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Abstract

Power data auditing is the cornerstone of a reliable and efficient modern power system. Various deep
learning models have been successfully applied to fraud detection in power audit data. However, most of
these methods rely on manual trial-and-error and expert knowledge to design the neural architectures and
hyper-parameters. To address this limitation, this paper proposes an innovative automated deep learning
approach for fraud detection model design using genetic algorithm (GA)-based neural architecture search
(NAS), termed NAS-FD. In NAS-FD, a convolutional neural network (CNN) is employed as the primary
detection model, leveraging its strong data learning and feature extraction capabilities. First, an effective
encoding scheme is developed to represent the neural architectures and hyper-parameters of CNN, as these
parameters significantly influence the detection performance. Then, considering detection performance as the
objective function, well-designed GA-based evolutionary operations are implemented to optimize the neural
architectures and hyper-parameters of CNN, obtaining the optimized CNN. The detection performance of the
proposed NAS-FD method is validated using an electricity theft dataset from the power auditing domain.
Experimental results demonstrate that NAS-FD achieves superior detection performance compared with
manually designed deep learning models in terms of four performance indices including accuracy, precision,
recall, and F1-score.
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1. Introduction massive measurement data[2], [3]. Effective auditing is

not only crucial for ensuring the economic operation of
Mo.dern power systems serve as the cornerstone of  p, grid, optimizing resource allocation, and improving
national critical infrastructure, whose secure, stable, operational efficiency, but also constitutes the first line
and economic operation is directly linked to national  Jf jofense for timely fraud detection, potential risk
welfare and energy security [1]. Power auditing plays  jgentification, and precise decision-making support.
a vital role as both a supervisor and a diagnostician Among the various dimensions of power auditing,
in this framework. It provides comprehensive insights  ¢]etricity theft detection holds exceptional importance
and evaluations of system operational status, asset  gye to the significant direct economic losses and serious
efficiency, power .quahty, and .market transactions  ihreats to grid security it presents. Electricity theft
through the continuous collection and analysis of ot only causes substantial annual financial losses
for utility companies but can also lead to local line
overloads, voltage instability, abnormal transformer
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aging, and even fires or safety incidents from malicious
tampering, severely disrupting the normal operation of
the distribution network [4], [5].

Traditional methods for fraud detection and electric-
ity theft identification in power auditing predominantly
rely on periodic on-site inspections, user complaints,
or simple threshold-based statistical analysis. These
approaches suffer from low efficiency, limited coverage,
and high vulnerability to evasion. Consequently, the
development of advanced detection algorithms capable
of automatically, accurately, and promptly identifying
concealed and evolving electricity theft patterns from
massive, high-dimensional, and heterogeneous power
data has become an urgent and highly valuable research
topic in power system auditing[6], [7]. Artificial intelli-
gence (Al), encompassing machine learning and deep
learning, offers significant advantages in data mining
and feature extraction. The detection performance for
anomalous power audit data has been substantially
enhanced through the application of various AI models,
including artificial neural networks (ANNs) [8], cluster-
ing methods [5], convolutional neural networks (CNNs)
[9], and long short-term memory (LSTM) model [10].
Given its capability to automatically learn and extract
complex spatial features from raw network traffic data
without relying on expert knowledge for manual fea-
ture engineering, CNN is adopted as the core detection
model in this work. Furthermore, its strong ability to
recognize local patterns enables effective detection of
unknown and variant fraud in power audit data.

Although deep learning-based methods have been
successfully applied in fraud detection for power audit-
ing, their detection performance is highly dependent
on the model neural architecture and hyper-parameters.
Most current approaches rely on manual trial-and-error
adjustment, which is time-consuming[9], [10]. To auto-
mate the tuning of neural architectures, neural archi-
tecture search (NAS) has gained significant popularity.
NAS designs encoding methods, defines objective func-
tions, and employs evolutionary search to ultimately
obtain optimized models for different tasks [11], [12].
For example, Real et al. [13] employed simple evolution-
ary techniques with novel mutation operators to opti-
mize both neural architectures and hyper-parameters
of CNNs for image classification. Similarly, Sun et al.
[14] utilized a genetic algorithm (GA)-based method
to search the optimized neural architectures, initial
weights, and activation functions in an unsupervised
deep learning model, evaluated on MNIST and CIFAR-
10. In a different application, Ho et al. [15] intro-
duced a GA-NAS method with binary representation
to optimize encoder-decoder architectures and meta-
parameters for deep image prior. In [16], a novel NAS
framework was presented, which optimizes the neu-
ral architectures and hyper-parameters of a variational
autoencoder for unsupervised anomaly detection in

the Internet-of-Things (IoT) security domain. A hybrid
deep learning model, comprising a combination of CNN
and recurrent neural networks, is employed to extract
features from IoT datasets for accurate intrusion detec-
tion. The neural architectures and hyper-parameters of
this hybrid model are optimized using particle swarm
optimization [17]. Dong et al. [18], and Fei et al.
[19] apply an Auto-Keras automatic detection frame-
work, combining NAS and Bayesian optimization, to
non-technical loss detection in distribution electricity
networks. The framework automatically searches and
integrates models on preprocessed electricity consump-
tion data, achieving performance comparable to man-
ually designed models without requiring professional
expertise. While NAS requires computational time for
the architecture exploration, it offers the advantage
of automation over manual trial-and-error approaches,
enabling systematic convergence toward an optimal
architecture. Moreover, the process is conducted offline.
Once the optimal architecture is identified, its deploy-
ment in online systems incurs no additional search
overhead.

The aforementioned experimental results demon-
strate that employing NAS technology yields superior
performance compared to manual trial-and-error meth-
ods. However, most existing methods do not consider
all the hyperparameters that can be optimized within
the neural network, and the chosen evolutionary algo-
rithms have not been thoroughly validated for their
optimization capability. As a result, the performance
of NAS is severely limited. Moreover, existing NAS-
based deep learning models primarily focus on image
classification tasks or cyber attack detection in inter-
net domains[13-17]. Due to the distinct characteris-
tics of power audit data, which differ significantly
from these domains, directly applying these methods is
challenging. Consequently, a redesigned NAS approach
is required for addressing fraud detection in power
audit data. The NSA design problem is inherently non-
differentiable and non-convex. As a prominent evolu-
tionary algorithm, GA is well-suited for such challenges
as it imposes no specific constraints on the problem
landscape, exhibits low sensitivity to initial solutions,
and is effective for complex real-world optimization.
Owing to these advantages, GA is a promising approach
for automating CNN design [14],[15].

These observations strongly motivate an automated
fraud detection framework for power audit data that
combines the advantages of NAS with CNN-specific
characteristics. Consequently, a novel fraud detection
method termed NAS-FD is proposed, which integrates
the strengths of GA-based NAS and CNNs. The main
contributions of this paper are as follows:

(1) Most fraud detection models for power audit
data rely on manually designed deep learning models
through trial and error, which demands substantial
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human and computational resources and heavily
depends on expert knowledge. This paper develops
a NAS-based fraud detection method using genetic
algorithms, termed NAS-FD, which automates the
design of CNN neural architectures and hyper-
parameters.

(2) From an optimization perspective, the fraud
detection model for power audit data is formulated
as a single-objective optimization problem. A hybrid
encoding scheme is employed to represent the neural
architectures and hyper-parameters of CNN. Subse-
quently, well-designed GA-based evolutionary opera-
tions, including crossover operation and mutation oper-
ation, are applied to evolve these parameters to find the
optimized CNN.

(3) To validate the effectiveness of the proposed
NAS-FD method, an electricity theft dataset in
the power audit domain, i.e., the theft detection
dataset (TDD2022) [8] is utilized. Experimental results
demonstrate that NAS-FD achieves superior detection
performance according to four common performance
indices including accuracy, precision, recall, and F1-
score by comparing with manually designed CNN and
LSTM.

The remainder of this paper is organized as follows.
Section II provides the preliminaries including CNN
and GA. Section III presents the proposed NAS-FD
method. Experimental results and analysis are provided
in Section IV. Finally, Section V concludes the paper.

2. Preliminaries

Before introducing the proposed NAS-FD method for
power audit data, this section briefly presents the
preliminaries on CNN and GA.

2.1. Convolutional neural networks

- lassification
-7, results
e 7 e —

Input Convolutional layer and pooling layer Fully layer Output

Figure 1. The structure of CNN for the classification task.

Fig. 1 gives the structure of CNN for the classification
task. CNN is a specialized class of deep learning
model designed to process sequential data with a
topological structure, such as time-series signals, audio
waveforms, and text sequences. Their architecture is
particularly effective at extracting local, translation-
invariant features through the core operations of
convolution and pooling [20], [21].

The fundamental building block of a CNN is the
convolutional layer. This layer applies a set of filters to
the input sequence by sliding them across the temporal
dimension. Each filter is responsible for detecting a
specific local pattern or feature at different positions
in the sequence. The convolution operation between a
1D input signal x € RL of length L and a filter w € R¥
of size k at position i of the output feature map is
mathematically defined as:

k-1
(cew)li] =) wijl-x[i + ] (1)
j=0

where * denotes the convolution operator. To control
the size of the output feature map and to increase the
receptive field, a stride s and zero-padding p are often
introduced. The length of the output feature map L’ can
be calculated as:

L = rﬁzs—p_kJ +1 (2)

Subsequently, a non-linear activation function is
applied element-wise to the convolution output to
introduce non-linearity into the model, enabling it
to learn complex patterns. The final output of a
convolutional layer with F filters is a set of F feature
maps, denoted as h:

h=0(W=x+Db) (3)

where W is the tensor of filters, b is the bias vector. o is
the activation function.

Following the convolutional layers, pooling layers
are typically employed to reduce the dimensionality of
the feature maps, thereby decreasing the computational
cost and number of parameters, while also providing
a form of translation invariance. The most common
operation is max-pooling, which outputs the maximum
value within a sliding window of size p; as follows:

max hy (4)

yi = (i—1)ps+1<t<i-ps

After several stacks of convolution and pooling
layers, the high-level features are flattened and passed
to one or more fully-connected layers for the final
classification task.

In summary, CNNs leverage local connectivity,
weight sharing, and hierarchical feature learning to
achieve state-of-the-art performance on a classification
task. In fraud detection, the advantage of CNN lies in
its ability to efficiently extract local features and dis-
criminative patterns directly from raw one-dimensional
sequential data without relying on complex preprocess-
ing or manual feature engineering. The convolutional
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kernels sliding along the temporal dimension effec-
tively capture local temporal dependencies and short-
term abnormal morphologies. Moreover, its hierarchical
structure enables automatic learning of multi-scale fea-
ture representations. Additionally, CNN offers greater
advantages in computational efficiency and model com-
plexity, making it particularly suitable for real-time or
resource-constrained detection scenarios.

2.2. Genetic algorithm

Input the optimization problem and
parameters in GA including Gux, NP, pi,
Pe, gen

An initial population of size NP is
randomly generated

#:

The fitness value for each individual is
obtained according to the fitness function

v

The selection operation chooses superior
individuals from the current population
while eliminating inferior ones

The crossover operation generates new individuals
by exchanging partial information between two
parent individuals

The mutation operation selects an individual from the
population and alters one of its gene values to produce a new
individual

gen>Giy?

Output the optimal solution and its
corresponding fitness value

Figure 2. The flowchart of the classical GA.

gen=gen+1

The GA is an evolutionary algorithm simulating natu-
ral evolution processes, developed as a search algorithm
for optimized solutions inspired by natural selection,
crossover, and mutation phenomena [22]. In NAS, GA
is valued for its suitability in parallel global optimiza-
tion capability, and flexibility in handling complex
optimization problems. GA-based evolutionary mech-
anism balances exploration and exploitation, circum-
venting the reliance on continuous differentiable spaces
required by gradient-based methods, making it partic-
ularly effective for high-dimensional optimization of
NAS. GA contains some advantages such as simple
principles, strong generality, and high robustness. Fig.
2 shows the flowchart of the classical GA, with the
corresponding basic steps provided as follows.

Input: Complex optimization problem, i.e., the fit-
ness function, and GA parameters including maximum
iterations Gy,,x, population size NP, crossover proba-
bility p., mutation probability p,,, and iteration counter
gen.

Output: The best individual and its corresponding
fitness value.

Step 1: Perform population initialization. Randomly
generate an initial population of size NP, where each
individual represents a feasible solution in the search
space. Set gen = 1.

Step 2: Perform fitness evaluation. Compute the
fitness value for each individual according to the fitness
function.

Step 3: Perform selection operation. Select superior
individuals from the current population based on fit-
ness values, eliminating inferior ones. For minimization
problems, individuals with smaller fitness values are
preferred. The opposite holds for maximization prob-
lems.

Step 4: Perform crossover operation. Generate new
individuals by exchanging partial information between
two parent individuals via crossover, enabling gene
information exchange.

Step 5: Perform mutation operation. Select an
individual and alter one of its gene values to produce
a new individual.

Step 6: Termination condition check. If gen >
Gyuax, terminate and output the optimal individual.
Otherwise, set gen = gen + 1 and go to Step 2.

3. The Proposed NAS-FD Method
3.1. Algorithm Overview

Fig. 3 shows the overall framework of the proposed
NAS-FD model for fraud detection in the power
audit domain. It begins by processing outliers in
a publicly available electricity theft attack dataset
representing a power audit dataset, followed by its
division into training and test sets, with subsequent
data normalization applied to each. The partitioned
and preprocessed dataset is then fed into the electricity
theft attack detection optimization module. Initial
parameters, including population size NP, maximum
iterations G,,,,, training epochs EPI1, test epochs
EP2, crossover rate p., and mutation rate p,, are
set, and the decision variable ranges for optimization
are determined. Subsequently, the GA-based model
optimization process commences. An initial population
Py of size NP is randomly generated, where each
individual consists of a unique encoding representing
the model neural architectures and hyper-parameters.
The population iteration count is initialized to 1. Each
individual undergoes a fitness evaluation, and the
population is sorted in descending order based on
fitness values. An environmental selection operation
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Figure 3. The overall framework of the proposed NAS-FD model for fraud detection in power audit domain.

is then performed to generate a new population P,
and the iteration count is incremented. During the
predefined maximum iterations G,,,,, the evolutionary
process repeats including a tournament selection
mechanism that first generates a parent pool. Crossover
and mutation operations are applied based on rates
pc and p,, to produce an offspring population. After
the fitness evaluation, the offspring are merged with

is then returned. In this work, a real-valued vector
encoding strategy is designed for the CNN neural
architecture and hyper-parameters according to the
decision variable ranges involved in the optimization.
The model’s neural architectures and hyper-parameters
are represented as a real-number-based vector, with
each individual’s encoding in the population being a
vector generated by this real-valued encoding strategy.

the current population. The combined population In the developed encoding strategy, an
is sorted and undergoes environmental selection to  jndividual representing a model is a vector
choose superior individuals for the next generation,  composed of real numbers and  discrete
with the iteration count incremented. The algorithm  pymbers, specifically expressed as pi =

terminates upon reaching G,,,,. Finally, the individual
with the highest fitness in the last generation is selected
as the best one. Its model neural architectures and
hyper-parameters encoding are decoded. The decoded
model, along with the preprocessed dataset, serves as
input to the performance evaluation module. After
comprehensive training and testing, the model that
achieves superior performance indices is deployed for
practical fraud detection tasks of power audit.

3.2. Population Initialization

Given the population size and the decision variable
ranges, an initial population P; ={py,...,pj,..., pnp}
containing NP individuals is randomly generated,
where i denotes the current iteration count, and p,
pj, pnp represent the first, j-th, and NP-th individuals
in the population, respectively. The initial population

{Bs, Opt, Lr, Cnn, [Fil;, Kery, Acfy, Poly, Ptpy, Plsy, Stdq],. ..

[Fil;, Ker;, Acfy, Poly, Ptpy, Pls;, Std,], Den, Dpr}.

The first part, [Bs, Opt, Lr, Cnn], represents the train-
ing parameters and partial model control parameters of
the CNN model, where Bs is the batch size during train-
ing, Opt denotes the type of neural network optimizer
selected for CNN training. Opt = 1 is for Adam. Opt =
2 is for RMSprop. Opt = 3 is for SGD and Opt = 4 is for
Adagrad. Lr is the learning rate and Cnn indicates the
number of convolutional layers in the CNN model.

The second part, [Fily, Kery, Acfy, Poly, Ptpy, Plsy, Stdy], ...,

[Fil;, Ker;, Acf;, Pol;, Ptpy, Pls), Std,], specifies the
detailed parameters of the CNN modules, where [ is the
number of convolutional layers in a CNN module. Fil
represents the number of filters in the convolutional
layer, Ker is the kernel size, and Acf indicates the
activation function type. Acf =1 means RelLU and
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Acf =2 is Tanh. Acf =3 is for Sigmoid and 4 for
Softmax. Pol indicates whether a pooling layer is added
after the convolutional layer, Ptp specifies the pooling
type, Pls is the pooling window size, and Std is the
pooling stride.

The third part, [Den, Dpr], defines the parameters
of the layers between the convolutional layers and
the classification layer, where Den is the number of
hidden neurons in the fully connected layer, and Dpr
is the dropout rate in the dropout layer. In NAS-FD, all
optimized variables are continuous, such as Bs ranging
from 4 to 64. When discrete variables are involved, a
binary encoding scheme is used to handle such cases,
where a two-bit encoding can represent four variable
values, a three-bit encoding eight values, and so forth.

3.3. Fitness Evaluation

Given a population P; containing individuals to be
evaluated, the number of training epochs EP1, and
a preprocessed dataset D = {Dyuin, Diest}, @ fitness
evaluation is performed for each individual in the
population. For each individual’s fitness evaluation, the
real-valued vector encoding is first decoded into a CNN
model. Following the specified training configuration,
this model is trained on the training set Dy,;, for EP1
epochs. Finally, the test set Dy is used to evaluate the
model and obtain its fitness value. This study selects
the Fl-score of the CNN model as the fitness value,
where a higher Fl-score indicates better classification
performance. For an individual p in P, the specific
formula of objective function is as follows:

f(p) = Fl(p,EP, D) (5)

where F1 denotes the calculation process for the F1-
score of the model constructed from the individual p,
EP represents the number of training epochs.

3.4. GA-Based Evolutionary Process

Given the crossover probability p. and mutation
probability p,,, crossover and mutation operations
are applied to the current population P;. First, a
tournament selection is performed on the individuals
in the population to obtain the parent population O;.
For each pair of adjacent individuals in O;, a random
number between 0 and 1 is generated. If this random
number is less than p., crossover is applied to the pair.

During crossover, the first three parameters in the
first part of both individuals’ encodings undergo
simulated binary crossover, while the parameter
representing the number of convolutional layers in
the CNN module remains unchanged. In the second
part, due to potential differences in the number
of convolutional layers between CNN modules, the
smaller number of layers L,, is selected. Crossover is

applied to the first L,, convolutional layers of both
individuals, with the remaining layers unchanged. The
convolutional layer crossover process is as follows:
parameters representing filter size, number of kernels,
activation function type, and pooling layer inclusion
are first subjected to simulated binary crossover. Then,
it is determined whether pooling layers are configured
both before and after crossover. If both individuals have
pooling layers configured after crossover, parameters
representing pooling type, pool size, and stride undergo
simulated binary crossover. Otherwise, a random
number between 0 and 1 is generated. If less than
0.5, all pooling parameters are swapped between the
two individuals. Parameters in the third part undergo
simulated binary crossover.

After completing crossover operations on all individ-
uals in the parent population, offspring individuals are
obtained. Mutation operations are then applied to these
offspring to yield the offspring population N;. For each
offspring individual, a random number between 0 and 1
is generated. If this number is less than p,,, mutation is
applied. During mutation, parameters in the first part,
i.e., Bs, Opt, Lr, undergo polynomial mutation, while
Cnn remains unchanged. In the second part, parameters
Fil, Ker, Acf, and Pol first undergo polynomial muta-
tion. Then, it is checked whether the Pol value changes
after mutation. If Pol remains 1, the remaining pool-
ing parameters undergo polynomial mutation. If Pol
changes from 0 to 1, random values are generated for
the pooling type, pool size, and stride parameters. If Pol
changes from 1 to 0, all pooling parameters are set to 0.
If Pol remains 0, the mutation operation for the second
part concludes, and mutation proceeds to the third part.
In the third part, parameters representing the number
of hidden neurons in the fully connected layer and the
dropout rate both undergo polynomial mutation. In all
simulated binary crossover and polynomial mutation
operations, the control parameter # is set to 20.

4. Experimental Results and Analysis

All experiments are conducted on a workstation
comprising an Intel Core i9-14900KF processor, 64
GB RAM, and an NVIDIA GeForce RTX 4060 Ti
GPU. The software environment included Python 3.7.1,
TensorFlow 2.3.4, NumPy 1.18.5, and Pandas 1.3.5.
The parameter settings of NAS-FD are set as follows:
NP =20, Itm =10, EP1 =50, EP2 =90, p. = 0.9, and
pm = 1/20. EP1 is set to 50 because the model’s trend
becomes observable after 50 training epochs, and the
training is terminated early to conserve computational
time. EP2 is set to 90 instead of EP1, since it is used
to evaluate the performance of the model represented
by the final individual, whose performance metrics
become stable after 90 training epochs.
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4.1. Performance Indices

The performance of fraud detection models is evaluated
by leveraging four widely adopted indices including
accuracy, precision, recall, and F1-score. These indices
are defined as follows:

TP+ TN

Accuracy = 4 TN+ EP+ EN (6)
TP
Recall = ——— 7
T TPYEN @)
TP
Precision — TP
recision = wm——0 (8)

2 x Precision x Recall

Fy-score = —
Precision + Recall

where TP, TN, FP, and FN signify true positives,
true negatives, false positives, and false negatives. TP
characterizes accurately detected frauds instances, and
TN characterizes correctly classified normal samples.
Conversely, FP signifies normal samples incorrectly
flagged as fraud, and FN signifies frauds that are
undetected and misclassified as normal.

4.2. Datasets and Preprocessing

To validate the effectiveness of the proposed NAS-
FD method, the TDD2022 dataset [8], which is
commonly used in the power auditing domain, is
employed. A detailed description is given as follows.
The TDD2022 dataset is a multi-class theft detection
dataset specifically designed for benchmarking in the
smart grid domain. It is generated by applying an
effective theft generator model to real-world, publicly
available energy consumption data from the Open
Energy Data Initiative platform. This methodology
transforms standard consumption data into a valuable
resource for detecting anomalous patterns. In this
paper, the multi-class dataset is converted into a binary
classification dataset for model validation. In addition,
all features are normalized using the z-score method,
which is defined as follows:

X, =2 (10)

where x; and x; denote the original and normalized
values of the i-th feature, respectively. p is the mean
value. o is the standard deviation. For the TDD2022
dataset, a classical split ratio of 0.8 is adopted for the
training set, while the remaining data are used for
testing, so that the model performance can be effectively
evaluated during the fitness assessment.

4.3. Evolutionary Trajectories

Fig. 4 presents the fraud detection performance of
NAS-FD during the power audit process. The objective

Fitness Evolution

T —T —T 7T T—TT7j
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Figure 4. The evolutionary trajectory of the NAS-FD for power
audit data.

function is the F1-score, where a higher value indicates
better model performance. As shown in Fig. 4, the
initial F1-score is below 0.87. As evolution progresses,
the F1-score exceeds 0.91, demonstrating that the NAS
technique automatically achieves superior performance
without relying on expert knowledge. Furthermore, the
algorithm begins to converge from the sixth generation,
indicating that the best solution has been obtained.
The solution from the final generation is decoded,
yielding: [62, 1, 0.0008, 5], [79, 3, 1, 0, 0, 0, 0], [163,
3,1,0, 0,0, 0], [228, 3, 1, 0, 0, 0, 0], [403, 2, 3,
1, 1,2 3], [464, 2, 1, 1, 1, 3, 3], [253, 0.3687]. The
corresponding CNN architecture is shown in Fig. 5.
Once the optimized CNN is obtained, it can be deployed
into the system. Notably, the process of searching for
the neural architectures and hyper-parameters of CNN
is conducted offline, but the deployed model enables
online detection.

Table 1. Performance Comparison of NAS-FD, CNN, LSTM on
TTD2022 Dataset

Metrics NAS-FD CNN LSTM
Accuracy 0.9193 0.9046 0.8582
Precision 0.9214 0.9085 0.8594

Recall 0.9193 0.9046 0.8582

F1-Score 0.9185 0.9033 0.8566

4.4. Comparison with Existing Manually Designed
Models

This subsection compares NAS-FD with manually
designed CNN and LSTM models. The manually
designed CNN is selected because NAS-FD automates
the design of CNN neural architectures and hyper-
parameters, thereby demonstrating the effectiveness of
the NAS technology. The manually designed LSTM
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Figure 5. The optimized CNN model achieved by the NAS-FD
method.

is included to illustrate that CNN is more suitable
than LSTM for fraud detection in power audit data.
The architectures and hyperparameters of the two
compared models were set to their best-performing
values obtained through manual tuning, ensuring a fair
and reliable comparison under the same experimental
conditions.

Table 1 presents the performance comparison of
NAS-FD, CNN, and LSTM on the TTD2022 dataset.
Fig. 6 gives the confusion matrix obtained by NAS-
FD, CNN, and LSTM. The results show that NAS-
FD achieves the best performance with values of
0.9193, 0.9214, 0.9193, and 0.9185 for accuracy,
precision, recall, and F1-score, respectively. Significant
improvements are observed compared to CNN and
LSTM, particularly relative to LSTM’s results of 0.8582,
0.8594, 0.8582, and 0.8566. These results demonstrate
the effectiveness of NAS technology for fraud detection
in power audit data. Furthermore, the comparison

2 EAI

reveals that both NAS-FD and CNN outperform LSTM,
indicating that CNN-based models exhibit greater
potential than LSTM. Notably, the neural architectures
and hyper-parameters of NAS-FD are automatically
designed without manual trial-and-error, representing
an additional advantage over manually designed CNN
and LSTM models.
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Figure 6. The confusion matrix obtained by NAS-FD, CNN, and
LSTM.
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5. Conclusion

In this paper, we have proposed a NAS-based fraud
detection method termed NAS-FD for power audit data.
In NAS-FD, the automated design of CNN, including
both neural architectures and hyper-parameters, is
formulated as a single-objective optimization problem
aimed at maximizing the Fl-score. Furthermore, GA
is employed as the primary optimization framework.
Within this framework, an effective encoding strategy
along with corresponding crossover and mutation
operations is developed to represent and evolve the
neural architectures and hyper-parameters of CNN,
thereby overcoming the limitations of manual trial-
and-error. To validate the effectiveness of NAS-
FD, comparative experiments are conducted on an
electricity theft dataset, a common challenge in power
auditing. Compared with manually designed CNN and
LSTM models, the experimental results demonstrate
that NAS-FD achieves superior detection performance
in terms of four common performance indices including
accuracy, precision, recall, and F1-score.

Future research will consider fraud detection model
design from a multi-objective perspective by incorpo-
rating model complexity as one objective. Additionally,
unknown fraud scenarios will be investigated using
unsupervised learning approaches for power audit data
analysis. The proposed method could also be extended
in the future to multi-objective privacy-preserving tasks
[23] and generic neural networks [24].
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