EAIl Endorsed Transactions
on Scalable Information Systems

Research Article EALLEU

KADP-SQL: Knowledge-Augmented Generation and
Dual-Path Validation in Text-to-SQL

Jun Peng!, Jinguo You!”, Xiang Li!, Jiaman Ding!, Lianyin Jia!

'Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming,

650500, Yunnan, China

Abstract

The widespread application of Large Language Models (LLMs) has significantly advanced the development
of the Text-to-SQL task, which aims to translate natural language questions posed by users into executable
structured query statements. This allows non-expert users to efficiently access databases. However, existing
models still struggle to generate correct SQL statements in the absence of sufficient knowledge, particularly
under complex query scenarios, where they are prone to syntactic errors and semantic deviations. Moreover,
most current approaches rely solely on execution feedback for SQL correction via a single path, making
it difficult to detect semantic errors. To address these challenges, we propose KADP-SQL, which divides

the Text-to-SQL task into two main modules: Knowledge-Augmented Generation and Dual-Path Validation.
This framework structurally represents manually annotated evidence and incorporates web-based external
knowledge to enhance SQL generation. Additionally, we introduce a dual-path SQL validation method to
detect and correct errors in generated SQL queries. Through extensive experiments conducted on multiple
closed-source and open-source LLMs, our proposed KADP-SQL achieves an execution accuracy of 70.53% on
the BIRD development set and 88.22% on the Spider test set. These results demonstrate the effectiveness and

adaptability of the proposed method.

Received on 06 October 2025; accepted on 11 January 2026; published on 02 February 2026
Keywords: LLM, Text-to-SQL, Knowledge-Augmented Generation, Dual-Path Validation

Copyright © 2026 Jun Peng et al., licensed to EAI This is an open access article distributed under the terms of the CC BY-
NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any

medium so long as the original work is properly cited.
doi:10.4108/eetsis. 10499

1. Introduction

The Text-to-SQL task aims to translate natural language
questions posed by users into executable Structured
Query Language (SQL) statements within a database,
thereby enabling non-expert users to efficiently access
and utilize structured data [1]. This task not only
holds significant practical value but has also witnessed
remarkable progress in recent years with the rise of large
language models (LLMs) [2, 3].

Although LLMs have achieved significant success
in the field of Text-to-SQL, it remains challenging to
accurately convert user questions into SQL statements
in the absence of specific domain knowledge, relevant
rules, and explanatory external information. Even with
state-of-the-art LLMs, generalization across different
datasets still needs improvement [4]. As illustrated in

*Corresponding author. Email: jgyou@kust.edu.cn

2 EAI

Figure 1, when only the existing information is used as
input to the LLMs, it may generate incorrect SQL. For
example, the incorrect arithmetic operation “T1.'Free
Meal Count (Ages 5-17) / T1.‘Enrollment (Ages 5-17)"
may lead to an empty result. In contrast, when external
knowledge is provided, the LLMs is able to perform
the correct computation and generate the correct SQL
statement. To address errors in SQL generation caused by
the lack of knowledge, some studies introduce formulaic
knowledge [5], encoding domain knowledge into a
structured form to build a retrievable knowledge base,
which is then used to support SQL generation. While this
approach can enhance model performance, it requires
extensive manual annotation, resulting in very low
efficiency.

Knowledge-to-SQL [6] proposes automatically gener-
ating "expert knowledge" for each query based on the
user question and database schema to aid SQL genera-
tion. KAT-SQL [7] introduces a method for building a

EAI Endorsed Transactions on

1 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<jgyou@kust.edu.cn>

J. Peng et al.

Among the schools with an SAT excellence rate of over 0.3, what is the highest eligible free
rate for students aged 5-17?

Excellence rate = NumGE1500 / NumTstTakr; Eligible free rates for students aged 5-17 =
‘Free Meal Count (Ages 5-17)" / "Enrollment (Ages 5-17)°

‘B
When calculating ratios in education datasets, it's often necessary to convert integers to
real numbers to avoid integer division issues. Several sources suggest that accurate rate
comparisons typically require explicit type conversion to get meaningful decimal results.

SQL generation without external knowledge

SELECT MAX(T1. Free Meal Count (Ages 5-17)" / T1.Enrollment (Ages 5-17)") FROM frpm
AS T1 INNER JOIN satscores AS T2 ON T1.CDSCode = T2.cds WHERE T2.NumGE1500 /
T2.NumTstTakr > 0.3 X

SELECT MAX(CAST(T1.’Free Meal Count (Ages 5-17)" AS REAL) / T1.’Enrollment (Ages
5-17)") FROM frpm AS T1 INNER JOIN satscores AS T2 ON T1.CDSCode = T2.cds WHERE
CAST(T2.NumGE1500 AS REAL) / T2.NumTstTakr > 0.3

Figure 1. An example of SQL generation enhanced by external
knowledge. Without external knowledge, the arithmetic operation
was incorrectly handled. The external knowledge compensates for
the LLM’s lack of domain understanding, enabling it to generate
the correct SQL.

knowledge base using LLMs, retrieving the most relevant
entries as prompts during SQL generation. Although
these methods extend the scope of knowledge available
for SQL generation to some extent, their sources are
relatively singular, relying entirely on the LLMs internal
training data. Moreover, the cost of constructing such
knowledge bases is high, the reusability of knowledge
is limited, and the retrieval process requires the design
of precise and efficient mechanisms. Additionally, due
to the hallucination problem inherent in LLMs [8], the
knowledge generated may appear plausible but actually
be incorrect, and the generation process still depends
on manually crafted few-shot prompts. In certain real-
world applications, knowledge must also possess a
degree of timeliness.

While the BIRD dataset has provided manually
annotated evidence, existing studies have pointed out
certain shortcomings in these annotations [9]. For
example, the development set contains cases of missing
or incorrectly labeled evidence. This research also
confirms that omitting evidence leads to a significant
drop in model performance. Moreover, error analyses in
studies such as CHESS [10], MCS-SQL [11], and MAC-
SQL [12] reveal that large language models sometimes
fail to properly utilize the manually annotated evidence.
On the other hand, earlier datasets like Spider [13] did
not provide any form of evidence at all.

Current LLMs possess outstanding capabilities in
language understanding and code generation. However,
when faced with complex query intents, the SQL they
generate still tends to suffer from syntax errors, semantic
deviations, and execution failures, which severely limit
the usability and robustness of these models in real-
world scenarios [14]. To address this issue, researchers

2 EA

have proposed various post-processing strategies to
improve the quality and execution accuracy of the final
SQL output.

DIN-SQL [15] introduced a zero-shot self-correction
module that applies two different prompting strategies
to correct SQL without execution. MAC-SQL [12]
designed a Refiner agent that inspects and corrects
SQL based on execution feedback. Other frameworks
such as OpenSearch-SQL [16], XiYan-SQL [17], CHASE-
SQL [18], CSC-SQL [19], Fin-SQL [20], PET-SQL [21],
C3 [22], DAIL-SQL [2], CHESS [10], and MCS-SQL [11]
adopt another approach: generating multiple candidate
SQL queries for a natural language question, using
execution results to correct or eliminate candidates, and
selecting the most consistent one through a consistency
strategy or choosing one as the final SQL using a fine-
tuned selection model. Although these methods improve
model performance, they rely on a single correction
path during SQL post-processing, making it difficult
to detect semantic errors. Additionally, they depend on
multiple candidate SQLs, which increases the cost and
time required to generate the final SQL query and poses
challenges for practical deployment.

To address these challenges, we propose a Text-to-
SQL architecture named KADP-SQL. This architecture
utilizes knowledge to enhance the preliminary SQL
generation and adopts a dual-path verification strategy
to check and correct the preliminary SQL, aiming to
identify and fix as many erroneous SQLs as possible.

Specifically, to maximize the use of existing
knowledge, we represent the existing evidence in the
dataset in a structured form as SQL queries, so that
the LLMs can better understand it. To avoid errors
in SQL generation caused by lack of knowledge, we
introduce external knowledge via web search, accessing
high-quality web pages through search engines and
retrieving highly relevant content. This also enables
real-time information retrieval, improving the model’s
adaptability across different domains. During the
preliminary SQL generation, we integrate both types of
knowledge into the prompt to improve the quality and
correctness of the preliminary SQL. To identify SQLs
with syntax and semantic errors as much as possible,
we introduce a dual-path verification strategy to check
SQL correctness. In the first verification path, to identify
the specific error locations as much as possible, we
first decompose the natural language question into
a query goal and sub-questions, then check whether
the preliminary SQL satisfies each part and provide
revision suggestions for the incorrect parts. In the second
verification path, to identify errors in complex queries as
much as possible, we convert the preliminary SQL into
a natural language query plan, propagate and amplify
potential errors in the SQL into the query plan, and then
analyze the SQL’s correctness based on the query plan
and provide modification suggestions for the incorrect

EAIl Endorsed Transactions on

2 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

parts. Finally, we correct the erroneous SQL using the
results from the dual-path verification, and iteratively
optimize the SQL through the checking and correction
modules to obtain the final SQL.

We conducted extensive experiments of KADP-SQL
on both the BIRD and Spider datasets, validating
its effectiveness with both open-source and closed-
source LLMs. The experimental results demonstrate
the effectiveness of the proposed KADP-SQL. Our main
contributions are summarized as follows:

(1) We propose a novel knowledge-augmented
generation method that improves the quality and
correctness of preliminary SQL generation in Text-to-
SQL models, as well as their adaptability across different
domains;

(2) This paper introduces a dual-path SQL accuracy
validation method, which offers stronger generality and
error detection capability compared to traditional single-
path checking approaches;

(3) Our method, while generating only a single SQL
query, achieves an execution accuracy of 70.53% on the
development set of the BIRD dataset and 88.22% on the
test set of the Spider dataset.

The remainder of this paper is structured as follows.
Section 2 presents the existing methods relevant to
this study. Section 3 elaborates on the design of the
proposed model framework and its implementation
details. Section 4 evaluates the performance of the
proposed method through various experiments and
analyzes the effectiveness of each module. Finally,
Section 5 concludes the paper and points out the future
work.

2. Related Work
2.1. Prompt Engineering in Text-to-SQL

Early studies have confirmed that prompt engineering
can effectively optimize the performance of LLMs [23,
24]. Research methods such as Chain-of-Thought
(CoT) [25, 26] and Retrieval-Augmented Generation
(RAG) [27] have enhanced the reasoning capabilities
of LLMs by providing enriched contextual informa-
tion. The DAIL-SQL [2] system analyzed the impact
of different problem formulations, example selections,
and prompt structures on SQL generation performance,
demonstrating that well-designed prompts can signifi-
cantly improve both performance and efficiency. Mean-
while, several studies [3, 4, 28-30] have validated the
effectiveness of CoT prompting in Text-to-SQL tasks.
AP-SQL [31] incorporates Chain-of-Thought (CoT) and
Graph-of-Thought (GoT) to enhance model performance
in SQL generation. Works such as DIN-SQL [15], MAC-
SQL [12], SQL-PaLM [32], and C3 [22] leverage zero-
shot and few-shot prompts, using carefully designed
templates to guide LLMs in generating high-quality SQL.

2 EA

Some studies [33] also employ least-to-most prompting
to address complex problems.

Schema linking is also a widely adopted strategy,
which reduces noise and computational overhead by
selecting only the relevant schema elements as input. TA-
SQL [34] and PET-SQL [21] first use an LLM to generate
a preliminary SQL query and then extract the related
tables and columns from it as the subsequent schema
input. RSL-SQL [35] proposes a bidirectional schema
linking strategy: in the forward direction, it uses an LLM
to directly select the relevant tables and columns, while
in the backward direction, it uses an LLM to generate a
preliminary SQL query to extract the schema, thereby
supplementing any key tables or columns that may have
been missed in the forward linking. Finally, the results
of the forward and backward linking are merged to
obtain the final simplified schema. Solid-SQL [36] uses
an LLM to create an augmented dataset for fine-tuning
schema linking, and then performs schema prediction
using the fine-tuned model. SchemaGraphSQL [37] and
LGESQL [38] store schemas in a graph database and
retrieve relevant sub-schemas from it. However, schema
linking still carries substantial risks, because if any
necessary elements are missed, the final result will
also be wrong. In addition, relying solely on prompt
engineering may be insufficient for handling queries
with different levels of complexity, which makes it
necessary to use external knowledge for enhancement,
and the use of external knowledge can improve SQL
generation even without performing schema linking.

2.2. Multi-Candidate Generation in Text-to-SQL

With the rapid development of LLMs, multi-candidate
generation methods have become one of the mainstream
approaches in the Text-to-SQL field. To obtain the
correct SQL query as much as possible, these methods
generate multiple candidate SQL statements using
different prompt styles, different few-shot examples,
and different models. Then, they select the final SQL
statement from the candidate set using self-consistency,
model-based ranking, or dedicated selector models.
Representative methods include OpenSearch-SQL [16],
XiYan-SQL [17], CHASE-SQL [18], CSC-SQL [19],
CHESS [10], Agentar-Scale-SQL [39], and CM-SQL [40].
Because their candidate sets provide broad coverage,
these approaches have achieved high performance on
both the BIRD and Spider datasets.

However, this approach faces substantial computa-
tional resource and cost challenges. Generating a large
number of candidate SQL statements requires significant
computational resources, and if each candidate SQL
must undergo correctness verification, the overall cost
grows exponentially. In addition, many equivalent SQL
statements may exist in the candidate set, resulting

EAIl Endorsed Transactions on

3 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

J. Peng et al.

in redundancy. The final selection also presents great

challenges, making it difficult to choose the correct SQL.

2.3. Knowledge-Augmented Text-to-SQL

Recent studies have explored the use of knowledge
to enhance Text-to-SQL models. For example, [5]
constructed a formulaic knowledge bank and applied
appropriate manual post-processing. Subsequently, [4]
released the BIRD benchmark dataset, in which most
questions are accompanied by manually annotated
knowledge to support SQL generation. However, this
type of annotation is costly and heavily dependent
on domain experts. To overcome the bottleneck of
manual annotation, [6] proposed the Knowledge-to-SQL
framework, which fine-tunes a model to automatically
generate expert knowledge that is then used to enhance
SQL generation. SEED [9] analyzed the deficiencies of
manually annotated evidence in the BIRD benchmark
dataset and utilized few-shot prompting to guide LLMs
in automatically generating evidence. Similarly, [7]
utilized few-shot prompting to guide the LLM in
constructing a reusable knowledge base, from which
relevant content is retrieved during SQL generation for
enhancement. [41] extracts schema knowledge from the
database and manually converts it into training data
usable by LLMs, and the constructed knowledge data
is eventually used to pre-train the LLM to enhance
SQL generation. SLENet [42] uses similarity retrieval
to obtain knowledge that is semantically similar to
the current question from public datasets such as
WikiSQL [43] to enhance SQL generation. LPE-SQL [44]
builds an expandable auxiliary knowledge base from
the Text-to-SQL training set and then retrieves similar
example knowledge from the knowledge base to enhance
SQL generation. However, although these methods
can improve model performance, they require manual
annotation, which leads to low efficiency, and the cost
of constructing a knowledge base is relatively high. In
addition, they rely entirely on the internal corpus of
LLMs, which often introduces certain limitations during
knowledge generation.

2.4. SQL Check and Correction

In the field of Text-to-SQL, analyzing the correctness
of SQL statements and correcting them is a critically
important research direction. DIN-SQL [15] first
proposed a zero-shot self-correction mechanism, which
corrects SQL statements through carefully designed
prompts without executing them. MAC-SQL [12]
introduced a multi-agent collaboration strategy, where
the Refiner agent diagnoses SQL statements by invoking
tools to obtain execution feedback and combining
it with self-consistency, and then corrects the faulty
SQL accordingly. SEA-SQL [45] designed an execution
feedback-driven iterative correction mechanism, which

checks and corrects SQL statements based on execution
results under a zero-shot setting. SQLFixAgent [46]
incorporates an SQLRefiner agent to inspect and correct
SQL statements; this agent calls tools to obtain database
execution feedback to check the SQL, and if the
check fails, it performs the correction. Similarly, [47]
modifies incorrect SQL using database error messages
and finally selects the best SQL statement through a
voting mechanism across multiple models. Moreover,
multi-candidate methods such as OpenSearch-SQL [16],
XiYan-SQL [17], CHASE-SQL [18], CSC-SQL [19], and
CHESS [10] also leverage execution results to correct
candidate SQLs. However, existing studies often rely
on the self-consistency strategy of LLMs to determine
SQL correctness. During the correction process, they
typically only rewrite and fix SQL statements that fail
due to syntax errors, while lacking effective mechanisms
to identify and correct queries that are executable but
semantically incorrect.

3. Methods

3.1. Overall Framework

This section provides an overview of the proposed KADP-
SQL framework, which consists of five main components:
(1) Evidence-to-SQL conversion; (2) Web search for
external knowledge; (3) Preliminary SQL generation;
(4) SQL correctness checking; and (5) SQL correction.
KADP-SQL first utilizes an LLM to convert the manually
annotated evidence in the dataset into structured SQL
queries. It then retrieves external knowledge related to
the question through a web search API. The structured
evidence and the retrieved external knowledge are
jointly provided to the LLM to generate a preliminary
SQL statement. This preliminary SQL is passed to the
SQL checking module for dual-path validation. If any
issues are identified, the SQL correction module is
used to revise the SQL. Through iterative optimization
between the checking and correction modules, the final
SQL statement is produced. The overall architecture of
KADP-SQL is illustrated in Figure 2, and the following
sections delve into the details of each component.

3.2. Evidence-to-SQL

In this section, we first extract the manually annotated
evidence from the dataset and provide the database
schema together with the evidence as input to the
LLMs, prompting the model to convert the evidence
into a structured SQL query. The generated SQL is
then executed on the corresponding database to obtain
execution feedback. In cases where the result set is too
long, only the first six rows are retained as the final
execution feedback.

To minimize errors in the SQL generated from the
structured representation of the evidence, we adopt

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

2 EA 4

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

Input VSQL Generation

Question

Evidence-to-SQL

2f
fi

FROM frpm

Evidence: Eligible free rate for K-12 =

. . 'Free Meal Count (K-12)° / “Enroliment]
= (K-12) ,
SQL: SELECT ‘Free Meal Count (K-12)" /|
‘Enrollment (K-12)" AS ‘Eligible free rate’

B

Refiner

ﬂﬁ
[

i

DD

(7]

Database Scheme

- ===i

[o o]
s-§SL-—

Il
EA
27

External Knowledge: Domain knowledge,
oy —fformula knowledge, standards and rules,—>—
and related explanations, etc.

Generator PreSQL

Final SQL

Evidence(OPtionaD Web Search Refiner
\\y
VSQL Correction VSQL Check @ |
srans @ Result 1 Question Question

A

sa|

Final SQL

Check Result

®

FixSQL Rfiner

@

<= |Merge|
L=
N[=

- Decomposition -

Chcker LM

=

»
=
=

Query Plan

Result 2

PreSQL

Figure 2. Overview of the KADP-SQL framework, which is composed of five parts: (1) Evidence-to-SQL, which formats the provided
evidence into SQL statements; (2) Web Search, which retrieves relevant external knowledge through web search; (3) Preliminary
SQL Generation (PreSQL), enhancing SQL generation using external knowledge; (4) SQL Correctness Checking, which verifies SQL
correctness through dual-path validation; and (5) SQL Correction, which refines SQL queries that fail validation based on the checking

results.

an execution-guided strategy to optimize the SQL
statements. Specifically, we input both the SQL and its
execution result into the LLM, prompting the model to
analyze the correctness of the SQL and correct any errors
to ensure that the evidence is accurately represented in
SQL form. Since the evidence typically involves only a
small number of tables and columns, the SQL is less
prone to error, so only a single round of correction is
performed. Manually annotated evidence often varies in
format and style, and frequently references elements in
the database schema. Converting it into structured SQL
format helps the LLM better understand and utilize the
information.

3.3. Web Search for External Knowledge

Although the BIRD dataset provides evidence for
most questions, some questions still lack relevant

knowledge or are annotated with incorrect information.

Moreover, datasets like Spider do not provide any related
knowledge at all, which may lead to various errors
during SQL generation. Therefore, we propose retrieving

external knowledge through web search, aiming to find
relevant external information for each user’s question.

In this component, we input the user question and
database schema into a web search API to guide
the retrieval of external knowledge required for SQL
generation. To avoid redundancy, we specifically restrict
the search to content that does not overlap with the
existing knowledge. Specifically, the retrieved external
knowledge includes domain knowledge, formulaic
knowledge, standards and rules, and related explanatory
information. For each question, we perform an
independent search to retrieve its corresponding
external knowledge, ensuring relevance and further
reducing errors caused by knowledge gaps. In addition,
to prevent the retrieved knowledge from being overly
redundant, we utilize an LLM to further refine and
summarize the search results, eliminating unnecessary
information.

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

2 EA 5

J. Peng et al.

3.4. Preliminary SQL Generation

During the preliminary SQL generation process, in order
to improve the quality and accuracy of the preliminary
SQL, we make full use of the results obtained from the
previous two components. We input the structured SQL
generated from evidence in the first part, the external
knowledge retrieved in the second part, the question,
and the database schema into the LLMs, prompting it to
generate the preliminary SQL statement. To enhance the
LLMs’ understanding of the evidence, we also include
the original evidence in the prompt to guide the SQL
generation.

3.5. SQL Check

To improve the accuracy of the generated preliminary
SQL as much as possible, we propose a dual-
path accuracy verification method to validate the
correctness of the SQL. The divide-and-conquer
strategy decomposes a complex problem into smaller
subproblems, solves each subproblem individually,
and then combines their solutions to obtain the
final answer. Inspired by this idea, we adopt a
reverse thinking approach in the first verification path
by decomposing the original question for backward
validation. Specifically, the question is provided as input
to the LLM, and Few-shot learning is used to guide
the LLM in performing the decomposition. The user
question is broken down into a query target and sub-
questions. Then, both the preliminary SQL and the
decomposition result are fed into the LLM, prompting
it to verify whether the SQL satisfies each component
of the decomposition. During the verification process,
we use Few-shot examples. To avoid the examples
affecting the LLM’s judgment and reasoning, we use
three examples with a final verification result of YES and
three examples with a result of NO as demonstrations.
The query plan (also known as the execution plan)
is a detailed set of execution steps generated by a
relational database optimizer that transforms an abstract
query request into a series of concrete operations. This
plan details the methods for accessing tables, the join
strategies, and the specific operations performed on
the data. CHASE-SQL [18] employs a chain-of-thought
based on query plans to guide LLMs in generating
candidate SQL queries. Inspired by this approach, in the
second verification path we use the query plan to check
the correctness of the SQL. We first input the preliminary
SQL into the LLM and then use a pre-designed Few-shot
prompt to guide the LLM to convert the SQL statement
into a query plan described in natural language. In this
step, we instruct the LLM to represent all the syntax
and semantic information of the preliminary SQL in the
query plan so that any potential errors in the SQL are
fully reflected. Next, the preliminary SQL and its query
plan are fed into the LLM, and similar to the first path,

2 EA

we use three sample cases with a final check result of YES
and three sample cases with a final check result of NO to
guide the LLM in judging and analyzing the correctness
of the SQL. The query plan magnifies potential errors in
the SQL and clearly describes all the steps of the SQL,
which is beneficial for the LLM to judge and analyze the
correctness of the SQL.

In all verification paths, to accurately detect syntax
errors or empty result sets, we adopt an execution-
guided strategy to check the SQL. The SQL statement
is executed on the corresponding database to obtain
execution feedback. In cases where the result set is too
long, only the first six rows are retained as the final
execution feedback. To identify as many erroneous SQL
statements as possible, we merge the verification results
from both paths: if either path determines that the
SQL is incorrect, the SQL is classified as erroneous. To
enable the correction module to better revise the SQL
statements, for each SQL identified as problematic, we
prompt the LLM to first provide its judgment and then
offer modification suggestions for the SQL.

3.6. SQL Correction

In this module, we correct the SQL statements identified
as erroneous during the verification process. First, the
verification results from the checking module are used as
error analysis, and then combined with the preliminary
SQL into the prompt to guide the LLM in performing
the correction. To prevent the model from repeating the
same mistakes across multiple correction attempts, we
maintain a history of previous modifications and include
this history in the next prompt to guide the model
during further corrections. Through iterative refinement
between the checking and correction modules, the final
SQL statement is obtained. We set the maximum number
of iterations to three.

4. Experiments

4.1. Datasets

We evaluate the effectiveness of the proposed KADP-SQL
on two widely used Text-to-SQL benchmark datasets:
Spider and BIRD.

The Spider dataset is a large-scale, cross-domain
Text-to-SQL benchmark constructed through manual
annotation. It contains 10,181 natural language
questions paired with 5,693 complex SQL queries.
Spider spans 200 different databases across 138 distinct
domains, with each database comprising multiple tables
and rich inter-table relationships. The training and
testing sets use entirely different database schemas and
query structures, making it a rigorous benchmark for
evaluating a model’s cross-domain generalization ability.

The BIRD dataset is a large-scale, cross-domain Text-
to-SQL benchmark designed for real-world application

EAIl Endorsed Transactions on

6 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

Table 1. Execution accuracy of KADP-SQL on the BIRD development set across different models and difficulty levels.

Moderate (464) Challenging (145) Total (1534)

Model Simple (925)
Qwen-2.5-coder-32b 65.41
KADP-SQL + Qwen-2.5-coder-32b (ours) 71.89

" GPT-4.1-mini 6843
KADP-SQL + GPT-4.1-mini (ours) 72.65

" Grok-3-mini 6714
KADP-SQL + Grok-3-mini (ours) 73.51

" DeepSeekV3 6886
KADP-SQL + DeepSeek-V3 (ours) 73.84

" Gemini-2.0-flash 7146
KADP-SQL + Gemini-2.0-flash (ours) 75.57

49.35 43.45 58.47
58.84 57.24 66.56 (1 8.09)
- 5302 4966 ¢ 61.99
58.84 62.76 67.54 (1 5.55)
- 5474 4897 ¢ 61.67
60.99 56.55 68.12 (1 6.45)
- 5496 4759 ¢ 62.65
62.07 55.86 68.58 (1 5.93)
- 538 53.79 ¢ 64.47
62.50 64.14 70.53 (1 6.06)

Table 2. Execution accuracy of KADP-SQL on the Spider test set across different models and difficulty levels.

Model Count Easy (470) Medium (857) Hard (463) Extra (357) All (2147)
Qwen-2.5-coder-32b 88.51 85.76 76.89 68.91 81.65
_KADP-SQL + Qwen-2.5-coder-32b (ours) _ 9340 _____ 90.08 8294 7815 87.28(15.63)
Gemini-2.0-flash 91.91 88.10 80.56 74.51 85.05
KADP-SQL + Gemini-2.0-flash (ours) 93.19 89.96 86.83 79.27 88.22 (1 3.17)

Table 3. Performance comparison of different methods on the
BIRD development set.

Table 4. Performance comparison of different methods on the
Spider test set.

Method EX (%) Method EX (%)
CHASE-SQL + Gemini-1.5-pro [18] 7490 XiYan-SQL [17] 89.65
XiYan-SQL [17] 73.34 MCS-SQL + GPT-4 [11] 89.60
OpenSearch-SQL + GPT-40 [16] 69.30 RSL-SQL + GPT-40 [35] 87.90
OmniSQL-32B [48] 69.23 CHASE-SQL + Gemini-1.5 [18] 87.60
CHESS [10] 68.31 OmniSQL-32B [48] 87.60
RSL-SQL + GPT-4o [35] 67.21 CHESS [10] 87.20
Distillery + GPT-4o0 [49] 67.21 OpenSearch-SQL + GPT-40 [16] 87.10
E-SQL + GPT-4o [50] 65.58 DAIL-SQL + GPT-4 [2] 86.60
MCS-SQL + GPT-4 [11] 63.36 DIN-SQL + GPT-4 [15] 85.30
KADP-SQL + Gemini-2.0-flash (ours) 70.53 KADP-SQL + Gemini-2.0-flash (ours) 88.22

scenarios. It contains 12,751 question-SQL pairs across
95 databases, with a total data volume of 33.4GB,
covering 37 specialized domains such as finance,
healthcare, sports, education, and blockchain. Unlike
traditional evaluation benchmarks, BIRD introduces
manually annotated external knowledge to enhance
model understanding of questions, database schemas,
and values, and it also provides database description
files. Compared with Spider, BIRD includes fewer
database types, but its SQL queries are more complex,
requiring more advanced SQL operations and external
knowledge to generate accurate SQL statements.

2 EA

4.2. Evaluation Metrics

According to the evaluation criteria of the BIRD and
Spider test suites, we use execution accuracy (EX) as
the primary metric to evaluate the effectiveness of
the framework. Execution accuracy is defined as the
proportion of predicted SQL queries whose execution
results exactly match those of the gold SQL queries,
i.e., the percentage of queries that produce the same
execution results as the gold SQL out of the total number
of queries.

EAIl Endorsed Transactions on

7 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

J. Peng et al.

Table 5. Effectiveness of Evidence-to-SQL on the BIRD development set across different models and difficulty levels.

Model Simple Moderate Challenging Total
+Evidence 65.41 49.35 43.45 58.47
-2.5-coder-32b
Qe 25e0derI® iBvidence10SQL 66,70 (+129) 52.80 (+3.45) 49.66 (+6.21) 6089 (+2.42)
GPT-4.1-mini +Evidence 68.43 53.02 49.66 61.99
,,,,, _________tBvidence-to-SQL 69.19(+0.76) 55.39 (+2.37) 54.48 (+4.82) 63.62 (+1.63)
Grok-3omini +Evidence 67.14 54.74 48.97 61.67
,,,,,,,,,,,,,, t+Evidence-to-SQL 68.76 (+1.62) 55.82(+1.08) 50.34 (+1.37) 63.10 (+1.43)
DeepSeek-V3 +Evidence 68.86 54.96 47.59 62.65
+Evidence-to- .84 (+0. .39 (+0. .66 (+2. . +0.
P Evidence-to- SQL 69.84(+0.98) 55.39 (+0.43) 49.66 (+2.07) 63.56 (+0.91)
+Evidence 71.46 53.88 53.79 64.47

ini-2.0-flash
Gemini-2.0-flas +Evidence-to-SQL

72.76 (+1.30)

54.31 (+0.43)

54.48 (+0.69)

65.45 (+0.98)

4.3. Baseline Model

In this paper, to comprehensively evaluate the
performance of KADP-SQL, we conducted extensive
experiments on multiple closed-source and open-
source models. Specifically, experiments were carried
out on Gemini-2.0-flash, DeepSeek-V3, Grok-3-mini,
GPT-4.1-mini, and Qwen-2.5-coder-32b to verify the
generalization ability and effectiveness of our proposed
solution.

4.4. Results

Bird Results. We conducted experiments using several
different baseline models on the development set of the
BIRD dataset. As shown in Table 1, the results present
the performance of the proposed KADP-SQL framework.
When using the open-source model Qwen-2.5-coder-
32b, our method achieved an overall execution accuracy
improvement of 8.09% compared to the baseline model,
with increases of 9.49% and 13.79% on the medium and
challenging difficulty levels, respectively. This shows
that our method performs well on open-source models.

When using closed-source LLMs, our method
achieved higher performance. With Gemini-2.0-flash,
the execution accuracy on the BIRD development set
reached 70.53%. Specifically, compared to the baseline
models, the execution accuracy improved by 5.55% on
GPT-4.1-mini, 6.45% on Grok-3-mini, and by 5.93%
and 6.06% on DeepSeek-V3 and Gemini-2.0-flash,
respectively. These results indicate that KADP-SQL has
generalization ability across different LLMs.

In addition, Table 3 presents a performance
comparison between the KADP-SQL framework and
other competing methods on the BIRD dataset. It
can be observed that our method outperforms most
existing approaches that rely on high-cost baseline
models, even when using low-cost baseline models.
Compared with methods that improve accuracy by
generating multiple candidate SQL queries (such as

2 EA

OpenSearch-SQL, XiYan-SQL, and CHASE-SQL), our
method achieves comparable execution accuracy while
generating only a single SQL query, indicating that it
remains competitive under a single-generation strategy.

Spider Results. To demonstrate the effectiveness of the
proposed KADP-SQL on datasets without provided
evidence, we also evaluated its performance on
the test set of the Spider dataset. We used the
default configuration of our method, with the only
adjustment being the removal of the structured evidence
representation component, as the Spider dataset does not
include any evidence. As shown in Table 2, we conducted
evaluations on both an open-source baseline model and
a closed-source baseline model. When using the open-
source model Qwen-2.5-coder-32b, our method achieved
an execution accuracy of 87.28%, representing a 5.63%
improvement over the baseline. With the closed-source
model Gemini-2.0-flash, the execution accuracy reached
88.22%, an improvement of 3.17% over the baseline.

Furthermore, as shown in Table 4, we present a
performance comparison between our method and other
strong methods on the Spider dataset. Similar to the
results on the BIRD dataset, our method outperforms
most approaches based on high-cost models and
achieves performance close to the leading methods. This
highlights the generalizability of our approach across
different datasets.

45. Effectiveness of Evidence-to-SQL

To verify the effectiveness of formatting manually
annotated evidence into SQL statements, we conducted
experiments on the BIRD dataset using multiple
models. As shown in Table 5, for both open-source
and closed-source models, converting evidence into
SQL statements leads to performance improvements
across all difficulty levels. These results confirm that
transforming manually annotated evidence into SQL

EAIl Endorsed Transactions on

8 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

Table 6. Effectiveness of Web Search on the Spider test set across different models and difficulty levels, and performance comparison
with SEED.

Model Easy Medium Hard Extra All
No Knowledge 88.51 85.76 76.89 68.91 81.65
Qwen-2.5-coder-32b SEED [9] 90.85 (+2.34) 87.51 (+1.75) 78.19 (+1.30) 72.83(+3.92) 83.79 (+2.14)
Web Search 92.34 (+3.83) 88.21 (+2.45) 78.40 (+1.51) 72.27 (+3.36) 84.35 (+2.70)
S No Knowledge 9191 88.10 80.56 7451 ¢ 85.05
Gemini-2.0-flash SEED [9] 91.28 (-0.63) 88.10 80.99 (+0.43) 78.99 (+4.48) 85.75(+0.70)

Web Search 92.34 (+0.43) 88.80 (+0.70) 83.80 (+3.24) 77.87 (+3.36) 86.68 (+1.63)

Verification Path
100

Path 1
S mm Path 2
> 80 HE Dual Path
o
=
o
<
~ 60
(3]
(]
<
(&)
|
g 4o
(7}
w 20
0
Qwen-2.5-coder-32b GPT-4.1-mini Grok-3-mini DeepSeek-V3 Gemini-2.0-flash
Errors: 575 Errors: 549 Errors: 551 Errors: 538 Errors: 510
Model

Figure 3. Effectiveness of dual-path SQL correctness checking on the BIRD development set across different models.

Table 7. Ablation results of KADP-SQL with different components on the BIRD development set.

Method Execution Accuracy (%) A(%)
KADP-SQL + Qwen-2.5-coder-32b 66.56 -

w/o Evidence-to-SQL 64.44 2.12
w/o Web Search 63.65 2.91
w/o Check & Correction 62.78 3.78

" KADP-SQL + Gemini-2.0-flash 70.53 -

w/o Evidence-to-SQL 68.90 1.63
w/o Web Search 68.16 2.37
w/0 Check & Correction 67.29 3.24

form can aid model understanding and enhance the Spider dataset and compare it with related methods.

generation of preliminary SQL queries. As shown in Table 6, we assess the performance of two
models under three different settings: No Knowledge,
4.6. Effectiveness of Web Search with evidence generated by SEED, and with external

knowledge obtained through web search. The results

In this section, we evaluate the effectiveness of web
! show that for both open-source and closed-source

search for external knowledge on the test set of the

EAI Endorsed Transactions on
' 9 Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

J. Peng et al.

models, although the evidence generated by SEED
performs better than our method at the most challenging
difficulty level, our method achieves greater overall
improvement, demonstrating the effectiveness of the
external knowledge we obtain.

4.7. Eftectiveness of SQL Check

To verify the effectiveness of dual-path error checking,
we conducted experiments on the BIRD dataset. As
shown in Figure 3, we performed error checking
on preliminary SQL generated with knowledge
augmentation across multiple models and compared the
accuracy of error detection under three settings: (1) Path
1: checking SQL using question decomposition; (2) Path
2: checking SQL using the query plan; (3) Dual Path:
dual-path checking, where the SQL is judged as incorrect
if either path identifies it as erroneous. The results show
that Dual Path effectively combines the strengths of Path
1 and Path 2, demonstrating good performance in SQL
correctness checking.

4.8. Ablation Study

To evaluate the impact of each component in
the proposed KADP-SQL architecture on overall
performance, we conducted ablation studies on the
development set of the BIRD dataset using one open-
source model and one closed-source model. As shown
in Table 7, for the open-source model Qwen-2.5-coder-
32b, removing the Evidence-to-SQL module resulted in
a 2.12% drop in overall execution accuracy, removing the
web search module led to a 2.91% drop, and removing
the SQL checking and correction module caused a 3.78%
decrease. It can be seen that excluding any module leads
to performance degradation on the open-source model.
Similarly, for the closed-source model Gemini-2.0-flash,
the removal of the Evidence-to-SQL module, web search
module, and SQL checking and correction module
resulted in performance drops of 1.63%, 2.37%, and
3.24%, respectively, further confirming the importance
of these components within the overall framework.

5. Conclusion and Future Work

In this paper, we propose a Text-to-SQL framework
named KADP-SQL, which enhances Text-to-SQL
performance through knowledge-augmented generation
and dual-path validation. To improve the quality
of preliminary SQL, we format manually annotated
evidence into SQL representations to help the LLM
better understand the evidence, and supplement the
LLM’s knowledge with external information retrieved
via web search. These two sources of information are
combined to enhance the generation of preliminary SQL.
Additionally, to identify errors in SQL statements, we
introduce a dual-path validation approach that verifies

2 EA

SQL correctness through question decomposition and
query plan analysis. Through extensive experiments
on two different types of datasets, we demonstrate the
effectiveness of the proposed KADP-SQL.

Although KADP-SQL has shown promising effective-
ness, there are still areas worth further exploration. In
future work, mechanisms for verifying the validity of
knowledge can be investigated to reduce the influence of
invalid or redundant information. Moreover, when han-
dling complex queries, the SQL checking module may
still have limitations. Future research could consider
incorporating multi-agent collaboration mechanisms or
more fine-grained error detection methods to further
enhance the model’s ability to process complex queries.

Conltlicts of Interest
The authors declare that there is no conflict of interest
regarding the publication of this article.

Data Availability

The dataset used in this paper is available for download
at the following link: BIRD: https://bird-bench.
github.io/, Spider: https://yale-1lily.github.io/
spider.

EAIl Endorsed Transactions on

10 Scalable Information Systems

| Volume 12 | Issue 7 | 2025 |

https://bird-bench.github.io/
https://bird-bench.github.io/
https://yale-lily.github.io/spider
https://yale-lily.github.io/spider

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

Appendix A. Prompt Template
A.1. Prompt Template for Preliminary SQL Generation

You are an experienced database expert. You are provided with a database schema and a natural language question below.
Your task is to understand the schema and the question and generate a valid SQLite query to answer the question using the
provided hints and external knowledge.

Database Schema:
|{DATABASE_SCHEMA|

Question:
{QUESTION}

Hint:
{HINT}

Hint expressed in SQL statement:
{HINT_SQL)}

External Knowledge:
{Web_Search_External_Knowledge}

Instructions:

—— Ensure that only the columns needed to answer the question are selected, and no irrelevant columns are included.
—— Ensure that the final query returns all the information asked in the question.

—— Carefully consider whether the question requires unique values, and use "DISTINCT’ when necessary.

—— Only one SQLite query statement can be generated, not insert, delete, update, or create statements.

Take a deep breath and think step by step to find the correct SQLite SQL query. If you follow all the instructions and
generate the correct query, I will give you 1 million dollars.

Please output in the following JSON format(You must ensure that the output result can be parsed by python’s json.loads.):

{
"Reason": "The reason why you arrived at the final SQL query.",
"SQL": "The SQL query you ultimately generated."

1}

A.2. Prompt Template for SQL Correctness Check in Path 1

You are an experienced SQL database expert. Your task is to judge whether [Pre_SQL] satisfies each part of the question
decomposition based on all the information provided.

[Database Schema]: {DATABASE_SCHEMA|}

[Question]: {QUESTION}

[Hint]: {HINT}

[Hint expressed in SQL statement]: {HINT_SQL}

[External Knowledge]: {Web_Search_External_Knowledge}

[Pre_SQL]: {SQL}

[Execution result of Pre_SQL](When the execution result has multiple rows, take the first six rows): {EXECUTE_RESULT}

[Question Decomposition]: {QUESTION_DIVIDE_RESULT}

[Examples]: {FEW_SHOT}

, EAI Endorsed Transactions on
g / 1 Scalable Information Systems
D] | Volume 12 | Issue 7 | 2025 |

J. Peng et al.

Instructions:

—— Please refer to the example and, based on the execution results of the [Pre_SQL], the database schema, the hint, and
external knowledge, determine whether the [Pre_SQL] satisfies each part of the question decomposition.

—— If the result is 'NO’, a modification suggestion needs to be given in the reason.

—— You only need to give modification suggestions, but you do not need to give modified SQL.

—— The restatement should be consistent with the [Question Decomposition], and no modifications should be made.

Take a deep breath, think step by step, and make the right judgment. If you follow all the instructions and make the
right judgment and analysis, I will give you $1 million.

Please output as follows(Just output content in the following format without any unnecessary explanation):
1. Targets: <Restate the targets in [Question Decomposition|>: <Determine whether Pre_SQL satisfies this part, and the
result is "YES’ or 'NO’>;
Reason: <Give the reason for judgment based on all the information provided, and give the modification opinion of
Pre_SQL if it is not satisfied .>
2. Subquery_1: <Restate the subquery in [Question Decomposition] in sequence>: <Determine whether Pre_SQL satisfies this
part, and the result is "YES’ or 'NO’>;
Reason: <Give the reason for judgment based on all the information provided, and give the modification opinion of
Pre_SQL if it is not satisfied .>
3. Subquery_2: <If there are multiple subqueries in the [Question Decomposition], please give them in order in this format.
If there are no further subqueries, there is no need to reply to this section.>: <Determine whether Pre_SQL satisfies this
part, and the result is "YES’ or 'NO’>;
Reason: <Give the reason for judgment based on all the information provided, and give the modification opinion of
Pre_SQL if it is not satisfied .>

Does [Pre_SQL] satisfy all parts of the question: <The result is "YES’ or '"NO’>;
Reason: <Give the reason for judgment based on all the information provided.>

A.3. Prompt Template for SQL Correctness Check in Path 2

You are an experienced SQL database expert. Your task is to determine whether the predicted SQL can correctly answer
the question, given the database schema, a question, a predicted SQL query, query plan of predicted SQL, and some
additional information.

Important Notes:

—— The Query Plan of Pre_SQL is not obtained from actual SQL execution. It was generated directly from the Pre_SQL text
using an LLM. Therefore, the plan may contain or reflect semantic or structural errors present in [Pre_SQL] itself.

—— Use the Query Plan is only to help understand how [Pre_SQL] operates, so that you can make the right judgment.
[Database Schema]: {DATABASE_SCHEMA}

[Question]: {QUESTION}

[Hint]: {HINT}

[Hint expressed in SQL statement]: {HINT_SQL}

[External Knowledge]: {Web_Search_External Knowledge}

[Pre_SQL]: {SQL}

[Execution result of Pre_SQL](When the execution result has multiple rows, take the first six rows): {EXECUTE_RESULT}
[Query plan of Pre_SQL]: {QUERY_PLAN}

[Examples]|: {FEW_SHOT}

Instructions:

, EAI Endorsed Transactions on
g / 12 Scalable Information Systems
P] | Volume 12 | Issue 7 | 2025 |

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

result for the question.

—— Please refer to the example, first analyze each step of the query plan of Pre_SQL, then combine the execution results of
Pre_SQL, the database schema, the hint, and external knowledge to determine whether [Pre_SQL] can return the correct

—— If the result is "NO’, a modification suggestion needs to be given in the reason.
—— You only need to give modification suggestions, but you do not need to give modified SQL.

Take a deep breath, think step by step, and make the right judgment. If you follow all the instructions and make the
right judgment and analysis, I will give you $1 million.

Please output as follows(Just output content in the following format without any unnecessary explanation):

Does [Pre_SQL] return the correct result for the question: <Determine whether [Pre_SQL] can return the correct result for
the question, and the result is "YES’ or 'NO’>;

Reason: <Give the reasons for the judgment. If the result is NO, please provide modification suggestions for [Pre_SQL].>

A.4. Prompt Template for SQL Correction

You are an experienced SQL database expert. Your task is to correct the predicted SQL given the database schema, a
problem, the error analysis of the predicted SQL, and some additional information.

[Database Schema]:
{DATABASE_SCHEMA|

[Question]:
{QUESTION}

[Hint]:
[HINT}

[Hint expressed in SQL statement]:
{HINT_SQL}

[External Knowledge]:
{Web_Search_External_Knowledge}

[Pre_SQL]:
{SQL}

[Error analysis of Pre_SQL]:
{ERROR_ANALYSIS}

[SQL Correction History]:
{CORRECTION_HISTORY}

Take a deep breath, think step by step, and correct the SQL query. If you follow all the instructions and fix the query
correctly, I will give you 1 million dollars.

Please output in the following JSON format(You must ensure that the output result can be parsed by python’s json.loads.):

i

"Reason": "The reason why you arrived at the final SQL query.",

"Corrected_SQL": "Your corrected SQL query."

1}

2 EAI

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

J. Peng et al.

References B.D. and ScHockAERT, S. [eds.] Proceedings of the 31st
International Conference on Computational Linguistics (Abu
[1] Car R., Xu, B., ZHANG, Z., YANG, X., L1, Z. and Liang, Z. Dhabi, UAE: Association for Computational Linguistics):

(2]

(3]

(2018) An encoder-decoder framework translating natural
language to database queries. In Lang, J. [ed.] Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (Stockholm, Sweden: AAAI Press):
3977-3983. doi:10.24963/1JCAIL.2018/553.

Gao, D., Wang, H,, L1, Y,, Sun, X., QiaN, Y., Ding, B. and
Znou, J. (2024) Text-to-sql empowered by large language
models: A benchmark evaluation. Proc. VLDB Endow.
17(5): 1132-1145. doi:10.14778/3641204.3641221.
RajkuMaR, N, L1, R. and Banpanau, D. (2022) Evaluating
the text-to-sql capabilities of large language models.
CoRR abs/2204.00498. doi:10.48550/ARXIV.2204.00498.

(12]

(13]

337-353.

Wang, B, ReN, C,, Yang, J., Liang, X, Bay, J., CHar, L., YaN,
Z. et al. (2025) MAC-SQL: A multi-agent collaborative
framework for text-to-SQL. In RamBow, O., WANNER,
L., Aripianaki, M., AL-Kuavrira, H., EuGenio, B.D. and
SCHOCKAERT, S. [eds.] Proceedings of the 31st International
Conference on Computational Linguistics (Abu Dhabi, UAE:
Association for Computational Linguistics): 540-557.
Yu, T.,, Zuang, R., Yang, K., Yasunaca, M., WaNgG,
D., L1, Z,, Ma, J. et al. (2018) Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In RiLOFF,

[4] Ly, J., Huy, B., Qu, G,, Yang, J., L1, B., L1, B., WaNgG, B. et al. E., CHiang, D., HockeNMAIER,]. and Tsuym, J. [eds.]
(2023) Can llm already serve as a database interface? a big Proceedings of the 2018 Conference on Empirical Methods
bench for large-scale database grounded text-to-sqls. In in Natural Language Processing (Brussels, Belgium:
Proceedings of the 37th International Conference on Neural Association for Computational Linguistics): 3911-3921.
Information Processing Systems, NIPS "23 (Red Hook, NY, doi:10.18653/v1/D18-1425.

USA: Curran Associates Inc.). [14] Froratou, A., Psaiiibas, F, Znao, E, Dsep, S,

[5] Dou, L., Gao, Y., Ly, X., Pan, M., Wang, D., CHg, W,, HagrertHER, G., Tan, W., CaHooN, J. et al. (2024) NL2SQL
Zuan, D. et al. (2022) Towards knowledge-intensive is a solved problem... not! In 14th Conference on Innovative
text-to-SQL semantic parsing with formulaic knowledge. Data Systems Research, CIDR 2024, January 14-17, 2024
In GoLDBERG, Y., Kozareva, Z. and ZHaNG, Y. [eds.] (Chaminade, HI, USA: www.cidrdb.org).

Proceedings of the 2022 Conference on Empirical Methods in [15] Pourreza, M. and Rarier, D. (2023) DIN-SQL: decom-
Natural Language Processing (Abu Dhabi, United Arab posed in-context learning of text-to-sql with self-
Emirates: Association for Computational Linguistics): correction. In On, A., NaumanN, T., GLOBERSON, A.,
5240-5253. doi:10.18653/v1/2022.emnlp-main.350. Saenko, K., Harpt, M. and LeviNg, S. [eds.] Advances

[6] Hong, Z., YuaN, Z., CueN, H., Zuang, Q., Huang, E and in Neural Information Processing Systems 36: Annual
Huang, X. (2024) Knowledge-to-SQL: Enhancing SQL Conference on Neural Information Processing Systems 2023,
generation with data expert LLM. In Ku, L.W., MARTINS, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
A. and SrRIKUMAR, V. [eds.] Findings of the Association for 2023.

Computational Linguistics: ACL 2024 (Bangkok, Thailand: [16] X1, X., Xu, G., ZHao, L. and Guo, R. (2025) Opensearch-
Association for Computational Linguistics): 10997-11008. sql: Enhancing text-to-sql with dynamic few-shot and
doi:10.18653/v1/2024.findings-acl.653. consistency alignment. Proc. ACM Manag. Data 3(3):

[7] Bakx, J., Samurowitz, H., HassanzaDpeH, O., SUBRAMA- 194:1-194:24. doi:10.1145/3725331.

NIAN, D., Suirai, S., GLiozzo, A. and BHATTACHAR)YA, [17] Gao, Y, L, Y., L1, X, Su1, X,, Znyu, Y., Wang, Y., L1,
D. (2025) Knowledge base construction for knowledge- S. et al. (2024) Xiyan-sql: A multi-generator ensem-
augmented text-to-SQL. In Cug, W., NABENDE, J., SHUTOVA, ble framework for text-to-sql. CoRR abs/2411.08599.
E. and Pienvar, M.T. [eds.] Findings of the Association do0i:10.48550/ARXIV.2411.08599.

for Computational Linguistics: ACL 2025 (Vienna, Aus- [18] Pourreza, M., L1, H., Sun, R., CHuNg, Y., TaLaer S.,
tria: Association for Computational Linguistics): 26569- Kakkagr, G.T., Gan, Y. et al. (2025) CHASE-SQL: multi-
26583. path reasoning and preference optimized candidate

[8] Huang, L., Yu, W., Ma, W., Znong, W., Feng, Z., Wang, H., selection in text-to-sql. In The Thirteenth International
CHeN, Q. et al. (2025) A survey on hallucination in large Conference on Learning Representations, ICLR 2025, April
language models: Principles, taxonomy, challenges, and 24-28, 2025 (Singapore: OpenReview.net).
open questions. ACM Trans. Inf. Syst. 43(2): 42:1-42:55. [19] SnEng, L. and Xu, S. (2025) CSC-SQL: corrective self-
do0i:10.1145/3703155. consistency in text-to-sql via reinforcement learning.

[9] Yun, J. and Leg, S. (2025) SEED: enhancing text- CoRR abs/2505.13271. doi:10.48550/ARXIV.2505.13271.
to-sql performance and practical usability through [20] Zuang, C., Mao, Y., Fan, Y, My, Y., Gao, Y., CHeN,
automatic evidence generation. CoRR abs/2506.07423. L., Lou, D. et al. (2024) Finsql: Model-agnostic 1Ims-
do0i:10.48550/ARXIV.2506.07423. based text-to-sql framework for financial analysis.

[10] Tavrags, S., Pourreza, M., CHANG, Y., MIRHOSEINI, A. In Barcer6, P, SANcuEz-P1, N., Meriou, A. and
and SaBeri, A. (2024) CHESS: contextual harnessing SupARsHAN, S. [eds.] Companion of the 2024 International
for efficient SQL synthesis. CoRR abs/2405.16755. Conference on Management of Data, SIGMOD/PODS
d0i:10.48550/ARXIV.2405.16755. 2024, June 9-15, 2024 (Santiago, Chile: ACM): 93-105.

[11] Leg, D., Park, C., KM, J. and Park, H. (2025) MCS- doi:10.1145/3626246.3653375.

SQL: Leveraging multiple prompts and multiple-choice
selection for text-to-SQL generation. In Ramsow, O.,
WANNER, L., ApipiaNnaki, M., AL-KuaALira, H., EuGgenio,

[21]

L1, Z., Wang, X., Zuao, J., Yang, S., Du, G., Hu, X,
ZHANG, B. et al. (2024) PET-SQL: A prompt-enhanced
two-stage text-to-sql framework with cross-consistency.

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

2 EA ‘

https://doi.org/10.24963/IJCAI.2018/553
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.48550/ARXIV.2204.00498
https://doi.org/10.18653/v1/2022.emnlp-main.350
https://doi.org/10.18653/v1/2024.findings-acl.653
https://doi.org/10.1145/3703155
https://doi.org/10.48550/ARXIV.2506.07423
https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.1145/3725331
https://doi.org/10.48550/ARXIV.2411.08599
https://doi.org/10.48550/ARXIV.2505.13271
https://doi.org/10.1145/3626246.3653375

KADP-SQL: Knowledge-Augmented Generation and Dual-Path Validation in Text-to-SQL

(22]

CoRR abs/2403.09732. doi:10.48550/ARXIV.2403.09732.
Dong, X., Zuang, C., Gg, Y., Mao, Y., Gao, Y., CueN, L.,
LiN, J. et al. (2023) C3: zero-shot text-to-sql with chatgpt.

models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, May 1-5, 2023
(Kigali, Rwanda: OpenReview.net).

CoRR abs/2307.07306. doi:10.48550/ARXIV.2307.07306. [34] Qu, G, Ly, J.,, L1, B, Qin, B.,, Huo, N., Ma, C. and
[23] L, A., Hu, X., Wen, L. and Yu, PS. (2023) CHENG, R. (2024) Before generation, align it! A novel
A comprehensive evaluation of chatgpt’s zero- and effective strategy for mitigating hallucinations
shot text-to-sql capability. CoRR abs/2303.13547. in text-to-sql generation. In Ku, L., MAaRrTINs, A.

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

doi:10.48550/ARXIV.2303.13547.

WEy, J., Bosma, M., Zuao, V.Y., Guu, K., Yu, AW, LESTER,
B., Du, N. et al. (2022) Finetuned language models are
zero-shot learners. In The Tenth International Conference
on Learning Representations, ICLR 2022 (Virtual Event:
OpenReview.net).

Liu, X. and TaN, Z. (2023) Divide and prompt: Chain of
thought prompting for text-to-sql. CoRR abs/2304.11556.
doi:10.48550/ARXIV.2304.11556.

WEf, J., WaNG, X., ScHuurMANS, D., Bosma, M., IcHTER, B.,
Xia, E, Cu1, E.H. et al. (2022) Chain-of-thought prompting
elicits reasoning in large language models. In Kovejo, S.,
MoHAMED, S., AGarwAL, A., BELGrAVE, D., Cuo, K. and
Omn, A. [eds.] Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Lewis, P, Perez, E., Piktus, A., PETRONI, F., KARPUKHIN,
V., Govar, N., Kurreer, H. et al. (2020) Retrieval-
augmented generation for knowledge-intensive NLP
tasks. In LarocHELLE, H., RanzaTO, M., HaDsELL, R.,
Barcan, M. and Lin, H. [eds.] Advances in Neural
Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Ta1, C.Y.,, CHEN, Z., ZHANG, T., DeENng, X. and Sun,
H. (2023) Exploring chain of thought style prompting
for text-to-SQL. In Bouamor, H., PiNno, J. and Baii, K.
leds.] Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing (Singapore:
Association for Computational Linguistics): 5376-5393.
doi:10.18653/v1/2023.emnlp-main.327.

CHANG, S. and FosLEr-LussIer, E. (2023) How to prompt
llms for text-to-sql: A study in zero-shot, single-domain,
and cross-domain settings. CoRR abs/2305.11853.
doi:10.48550/ARXIV.2305.11853.

ZuangG, H.,, Cao, R, Cren, L, Xu, H. and Yu, K.
(2023) ACT-SQL: In-context learning for text-to-SQL with
automatically-generated chain-of-thought. In Bouamog,
H., Pino, J. and Bats, K. [eds.] Findings of the Association
for Computational Linguistics: EMNLP 2023 (Singapore:
Association for Computational Linguistics): 3501-3532.
doi:10.18653/v1/2023.findings-emnlp.227.

TANG, Z., Ma, Q. and Wu, D. (2025) Auto prompt sql: a
resource-efficient architecture for text-to-sql translation
in constrained environments. CoRR abs/2506.03598.
doi:10.48550/ARXIV.2506.03598.

Sun, R., Arik, S.O., Muzio, A. Micuricicy, L.,
GunpasatHULA, S.K., YIN, P, Dar, H. et al. (2024) Sql-palm:
Improved large language model adaptation for text-to-sql.
Trans. Mach. Learn. Res. 2024.

Zuou, D., Scuirri, N., Hou, L., WEr, J., Scares, N.,
Wang, X., ScHuurMANs, D. et al. (2023) Least-to-most
prompting enables complex reasoning in large language

(35]

(36]

(37]

(38]

(39]

[40]

[41]

and SrikUMAR, V. [eds.] Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024
(Association for Computational Linguistics): 5456-5471.
doi:10.18653/V1/2024.FINDINGS-ACL.324, URL https:
//doi.org/10.18653/v1/2024.findings-acl.324.
Cao, Z., Zueng, Y., Fan, Z., Zuang, X., CHEN,
W. and Bai, X. (2024) RSL-SQL: robust schema
linking in text-to-sql generation. CoRR abs/2411.00073.
doi:10.48550/ARXIV.2411.00073.

Ly, G., TaN, Y., Zuong, R., X1g, Y., ZHao, L., WANG,
Q., Hu, B. et al. (2025) Solid-sql: Enhanced schema-
linking based in-context learning for robust text-to-
sql. In RamBow, O., WANNER, L., AriDIaANAKI, M., AL-
Kuavira, H., Eugenio, B.D. and ScHockaAkerrT, S. [eds.]
Proceedings of the 31st International Conference on
Computational Linguistics, COLING 2025, Abu Dhabi,
UAE, January 19-24, 2025 (Association for Computational
Linguistics): 9793-9803. URL https://aclanthology.
org/2025.coling-main.654/.

SAFDARIAN, A., MoHamMmADI, M., JaHANBAKHSH, E.,
Naperi, M.S. and Fami, H. (2025) Schemagraphsql:
Efficient schema linking with pathfinding graph
algorithms for text-to-sql on large-scale databases. CoORR
abs/2505.18363. doi:10.48550/ ARXIV.2505.18363, URL
https://doi.org/10.48550/arXiv.2505.18363. 2505.
18363.

Cao, R, Cuen, L., CuEN, Z.,, ZHAO, Y., ZHU, S. and
Yu, K. (2021) LGESQL: line graph enhanced text-to-
sql model with mixed local and non-local relations.
In Zong, C., Xia, E, L;, W. and Navicir, R. [eds.]
Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August
1-6, 2021 (Association for Computational Linguistics):
2541-2555. doi:10.18653/V1/2021.ACL-LONG.198, URL
https://doi.org/10.18653/v1/2021.acl-1ong. 198.
Wang, P, Sun, B., Dong, X., Dai1, Y., Yuan, H., Cau,
M., Gao, Y. et al. (2025) Agentar-scale-sql: Advancing
text-to-sql through orchestrated test-time scaling. CoRR
abs/2509.24403. doi:10.48550/ ARXIV.2509.24403, URL
https://doi.org/10.48550/arXiv.2509.24403. 2509.
24403.

Li;, X., You, J.,, Li, H. Peng, J., Cuen, X. and
Guo, Z. (2025) CM-SQL: A cross-model consistency
framework for text-to-sql. Neurocomputing 658: 131708.
doi:10.1016/].NEUCOM.2025.131708, URL https://
doi.org/10.1016/j.neucom.2025.131708.

Ma, X., Tian, X., Wu, L., Wang, X., Tang, X. and
Wang, J. (2024) Enhancing text-to-sql capabilities of
large language models via domain database knowledge
injection. In Enpriss, U., MELo, ES., Bach, K., D1z, A.].B,,
ALONSO-MORAL,].M., Barro, S. and Heintz, E [eds.] ECAT

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

2 EA :

https://doi.org/10.48550/ARXIV.2403.09732
https://doi.org/10.48550/ARXIV.2307.07306
https://doi.org/10.48550/ARXIV.2303.13547
https://doi.org/10.48550/ARXIV.2304.11556
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.48550/ARXIV.2305.11853
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.48550/ARXIV.2506.03598
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.48550/ARXIV.2411.00073
https://aclanthology.org/2025.coling-main.654/
https://aclanthology.org/2025.coling-main.654/
https://doi.org/10.48550/ARXIV.2505.18363
https://doi.org/10.48550/arXiv.2505.18363
2505.18363
2505.18363
https://doi.org/10.18653/V1/2021.ACL-LONG.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.48550/ARXIV.2509.24403
https://doi.org/10.48550/arXiv.2509.24403
2509.24403
2509.24403
https://doi.org/10.1016/J.NEUCOM.2025.131708
https://doi.org/10.1016/j.neucom.2025.131708
https://doi.org/10.1016/j.neucom.2025.131708

J. Peng et al.

2024 - 27th European Conference on Artificial Intelligence,
19-24 October 2024, Santiago de Compostela, Spain -
Including 13th Conference on Prestigious Applications of
Intelligent Systems (PAIS 2024) (I10S Press), Frontiers
in Artificial Intelligence and Applications 392: 3859-
3866. doi:10.3233/FATA240949, URL https://doi.org/
10.3233/FAIA240949.

[46]

Cen, J, L, J, L1, Z. and Wang, J. (2025) Sqlfixagent:
Towards semantic-accurate text-to-sql parsing via
consistency-enhanced multi-agent collaboration. In
WarsH, T., Suan, J. and Korter, Z. [eds.] AAAI-
25, Sponsored by the Association for the Advancement
of Artificial Intelligence, February 25 - March 4,
2025 (Philadelphia, PA, USA: AAAI Press): 49-57.

[42] Zuan, Z., E, H. and Song, M. (2025) Leveraging doi:10.1609/AAAIV3911.31979.
large language model for enhanced text-to- [47] ZHuang, B, Y&, Y, Du, G, Hu, X,, L1, Z,, Yang, S., Livu,
sql parsing. IEEE Access 13: 30497-30504. C.H. et al. (2024) Benchmarking the text-to-sql capability
doi:10.1109/ACCESS.2025.3540072, URL https: of large language models: A comprehensive evaluation.

(43]

[44]

(45]

//doi.org/10.1109/ACCESS.2025.3540072.

ZHONG, V., X10NnG, C. and SocHER, R. (2017) Seq2sql:
Generating structured queries from natural language
using reinforcement learning. CoRR abs/1709.00103.
URL http://arxiv.org/abs/1709.00103. 1709.00103.
Cuu, Z., Wang, Z. and Qin, Q. (2024) Lever-
aging prior experience: An expandable auxiliary
knowledge base for text-to-sql. CoRR abs/2411.13244.

doi:10.48550/ARXIV.2411.13244, URL https://doi.

org/10.48550/arXiv.2411.13244. 2411.13244.

L1, C., SHAO, Y. and Liu, Z. (2024) SEA-SQL: semantic-
enhanced text-to-sql with adaptive refinement. CoRR
abs/2408.04919. doi:10.48550/ARXIV.2408.04919.

(48]

(49]

(50]

CoRR abs/2403.02951. doi:10.48550/ARXIV.2403.02951.
L1, H., Wu, S., Zuang, X., Huang, X., ZHANG,]., JIANG,
E, Wang, S. ef al. (2025) Omnisql: Synthesizing high-
quality text-to-sql data at scale. CoRR abs/2503.02240.
doi:10.48550/ARXIV.2503.02240.

Maamari, K., ABUBAKER, E, JaArosLawicz, D. and MHEDHBI,
A. (2024) The death of schema linking? text-to-sql
in the age of well-reasoned language models. CoRR
abs/2408.07702. doi:10.48550/ARXIV.2408.07702.
CareroGLU, H.A. and Urusoy, O. (2024) E-SQL: direct
schema linking via question enrichment in text-to-sql.
CoRR abs/2409.16751. doi:10.48550/ARXIV.2409.16751.

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 7 | 2025 |

< EAI '

https://doi.org/10.3233/FAIA240949
https://doi.org/10.3233/FAIA240949
https://doi.org/10.3233/FAIA240949
https://doi.org/10.1109/ACCESS.2025.3540072
https://doi.org/10.1109/ACCESS.2025.3540072
https://doi.org/10.1109/ACCESS.2025.3540072
http://arxiv.org/abs/1709.00103
1709.00103
https://doi.org/10.48550/ARXIV.2411.13244
https://doi.org/10.48550/arXiv.2411.13244
https://doi.org/10.48550/arXiv.2411.13244
2411.13244
https://doi.org/10.48550/ARXIV.2408.04919
https://doi.org/10.1609/AAAI.V39I1.31979
https://doi.org/10.48550/ARXIV.2403.02951
https://doi.org/10.48550/ARXIV.2503.02240
https://doi.org/10.48550/ARXIV.2408.07702
https://doi.org/10.48550/ARXIV.2409.16751

	1 Introduction
	2 Related Work
	2.1 Prompt Engineering in Text-to-SQL
	2.2 Multi-Candidate Generation in Text-to-SQL
	2.3 Knowledge-Augmented Text-to-SQL
	2.4 SQL Check and Correction

	3 Methods
	3.1 Overall Framework
	3.2 Evidence-to-SQL
	3.3 Web Search for External Knowledge
	3.4 Preliminary SQL Generation
	3.5 SQL Check
	3.6 SQL Correction

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Baseline Model
	4.4 Results
	Bird Results
	Spider Results

	4.5 Effectiveness of Evidence-to-SQL
	4.6 Effectiveness of Web Search
	4.7 Effectiveness of SQL Check
	4.8 Ablation Study

	5 Conclusion and Future Work
	A Prompt Template
	A.1 Prompt Template for Preliminary SQL Generation
	A.2 Prompt Template for SQL Correctness Check in Path 1
	A.3 Prompt Template for SQL Correctness Check in Path 2
	A.4 Prompt Template for SQL Correction

