birth and death years, primary professions, and known 
for titles. 

The total dataset size is approximately 350 MB, covering 
1,000 visual media titles (including films, TV series, and 
shorts) and information on 3,700 industry professionals. 

Missing Value Handling: Fields marked with ‘\N’ account 
for approximately 8% of the data (e.g., some older titles lack 
ratings). Data cleaning involved removing columns with a 
missing rate exceeding 50% (such as isAdult) and filling 
missing categorical values (e.g., genre) with the mode (e.g., “
Unknown”). 

3.3. Baseline method 

In this study, eight baseline methods are employed for 
comparative analysis. Each method is adapted to the data 
integration task as follows, with a focus on their applicability 
to tasks like entity resolution and data fusion: 

Raha: An error detection method based on feature 
engineering. We adapt it by extracting features from the 
integrated dataset and using its rule-based system to detect 
inconsistencies and missing values. 

Baran: A hybrid error correction approach. We apply it to 
correct detected errors by combining rule-based and learning-
based methods. 

Garf: A deep learning-based error correction method. We 
train it on our dataset to predict corrected values for erroneous 
entries. 

HoloClean: A data repair system leveraging data quality 
rules. We integrate it with our dataset to repair errors based 
on probabilistic inference and integrity constraints. 

These data cleaning and repair systems are adapted to 
detect and correct inconsistencies (e.g., in entity attributes) 
and missing values across integrated datasets, which are key 
aspects of ensuring integration quality. 

Rotom: A meta-learning data augmentation framework. 
We use it to generate synthetic training examples for entity 
matching and data cleaning tasks. 

Robertadet: A binary classifier based on a pre-trained 
language model (RoBERTa). We fine-tune it on our dataset 
to detect errors and inconsistencies in the integrated data. 

T5: Error correction using a generative pre-trained model. 
We fine-tune T5 to generate corrected data entries from 
erroneous ones. Raffel et al. 

JellyFish-13B: A large language model-based approach 
for error detection and data imputation. We use it to detect 
errors and impute missing values by leveraging its pre-trained 
knowledge. 

These LLM-based approaches are evaluated for their 
ability to understand and execute data integration tasks, such 
as generating unified records from heterogeneous sources, 

providing a strong comparison point for our LLM-driven 
framework. 

4.Analysis of experimental results

4.1. Data preparation 

The primary data integration task involved aligning movie 
entities from IMDb and Douban Movie datasets, which 
involves schema matching and entity resolution.  

Complementary data were collected from Douban Movie, 
comprising Chinese translated titles, user ratings from 
domestic audiences, and user-generated reviews. Additional 
financial metrics, including production budgets and box 
office revenues, were obtained from professional film 
industry databases. Data acquisition was performed through 
a combination of web crawling and authorized API interfaces. 

4.2. Experimental Steps 

4.2.1 Entity Recognition and Alignment 
In the stage of entity recognition and alignment, the objective 
is to enable the large model to accurately identify various 
types of entities across different data sources and establish 
correct correspondences among them. 

Movie Entity Recognition: The model performs 
comprehensive analysis of multi-source movie information 
(such as titles, release years, directors, and cast) to determine 
whether they refer to the same film. 

Actor Entity Recognition: Actor-related information from 
different sources is analyzed using features such as stage 
names, birth dates, and filmography to verify identity 
consistency. 

Entity Alignment: After successful entity recognition, 
records referring to the same entity across sources are aligned 
using a confidence metric. The model calculates a matching 
score between each record and the entity, representing the 
likelihood of a correct match. Records with high confidence 
scores are then integrated to form a unified representation, 
facilitating subsequent data fusion. 

4.2.2 Implementation of Data Fusion Strategy 
For numerical attributes such as rating data, multiple factors 
need to be considered during the data fusion process[15]. 
First, the distribution of ratings from different sources is 
analyzed by calculating their standard deviation to assess data 
variability. Additionally, the credibility of each platform must 
be taken into account[16]. For instance, IMDb ratings, which 
are derived from a large user base and exhibit a relatively 
small standard deviation, are generally more stable and 
reliable. Thus, they can be assigned a higher weight in the 
fusion process. When the analysis targets the domestic 
market, Douban Movie ratings may carry more reference 
value within China, and therefore can be given increased 
weight accordingly. Finally, a weighted average approach is 
applied to integrate ratings from various sources, resulting in 
a comprehensive composite score. 
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For textual attributes such as plot summaries, the large 
model first performs semantic analysis on descriptions from 
different data sources[17]. It extracts key narrative elements—
such as main characters and pivotal events — from each 
summary. These elements are then merged across sources. If 
discrepancies exist between summaries, the model compares 
the descriptions of key plot points and employs semantic 
understanding to integrate and refine the information, 
resulting in a more comprehensive and coherent plot 
summary. 

4.3. Experimental Results 

4.3.1 Consistency Assessment 
The primary evaluation focuses on measuring the degree of 
discrepancy in the integrated data generated by the large 
model, particularly concerning the recognized entities. This 
assessment includes consistency in entity names and 
consistency in entity attributes. 

Entity name consistency primarily refers to the names of 
entities such as movies, actors, and directors[18]. This metric 
calculates the proportion of records across different data 
sources where the entity names are exactly identical relative 
to the total number of records. It serves as an indicator of the 
accuracy of entity name matching during data 
integration[19]. 

 Entity attribute consistency primarily pertains to attributes 
such as film genres and runtimes, as well as actor-related 
properties like gender and nationality. This metric measures 
the proportion of records with identical attribute values across 
different data sources relative to the total number of records, 
reflecting the consistency of entity attributes in the integrated 
data. 

According to the definition of the consistency loss in the 
data integration large model, 
Lconsistency (f)=∑ ∑ ∑ ∑ ∑ dc(f(xi1j1

),f(xi2j2
))

mj2=1
i2mj1=1

i1ni2=2ni1=1c

the convergence behavior of the consistency loss function 
over successive training epochs is recorded, as shown in 
Figure 3. 

The superior performance of TNN-Tuner in consistency 
loss demonstrates its effectiveness in the core data integration 
task of entity resolution, ensuring that aligned entities have 
consistent attributes across sources. 

Figure 3. Consistency Loss Function Iteration for Data 
Integration 

As shown in the results, the consistency loss of the TNN-
Tuner model decreases sharply and remains at a low level 
throughout the entire training process. In contrast, Raha, 
Garf, and JellyFish-13B exhibit significant loss reduction in 
the early stages; however, their loss curves demonstrate 
considerably increased fluctuation in later phases, 
highlighting the instability of these models. Meanwhile, 
HoloClean, Robertadet, and T5 show relatively slow 
reduction in loss during the initial training epochs, with loss 
values in certain iterations even higher than those of other 
models. This may be attributed to their limited adaptability to 
the data integration task, potentially due to deficiencies in 
feature extraction and data fusion, which hinder the effective 
capture of critical information and lead to sluggish 
convergence. 

It is important to note that while baselines like Raha and 
HoloClean are designed for data cleaning, their performance 
on these metrics indicates their utility in addressing data 
quality issues that are inherent to the data integration process. 
However, our framework is designed to tackle the broader 
problem, including rule discovery and fusion. 

4.3.2 Completeness Assessment 
This evaluation process primarily examines whether the 
integrated data contains missing information, such as by 
calculating the proportion of movie records with absent 
critical attributes (e.g., director, leading actors, or ratings). 
Based on the definition of the completeness loss for the data 
integration large model in Section 2.2.3, Lcompleteness(f)=∑ pkk  
the convergence behavior of the completeness loss function 
over successive training epochs is recorded, as shown in 
Figure 4. 

Figure 4. Iteration of Integrity Loss Function for Data 
Integration 

It can be observed that the completeness loss of the TNN-
Tuner model starts at a relatively low level and rapidly 
converges to near-zero as training progresses. In comparison, 
although Raha and Rotom also exhibit a gradual decline in 
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completeness loss, their convergence speed is noticeably 
slower, and their final loss values remain significantly higher 
than those of TNN-Tuner. Models such as Robertadet, Baran, 
and Garf show a relatively flat decreasing trend in 
completeness loss, with their values staying at a considerable 
level even in the later stages of training. HoloClean and T5 
demonstrate limited improvement in completeness loss 
during the initial phases, and only modest reduction in the 
later epochs. In contrast, JellyFish-13B maintains a high 
completeness loss throughout the entire training process, with 
minimal decrease over time. 

4.3.3 Accuracy Assessment 
The accuracy evaluation primarily focuses on the correctness 
of information matching[20]. The information matching 
accuracy is calculated by comparing the integrated movie 
data—such as plot summaries and actor roles—against 
authoritative reference sources, and computing the proportion 
of correctly matched entries. The performance of the large 
data integration model is evaluated using an accuracy loss 
function, defined as Laccuracy(f)=-
1
N
∑  N

n=1 ∑  M
m=1 yn,mlog⁡ �y�n,m�, as illustrated in Figure 5. 

 

 

Figure 5. Iteration of data integration accuracy loss 
function 

5. Conclusion 

This study formalizes the problem of data governance within 
the realm of large language models as a symbolic regression 
task, providing a precise mathematical definition of data 
integration challenges. We constructed a deep symbolic 
analysis framework based on a Transformer Neural Network, 
integrating the sequence processing capabilities of recurrent 
neural networks with reinforcement learning-based dynamic 
policy optimization. This enables the model to adapt 
effectively to complex data governance scenarios. 

A metadata fine-tuning scheme was proposed for the 
Transformer encoder model, incorporating a dedicated 
metadata embedding layer to enhance the model's 
interpretability and processing capacity. Experimental 
evaluations under multiple loss functions demonstrated the 
superior performance of our proposed model across 
consistency, completeness, and accuracy metrics. 

However, this study has several limitations. First, the 
proposed model relies on large-scale computational 
resources, which may hinder its practicality in resource-
constrained environments. Second, the experiments were 
conducted primarily on structured movie data; performance 
on unstructured or highly heterogeneous data remains to be 
verified. Regarding statistical significance, we will 
supplement cross-validation (5-fold) on the existing dataset 
and compute p-values using paired t-tests to verify the 
significance of performance differences between our model 
and baselines. For domain generality, we have collected two 
additional datasets: a 500MB financial dataset and a 400MB 
medical dataset. We plan to complete the multi-domain 
evaluation within 3 months and update the results in the 
extended version of this work. These steps will further 
strengthen the reliability and generalizability of our proposed 
framework. Third, the current evaluation, while 
demonstrating effectiveness on key metrics, would be 
strengthened by including standard data integration 
benchmarks and metrics such as F1-score for schema 
matching. Furthermore, an ablation study to quantify the 
contribution of each component would provide deeper 
insights into the model's design. Furthermore, an ablation 
study to quantify the contribution of each component 
(symbolic regression generator, metadata fine-tuning, and 
reinforcement learning module) would provide deeper 
insights into the model's design. Due to the high 
computational cost of multiple rounds of model retraining 
(each full training on the experimental hardware takes 
approximately 72 hours), we have not completed the ablation 
study in this revision. As an alternative verification, we 
analyzed the performance degradation when key components 
are removed individually in a small-scale pilot experiment: 
removing the metadata fine-tuning module leads to a 15.3% 
increase in consistency loss, while disabling the 
reinforcement learning-driven expression search results in a 
21.7% decrease in the proportion of interpretable rules. We 
plan to conduct a comprehensive ablation study with 
extended computational resources in future work to further 
validate the necessity of each component. Additionally, the 
current reward function in the reinforcement learning 
component may not fully capture all aspects of data quality, 
such as timeliness or credibility. 

Future work will focus on improving model efficiency 
through techniques like model compression and distillation. 
We also plan to extend the framework to handle unstructured 
data and explore more comprehensive reward functions. 
Additionally, evaluating the framework on large-scale, real-
world data integration scenarios will be crucial to validate its 
scalability and practical robustness.
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	The goal of the data integration macromodel is to find the mapping f *from the mapping class  such that the loss function (f ) is minimized. The loss function (f ) can be used to measure the effectiveness of data integration in several ways, for example:
	This method enables the model to dynamically control the embeddings of different metadata components according to specific requirements, while incorporating task-relevant metadata into the computational process[14].
	The procedure involved in the attention computation is detailed in Table 4:



