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Abstract

INTRODUCTION: Large Language Models (LLMs), a major breakthrough in artificial intelligence, have been widely
applied across various domains in recent years. Their powerful capabilities in language comprehension and generation enable
effective handling of diverse natural language processing tasks, such as text generation, question answering, machine
translation, and information retrieval. This paper investigates the application of LLM technology in data integration, a core
aspect of data governance. In contrast to end-to-end black-box approaches, we reframe data integration as a problem of]
discovering interpretable mapping rules through symbolic regression.

OBJECTIVES: We begin by defining the fundamental problem of data integration. We then propose a general-purpose large
model framework for data governance, built on a deep symbolic regression foundation. The framework comprises a symbolic
expression generator and a metadata-enhanced executor, aiming to achieve both high accuracy and interpretability.
METHODS: The model is trained using a combination of recurrent neural networks and reinforcement learning techniques,
for expression generation and the execution of the discovered rules is structured based on a Transformer encoder architecture
enhanced with a dedicated metadata embedding layer. To enhance performance, we incorporate metadata fine-tuning, where
the generated symbolic expressions serve as key metadata to guide the integration process.

RESULTS: Finally, the proposed model is evaluated on two representative data integration tasks, with experimental results
demonstrating its effectiveness.

CONCLUSION: The results validate its practical quality and highlight the advantage of the symbolic regression paradigm
in enhancing interpretability.

Keywords: large language models (LLMs), metadata fine-tuning, Transformer,data governance, reinforcement learning, symbolic
regression.
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1. Introduction LLMs in data governance—particularly in enhancing data

integration, quality, and accessibility—has attracted growing
research interest[5].

Compared with traditional machine learning methods,
LLMs offer significant advantages in data governance due to
their superior generalization and inference capabilities[6].
While conventional algorithms are often constrained by
specific datasets, tasks, and environments, LLMs acquire

In recent years, the rapid advancement of artificial
intelligence has led to the widespread application of large
language models (LLMs) across various domains[1]. For
instance, in healthcare, LLMs aid in disease diagnosis[2]; in
education, they facilitate personalized learning[3]; and in
business, they enhance customer service optimization and
market forecasting[4]. Against this backdrop, the potential of
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broad linguistic knowledge and semantic understanding
through large-scale pre-training, enabling them to adapt to
diverse data governance contexts[7]. For example, in
database diagnostics, LLMs can perform contextual
understanding and multi-step reasoning to help database
administrators (DBAs) identify anomalies, trace the root
causes of slow SQL queries, and propose actionable
solutions[8, 9].

Moreover, LLMs facilitate natural language-based data
analysis, allowing users without technical expertise to
interact with databases through intuitive queries[10]. This
lowers the barrier to data analysis and promotes broader
participation in data governance, thereby enhancing data
utilization and value extraction[11]. Additionally, LLMs
contribute to data standardization and normalization by
recognizing patterns and structures within datasets, which
helps organizations establish consistent and accurate data
standards. For instance, during data cleansing, LLMs can
automatically detect and correct erroneous data patterns[12,
13].

Existing research has explored LLM applications across
various subfields of data processing, including data cleansing,
entity matching, schema matching, and data discovery[14].
For example, Schick proposed a graph-enhanced
interpretable data cleansing framework based on LLMs to
improve cleaning effectiveness[15]. Similarly, Shinn
investigated the use of LLMs to enhance the accuracy and
efficiency of entity matching[16].

However, several challenges remain in applying LLMs to
data governance. Issues such as model hallucination[17, 18],
high operational costs[19], and limited accuracy in complex
tasks[20] pose significant obstacles. Current approaches—

including chain-of-thought reasoning[21] and tool calling
functions —have been developed to mitigate these problems.
Nevertheless, these methods still exhibit limitations,
including over-reliance on inherent model knowledge, which
can lead to instability and errors, as well as a dependency on
large amounts of task-specific fine-tuning data that increases
costs and reduces adaptability to changes[22]. Applying
LLMs directly as black-box function approximators for data
integration faces challenges such as lack of interpretability
and limited generalization. To address this, our work explores
a novel pathway: leveraging LLMs within a symbolic
regression framework. This approach seeks to discover
explicit, human-understandable rules that define the data
integration mapping, thereby combining the pattern
recognition strength of LLMs with the transparency of
symbolic methods.

Therefore, this research aims to explore more robust,
efficient, and scalable methodologies for applying LLMs in
data integration and governance, with a focus on overcoming
the aforementioned challenges and expanding the potential of
LLM-driven data management systems[23].

2. Methodology
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2.1. Problem Statement of the Data
Governance Generalized Model

Given a dataset D {x;, yi}, where xi € RY andy; € R, the
Data Governance Generalized Model aims to find the
mapping f “from the mapping class F (f: R® — R) such that
the number of loss functions is minimized as follows:
f=arg I}égll(f)
(1)

where f denotes a nonlinear, expressive, and parameterized
function (e.g., a neural network) and 1 denotes the loss
function, defined as:

(f): Zﬁll l(f(xi)syl--
2

2.2. Data Integration Problem Definition

2.2.1 Dataset Definition

Let there exist n different data sources, and the data from each
source can be regarded as a subset. Let D = {Dy, D,..., Du }
be the whole dataset where D;j denotes the data of the i-th data
source, i =1, 2,..., n. Each can be further represented as Di =
{(Xil, yil), (Xiz, yiz), e e, (Ximi, yimi)}, where Xij is the
eigenvector of the i data entry in the j data source, yj; is the
corresponding label or objective value (e.g., classification of
the data, validity or not, etc.), j=1, 2, . . ., mi, mi + is the
number of data in the i data source.

2.2.2 Mapping Class Definition

Define a mapping class F, where the mapping f is used to
integrate and transform data from different data sources®!.
The mapping f should be able to handle data of different
formats and structures, convert them to a unified format, and
perform data cleansing, processing, and aggregation. For
example, f can be a large and complex model (e.g., a model
based on deep learning), which receives data from different
data sources as input and outputs the integrated and unified
data.

2.2.3 Loss Function Definition
The goal of the data integration macromodel is to find the
mapping f *from the mapping class such that the loss
function (f') is minimized. The loss function (f') can be used
to measure the effectiveness of data integration in several
ways, for example:
a. Data consistency loss
Measures the consistency of the integrated data in terms of
format, structure, and semantics. It can be defined as the
degree of difference in the key attributes of data from
different data sources after mapping. For example, let ¢ be
a key attribute[9], for two different data sources xij;; and
Xizj2, their differences in attribute ¢ can be expressed as
dc(f(xiljl),f(xizjz)), and the loss of data consistency can be

defined as the sum of the differences in all key attributes,
i.e., Lconsistency. Summed over all key attributes, i.e.,

Lconsistcncy (f):
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b. Loss of data integrity

Measures whether the integrated data is complete and
whether important information is missing. It can be
defined as the extent to which information present in the
original data is missing in the integrated data[10]. For
example, if there is a field k in the original data, and the
proportion of that field that is empty in the integrated data
is pk, then the data completeness loss can be defined as
Lcomplctcncss (f):kak

c. Data Accuracy Loss

A measure of how close the integrated data is to the true
value. Some common error measures can be used, such as
mean square error (MSE), mean absolute error (MAE), etc.
Let yj; be the true value, andy;j = f (x;; ) be the predicted

value output by mapping f, then the data accuracy loss can

be defined as LCE(f):-% NoyM, Ypmlogs (?n,m) ,
where N= )L m; is the number of data points in the whole
data set.

Considering the above aspects together, the loss
function L(f ) can be defined as L(f ) = alLconsistency (f

)*+BLcompleteness (f )+yLaccuracy (f ), where o, 3 and y
are the weight coefficients, which satisfy o + 3 + y= 1, and
are used to regulate the importance of different loss terms.

2.2.4 Mathematical formula expression
The data integration problems of LLM can be formally
defined by the following mathematical expression:
* .
f  =arg minf eF L(f) 4)
The optimal mapping f * is defined as the minimizer of the
loss function L(f) within the mapping class F.

In summary, the fundamental challenge of large-scale data
integration in data governance is to identify an optimal
mapping f* that minimizes the loss function L(f) over a given
dataset D and a predefined mapping class F, thereby
achieving efficient, accurate, and comprehensive data
integration.

2.2.5 Function Mapping to Symbolic Regression
The mathematical formulation in Sections 2.1 and 2.2 defines
the objective as finding an optimal mapping function. While
powerful, complex function approximators like deep neural
networks often act as black boxes, lacking interpretability. To
address this, we reframe the problem as a symbolic regression
task. The goal is to discover a human-readable mathematical
expression or rule that encapsulates the mapping. This
paradigm shift aims to yield integration rules that are not only
accurate but also interpretable and potentially generalizable.
The subsequent sections describe our framework for
achieving this goal.

2.3. Generalized Model for Data Governance

Our proposed architecture decouples the process into two
stages: (1) Symbolic Expression Generation: A generator
searches for the optimal integration rule expressed as a

symbolic sequence. (2) Metadata-Enhanced Execution: An
executor applies the discovered rule to the actual data, guided
by the rule itself which is treated as metadata. This separation
enhances both interpretability and performance.

The model employed in this study adopts a recurrent neural
network (RNN) architecture. The RNN parameterizes a
distribution, which can be mathematically expressed as
p(T]0), and allows backpropagation through a differentiable
loss function with respect to the parameters 6. Symbols in the
sequence T are generated sequentially, with each symbol Ti
being sampled from a predefined mathematical operation
library. For each symbol Ti, the RNN takes as input the parent
and sibling nodes of the symbol being sampled, and outputs
a probability distribution over the library L conditioned on
the preceding symbols T1, ..., T(i-1).

The recurrent neural network is further trained using
reinforcement learning techniques. Once a mathematical
expression is sampled, it is evaluated by a reward function
R(T), defined based on the normalized root mean square error
(RMS) as R(1)=1 / (1+RMS).

In this approach, the optimization problem is reduced to
maximizing the reward function. To achieve this, we consider
the standard policy gradient objective defined by the expected
reward, formulated as J(8)=E..,qg)[R(T)] . Thus, the
optimization task can be expressed as:

0 =arg maxgJ(0) )
However, since the reward function R(T) is non-differentiable
with respect to the learnable parameters ©, solving this
optimization problem is challenging. To address this, we
employ the REINFORCE reinforcement learning algorithm,
which transforms the gradient of the reward V,R(T) into the
gradient of the policy log-probability log(p(t|6,0)), as
follows:
Vo ey r.0) [R@(O15)Vy(R)
&((DOp()(O)dO=(R(1)))V (4
&(p(z,)(0)d(0)

Vyp(z,0
&= [ R() %p(rﬁ)d& (6)

&=R(z)Vylog 10i(p(z.0))p(z,0)p(z,0)d0
=E~f(1)10) [R(:)V0logi p(z.0)]
The gradient VgJ(0) is estimated by computing the sample
mean over a batch of N sampled expressions, as follows:

V(0= X, R(27)V,logiip(+716) (7)
The parameters 0 are optimized using gradient ascent:
0«—0+aR(1) J; Vlogloip(z,0) ®)

where o is the learning rate.

A "risk-seeking policy gradient" approach is adopted to
enhance the performance of the general model, which
optimizes for the best-case performance of the policy rather
than its average performance. To achieve this optimization
objective, a new learning goal is defined by selecting a subset
of expressions that demonstrate the highest performance
during the training process:

J(096)2E1~(p(r)|9) [R(T)lR(T)ZRe(H)] (9)
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where R € (0) is the (1-€)-quantile of the reward distribution
under policy p(t|0).

The same reinforcement technique is employed to estimate
the new objective function, wherein the top e-percentile of
expressions in each batch based on performance are selected
for gradient computation. The reinforcement learning model
training is shown in Table 1.

Hyperparameters:

e Batch size N: 512
e Learning rate o: 0.001

e Risk parameter €: 0.1
e Optimizer: Adam
e Maximum iterations: 10000

Table 1: Model Training with Reinforcement Learning

Input: Library of operations L, dataset D, batch size N,
learning rate o, risk parameter &

Output: Optimized parameters 0
Initialize RNN parameters 0
for iteration = 1 to MaxIterations do

Sample a batch of N expressions: {t!}~p(t|0) for
i=1,...N

Evaluate reward R(t™) for each expression
Compute quantile R_g& = quantile({R(t9)}, 1-¢)
Initialize gradient estimate: g=0
fori=1toNdo

if R(1®) > R_¢ then

g — g+ R(®) VO log p(t|0)

end if
end for
g < g/ (number of selected expressions)
0—0+a-g

end for

return 0

The symbolic expression t discovered by the RNN-based
generator defines the logic of the integration mapping. To
apply this logic effectively to heterogeneous data, we employ
a Transformer encoder as the execution engine. The
expression T is treated as a crucial piece of metadata that
guides the integration process.

Reward Alignment: The reward function
R(1)=1/(1+RMS) is designed to be inversely related to the
prediction error, thereby encouraging the model to generate
expressions that minimize error. This aligns with the
consistency and accuracy objectives in the loss function
$\mathcal {L}(f)$. To further align with completeness, we

2 EA

incorporate a penalty term in the reward for missing or invalid
outputs, though in this implementation, completeness is
primarily handled via the loss function during supervised
phases.

The overall architecture of the general-purpose model is
illustrated in Figure 1.
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Figure 1: Data Governance Model Architecture

2.4. Metadata fine-tuning technique
The general large model for data governance employs a
metadata fine-tuning technique. Metadata fine-tuning plays
a crucial role in ensuring that developers can accurately and
flexibly guide and control the behavior of AI models.
Leveraging rich metadata, the model's behavior can be
tailored to specific contexts and tasks, thereby maximizing
its effectiveness and mitigating potential biases. Figure 2
illustrates the schematic diagram of the metadata fine-tuning
process.

Metadata Fine-Tuning
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Figure 2: Metadata fine-tuning schematic
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2.4.1 Metadata Embedding Layer
In this study, model performance is enhanced primarily
through a fine-tuning technique that introduces a separate
metadata embedding layer to the Transformer encoder!'!l,
This approach enables the model to learn distinct
representations for input sequences and metadata. The
additional metadata embedding layer learns individual
embeddings for each metadata segment. First, the metadata is
embedded into a vector space compatible with the model's
input and output representations[12]. These embeddings are
then concatenated with the input sequence embeddings fed
into the Transformer encoder. When computing attention
weights for each input token, the Transformer can learn to
attend to metadata features. The hidden states of the model
are passed to the decoder, which incorporates both the hidden
states and the metadata embeddings while generating the
output sequence. This operation is illustrated in Table 2.
Formally, let the input sequence be X=[x;,X,,...,X,] and
metadata be M=[m;,m,,....,m]. The metadata embedding
layer projects each metadata element m; into a vector e,ER?
via an embedding matrix E,,ER{kxd} . The resulting
metadata embeddings E=[e,,e,,...,e,] are then concatenated
with the input embeddings E,=Embed(X) to form the
augmented input [E ;E]JeER*{(ntk)xd} . This combined
representation is fed into the Transformer encoder.
Parameters:

e d: embedding dimension
e k: number of metadata elements
e n: sequence length

Table 2. Transformer encoder operation on metadata
embedding layer

Operation Step Operation Content

Input Sequence [tokenl,token2,.... ,tokenN]

[metadatal,metadata2,....

Metadata ,metadataM ]
Metadata [embeddingl,embedding2,..
embedding layer .,embeddingM]

Output sequence  [outputl,ouput2,... ,outputP]

2.4.2 Participation in Attention Calculation

This approach enables the model to attend to different parts
of the input sequence based on the provided metadata. By
concatenating the metadata embeddings with the query and
key vectors, the self-attention mechanism can be conditioned
on the metadata[13]. During the computation of attention
weights for each input and output token, this concatenation
operation allows the model to directly learn relevant metadata
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features without requiring prior embedding into a separate
vector space.

Specifically, let Q, K, V be the query, key, and value
matrices derived from the input embeddings. The metadata
embeddings E are projected to dimensions compatible with Q
and K via learned matrices W,*Q and W, "K, yielding
Q,,=EW,"Q and K,,=EW,"K. The attention scores are then

QKT+Q K,
)

The context vector is computed as Z=SV.

Parameters:

d: dimension of key vectors

Win"Q, WnK: projection matrices for metadata

The steps involved in the attention computation process
are presented in Table 3.

computed as:S= Softmax (

Table 3: Participant Attention Calculation Steps

Steps Contents

Input

Query vector Q, key vector K,
value vector V, metadata M

Calculate self-attention score  s=QKT

Compute the attention weights A=MTS
considering the metadata

Compute the context vector. z=v*A

Output Context vector Z

2.4.3 Gated self-attention mechanism

This method enables the model to dynamically control the
embeddings of different metadata components according to
specific requirements, while incorporating task-relevant
metadata into the computational process[14].

The gated self-attention mechanism introduces a gating
function that modulates the influence of metadata on the
attention scores. Specifically:

Let G = o(W,E + by) be a gate vector, where o is the
sigmoid function, W; and b are learned parameters, and E
is the metadata embeddings. The attention scores are
computed as:

.
S= softmax (%)

A=GOA+(1-G)O(A+EW,)

(10)
(11)

Where W, is a learned projection matrix, and © denotes
element-wise multiplication. The context vectoris Z = S -
V.

Parameters:

e W, by: gating parameters.
e W,.: projection matrix for metadata in attention.
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The procedure involved in the attention computation is
detailed in Table 4:

Table 4: Transformer encoder operation of gated self-
attention mechanism

Operation Steps Operation content

Inputs Query vector Q, key vector K, value
vector V, metadata M

Calculate the self- S=QK™

attention score.

Compute gated self- Gzo(i)

attention weights. \/d—k

%

Compute attention A=G'S
weights considering

metadata.

Compute context 7=V"A

vector

Output Context vector Z

3. Experiment Preparation

Beginning with this section, an experiment is constructed to
evaluate a general large model for data governance. The
objective is to employ a metadata-tuned Transformer Neural
Network architecture (TNN-Tuner) to assess performance in
data integration with respect to consistency, completeness,
and accuracy, as well as to examine error identification in
data cleaning, cleaning accuracy, and rule violation issues.

3.1. Experimental Setting

The computing backbone utilizes an Intel Xeon Platinum
8380 CPU with 40 cores and 80 threads, providing strong
serial processing capabilities to ensure smooth execution of
computational tasks. The system integrates four NVIDIA
A100 Tensor Core GPUs, each equipped with 6912 CUDA
cores and 80 GB of HBM2 memory, to accelerate matrix
and convolution operations through parallel computing and
significantly reduce training time. A 1 TB DDR4 memory
module operating at 3200 MHz is deployed to buffer data
and model parameters efficiently.

A multi-tier storage architecture is implemented, featuring
an 8 TB enterprise-grade SSD as primary storage to minimize
loading times, along with NAS devices to ensure data security
and scalability. The operating system Ubuntu Server 20.04
LTS is selected for its reliability, open-source nature, and
extensive community support, making it well-suited for deep
learning applications.

In terms of software infrastructure, TensorFlow and
PyTorch are deployed as core frameworks using official
installation scripts. Corresponding CUDA and cuDNN
libraries are installed and configured according to the GPU
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setup to enable hardware acceleration. For data engineering,
a Python development environment is set up with essential
packages including Pandas, NumPy, and Scikit-learn. Jupyter
Notebook is installed to facilitate interactive code
development and execution.

To monitor system performance, the NVIDIA System
Management Interface (nvidia-smi) is used to track GPU
metrics, while Prometheus and Grafana are employed to
monitor key host parameters, ensuring optimal and stable
operation of the entire environment.

To fully leverage our computational infrastructure —

featuring four NVIDIA A100 GPUs and a high-core-count
Xeon CPU — we adopted a set of carefully calibrated
hyperparameters. We employed a large global batch size,
typically ranging from 512 to 2048, achieved through data
parallelism and gradient accumulation to maximize GPU
memory utilization. The learning rate was scaled linearly with
the batch size, initialized between le-4 and 3e-3, and
followed a linear warmup phase over the first 5,000 iterations
to ensure stability before transitioning to a cosine annealing
decay schedule. All models were optimized using AdamW (3
1=0.9, B2=0.999) with a weight decay of 0.05 and trained in
mixed bfloatl6 precision to accelerate computation and
reduce memory overhead. To prevent data loading
bottlenecks, we configured the data loader with 20 worker
processes and enabled pinned memory for efficient host-to-
device transfer.

3.2. Experimental Datasets

The experimental data in this study were sourced from the
IMDB (Internet Movie Database), one of the world’s most
renowned and authoritative databases for films, television
series, and entertainment content. It encompasses detailed
information across various types of visual media, including
movies, TV shows, and short films. Specific data points
include basic film information (e.g., title, genre, release year),
cast and crew details (directors, writers, actors, etc.), plot
summaries, user ratings, and vote counts.

The IMDb dataset is stored in compressed tab-separated
values (TSV) format using UTF-8 encoding. The first line of
each file contains headers describing each column. The
special value \N' is used to indicate missing or null values in
specific fields.

The following key datasets were used in the experiment:

title.akas.tsv.gz: Contains localized titles and language-
specific versions of titles along with related attributes and
identifiers.

title.basics.tsv.gz: Provides basic information about titles,
including unique identifiers, title type, primary and original
titles, adult content flag, release year, runtime, and genres.

title.crew.tsv.gz: Includes director and writer information
linked to titles via unique identifiers.

title.episode.tsv.gz: Contains episode-specific
information for TV series, such as parent series ID, season
number, and episode number.
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title.principals.tsv.gz: Lists principal cast and crew
members for each title, including their roles and categories.

title.ratings.tsv.gz: Stores user ratings and vote counts,
facilitating analysis of popularity and reception.

name.basics.tsv.gz: Provides  biographical  and
professional details of individuals in the industry, including
names, birth and death years, primary professions, and known
for titles.

The total dataset size is approximately 350 MB, covering
1,000 visual media titles (including films, TV series, and
shorts) and information on 3,700 industry professionals.

Missing Value Handling: Fields marked with \N’ account
for approximately 8% of the data (e.g., some older titles lack
ratings). Data cleaning involved removing columns with a
missing rate exceeding 50% (such as isAdult) and filling
missing categorical values (e.g., genre) with the mode (e.g., “

Unknown”").

3.3. Baseline method

In this study, eight baseline methods are employed for
comparative analysis. Each method is adapted to the data
integration task as follows, with a focus on their applicability
to tasks like entity resolution and data fusion:

Raha: An error detection method based on feature
engineering. We adapt it by extracting features from the
integrated dataset and using its rule-based system to detect
inconsistencies and missing values.

Baran: A hybrid error correction approach. We apply it to
correct detected errors by combining rule-based and learning-
based methods.

Garf: A deep learning-based error correction method. We
train it on our dataset to predict corrected values for erroneous
entries.

HoloClean: A data repair system leveraging data quality
rules. We integrate it with our dataset to repair errors based
on probabilistic inference and integrity constraints.

These data cleaning and repair systems are adapted to
detect and correct inconsistencies (e.g., in entity attributes)
and missing values across integrated datasets, which are key
aspects of ensuring integration quality.

Rotom: A meta-learning data augmentation framework.
We use it to generate synthetic training examples for entity
matching and data cleaning tasks.

Robertadet: A binary classifier based on a pre-trained
language model (RoBERTa). We fine-tune it on our dataset
to detect errors and inconsistencies in the integrated data.

T5: Error correction using a generative pre-trained model.
We fine-tune TS5 to generate corrected data entries from
erroneous ones. Raffel et al.

JellyFish-13B: A large language model-based approach
for error detection and data imputation. We use it to detect
errors and impute missing values by leveraging its pre-trained
knowledge.

These LLM-based approaches are evaluated for their
ability to understand and execute data integration tasks, such
as generating unified records from heterogeneous sources,

providing a strong comparison point for our LLM-driven
framework.

4.Analysis of experimental results

4 1. Data preparation

The primary data integration task involved aligning movie
entities from IMDb and Douban Movie datasets, which
involves schema matching and entity resolution.
Complementary data were collected from Douban Movie,
comprising Chinese translated titles, user ratings from
domestic audiences, and user-generated reviews. Additional
financial metrics, including production budgets and box
office revenues, were obtained from professional film
industry databases. Data acquisition was performed through
a combination of web crawling and authorized API interfaces.

4.2. Experimental Steps

4.2.1 Entity Recognition and Alignment

In the stage of entity recognition and alignment, the objective
is to enable the large model to accurately identify various
types of entities across different data sources and establish
correct correspondences among them.

Movie Entity Recognition: The model performs
comprehensive analysis of multi-source movie information
(such as titles, release years, directors, and cast) to determine
whether they refer to the same film.

Actor Entity Recognition: Actor-related information from
different sources is analyzed using features such as stage
names, birth dates, and filmography to verify identity
consistency.

Entity Alignment: After successful entity recognition,
records referring to the same entity across sources are aligned
using a confidence metric. The model calculates a matching
score between each record and the entity, representing the
likelihood of a correct match. Records with high confidence
scores are then integrated to form a unified representation,
facilitating subsequent data fusion.

4.2.2 Implementation of Data Fusion Strategy

For numerical attributes such as rating data, multiple factors
need to be considered during the data fusion process[15].
First, the distribution of ratings from different sources is
analyzed by calculating their standard deviation to assess data
variability. Additionally, the credibility of each platform must
be taken into account!!®). For instance, IMDb ratings, which
are derived from a large user base and exhibit a relatively
small standard deviation, are generally more stable and
reliable. Thus, they can be assigned a higher weight in the
fusion process. When the analysis targets the domestic
market, Douban Movie ratings may carry more reference
value within China, and therefore can be given increased
weight accordingly. Finally, a weighted average approach is
applied to integrate ratings from various sources, resulting in
a comprehensive composite score.
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For textual attributes such as plot summaries, the large
model first performs semantic analysis on descriptions from
different data sources!'”). It extracts key narrative elements—
such as main characters and pivotal events— from each
summary. These elements are then merged across sources. If
discrepancies exist between summaries, the model compares
the descriptions of key plot points and employs semantic
understanding to integrate and refine the information,
resulting in a more comprehensive and coherent plot
summary.

4.3. Experimental Results

4.3.1 Consistency Assessment

The primary evaluation focuses on measuring the degree of
discrepancy in the integrated data generated by the large
model, particularly concerning the recognized entities. This
assessment includes consistency in entity names and
consistency in entity attributes.

Entity name consistency primarily refers to the names of
entities such as movies, actors, and directors[18]. This metric
calculates the proportion of records across different data
sources where the entity names are exactly identical relative
to the total number of records. It serves as an indicator of the
accuracy of entity name matching during data
integration[19].

Entity attribute consistency primarily pertains to attributes
such as film genres and runtimes, as well as actor-related
properties like gender and nationality. This metric measures
the proportion of records with identical attribute values across
different data sources relative to the total number of records,
reflecting the consistency of entity attributes in the integrated
data.

According to the definition of the consistency loss in the
data integration large model,

w1, L2
jr1=1

Lconsistcncy (f): Zc Zni1:1 Znizzz Z . dc(f(xiljl)af(xizjz))
1 2=

the convergence behavior of the consistency loss function
over successive training epochs is recorded, as shown in
Figure 3.

The superior performance of TNN-Tuner in consistency
loss demonstrates its effectiveness in the core data integration
task of entity resolution, ensuring that aligned entities have
consistent attributes across sources.

consistency loss over Epochs on imdb dataset

JelyFish-13

Figure 3. Consistency Loss Function Iteration for Data
Integration

As shown in the results, the consistency loss of the TNN-
Tuner model decreases sharply and remains at a low level
throughout the entire training process. In contrast, Raha,
Garf, and JellyFish-13B exhibit significant loss reduction in
the early stages; however, their loss curves demonstrate
considerably increased fluctuation in later phases,
highlighting the instability of these models. Meanwhile,
HoloClean, Robertadet, and T5 show relatively slow
reduction in loss during the initial training epochs, with loss
values in certain iterations even higher than those of other
models. This may be attributed to their limited adaptability to
the data integration task, potentially due to deficiencies in
feature extraction and data fusion, which hinder the effective
capture of critical information and lead to sluggish
convergence.

It is important to note that while baselines like Raha and
HoloClean are designed for data cleaning, their performance
on these metrics indicates their utility in addressing data
quality issues that are inherent to the data integration process.
However, our framework is designed to tackle the broader
problem, including rule discovery and fusion.

4.3.2 Completeness Assessment

This evaluation process primarily examines whether the
integrated data contains missing information, such as by
calculating the proportion of movie records with absent
critical attributes (e.g., director, leading actors, or ratings).
Based on the definition of the completeness loss for the data
integration large model in Section 2.2.3, Leompleteness (= Xk P
the convergence behavior of the completeness loss function
over successive training epochs is recorded, as shown in
Figure 4.

completeness loss over Epochs on imdb dataset
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Figure 4. Iteration of Integrity Loss Function for Data
Integration

It can be observed that the completeness loss of the TNN-
Tuner model starts at a relatively low level and rapidly
converges to near-zero as training progresses. In comparison,
although Raha and Rotom also exhibit a gradual decline in
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completeness loss, their convergence speed is noticeably
slower, and their final loss values remain significantly higher
than those of TNN-Tuner. Models such as Robertadet, Baran,
and Garf show a relatively flat decreasing trend in
completeness loss, with their values staying at a considerable
level even in the later stages of training. HoloClean and TS
demonstrate limited improvement in completeness loss
during the initial phases, and only modest reduction in the
later epochs. In contrast, JellyFish-13B maintains a high
completeness loss throughout the entire training process, with
minimal decrease over time.

4.3.3 Accuracy Assessment

The accuracy evaluation primarily focuses on the correctness
of information matching[20]. The information matching
accuracy is calculated by comparing the integrated movie
data—such as plot summaries and actor roles—against
authoritative reference sources, and computing the proportion
of correctly matched entries. The performance of the large
data integration model is evaluated using an accuracy loss
function, defined as Laccuracy (D)=-

1 cea fa . -
EZ}L M, yn’mlog{{Qj (yn,m), as illustrated in Figure 5.

accuracy loss over Epochs on imdb dataset
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Figure 5. Iteration of data integration accuracy loss
function

5. Conclusion

This study formalizes the problem of data governance within
the realm of large language models as a symbolic regression
task, providing a precise mathematical definition of data
integration challenges. We constructed a deep symbolic
analysis framework based on a Transformer Neural Network,
integrating the sequence processing capabilities of recurrent
neural networks with reinforcement learning-based dynamic
policy optimization. This enables the model to adapt
effectively to complex data governance scenarios.

A metadata fine-tuning scheme was proposed for the
Transformer encoder model, incorporating a dedicated
metadata embedding layer to enhance the model's
interpretability and processing capacity. Experimental
evaluations under multiple loss functions demonstrated the
superior performance of our proposed model across
consistency, completeness, and accuracy metrics.

However, this study has several limitations. First, the
proposed model relies on large-scale computational
resources, which may hinder its practicality in resource-
constrained environments. Second, the experiments were
conducted primarily on structured movie data; performance
on unstructured or highly heterogeneous data remains to be
verified. Regarding statistical significance, we will
supplement cross-validation (5-fold) on the existing dataset
and compute p-values using paired t-tests to verify the
significance of performance differences between our model
and baselines. For domain generality, we have collected two
additional datasets: a S00MB financial dataset and a 400MB
medical dataset. We plan to complete the multi-domain
evaluation within 3 months and update the results in the
extended version of this work. These steps will further
strengthen the reliability and generalizability of our proposed
framework. Third, the current evaluation, while
demonstrating effectiveness on key metrics, would be
strengthened by including standard data integration
benchmarks and metrics such as Fl-score for schema
matching. Furthermore, an ablation study to quantify the
contribution of each component would provide deeper
insights into the model's design. Furthermore, an ablation
study to quantify the contribution of each component
(symbolic regression generator, metadata fine-tuning, and
reinforcement learning module) would provide deeper
insights into the model's design. Due to the high
computational cost of multiple rounds of model retraining
(each full training on the experimental hardware takes
approximately 72 hours), we have not completed the ablation
study in this revision. As an alternative verification, we
analyzed the performance degradation when key components
are removed individually in a small-scale pilot experiment:
removing the metadata fine-tuning module leads to a 15.3%
increase in consistency loss, while disabling the
reinforcement learning-driven expression search results in a
21.7% decrease in the proportion of interpretable rules. We
plan to conduct a comprehensive ablation study with
extended computational resources in future work to further
validate the necessity of each component. Additionally, the
current reward function in the reinforcement learning
component may not fully capture all aspects of data quality,
such as timeliness or credibility.

Future work will focus on improving model efficiency
through techniques like model compression and distillation.
We also plan to extend the framework to handle unstructured
data and explore more comprehensive reward functions.
Additionally, evaluating the framework on large-scale, real-
world data integration scenarios will be crucial to validate its
scalability and practical robustness.
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	The goal of the data integration macromodel is to find the mapping f *from the mapping class  such that the loss function (f ) is minimized. The loss function (f ) can be used to measure the effectiveness of data integration in several ways, for example:
	This method enables the model to dynamically control the embeddings of different metadata components according to specific requirements, while incorporating task-relevant metadata into the computational process[14].
	The procedure involved in the attention computation is detailed in Table 4:



