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Abstract 

INTRODUCTION: With the continuous expansion of network scale, effectively detecting web vulnerability attacks has 
become a critical challenge for ensuring network security. Existing research, primarily focused on balanced sample 
recognition, proves inadequate for real-world scenarios due to high false alarm rates in large-scale traffic and poor 
recognition performance for minority attack samples caused by imbalanced data distribution. 
OBJECTIVES: This paper aims to address the limitations of current web vulnerability attack detection methods in 
imbalanced real-world environments. The objective is to propose a novel recognition method that reduces the false positive 
rate and improves the identification performance for minority attack samples under highly skewed data distributions. 
METHODS: We propose a feature fusion-based recognition method named EBTM for imbalanced samples. The method 
integrates expert knowledge to optimize feature selection, focusing on key information and ensuring a more uniform 
mapping of URL requests. It employs three output features from different advantageous models for feature fusion, thereby 
generating a richer and more discriminative feature representation for the final recognition task. 
RESULTS: Experimental results demonstrate that the proposed EBTM method significantly enhances the recognition of 
web vulnerability attack behaviors. Under a realistic imbalanced condition where attack samples constitute only about 3% 
of the data, the model achieves a macro-average F1 score of 99.1% and reduces the false positive rate to 0.054%. 
CONCLUSION: The EBTM method effectively improves the efficiency and accuracy of web vulnerability attack behavior 
recognition in practical, imbalanced scenarios. By combining expert-guided feature optimization and multi-model feature 
fusion, it successfully addresses key challenges of high false alarms and poor minority class recognition, offering a robust 
solution for securing large-scale network environments. 
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1. Introduction

The rapid expansion of the Internet has made HTTP traffic 
indispensable for web applications and browsing, facilitating 
vast data transmission and interaction. However, with the 
surge in HTTP traffic, malicious traffic has also increased 
significantly, particularly web vulnerability attacks, which 
have become a major cybersecurity threat. Common attack 
vectors—such as SQL injection, cross-site scripting (XSS), 
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and distributed denial-of-service (DDoS) attacks—not only 
lead to sensitive data breaches and system integrity 
compromises but may also trigger large-scale service 
disruptions, causing substantial financial losses and privacy 
risks for businesses and users. Due to their high stealthiness, 
low technical barriers, and frequent disguise as legitimate 
HTTP traffic, these attacks often evade traditional security 
mechanisms, making detection and mitigation challenging. 

In recent years, research on web vulnerability attack 
detection has continued to evolve. Conventional approaches, 
such as parameterized input validation and filtering [1], rely 
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on allowlists and regular expression matching to restrict and 
sanitize user inputs. However, these methods are constrained 
by predefined rule coverage, failing to detect novel attack 
techniques. Moreover, their effectiveness heavily depends on 
developers’ security expertise, limiting their robustness 
against sophisticated attacks. With advancements in artificial 
intelligence, machine learning (ML) models (e.g., logistic 
regression, random forests, support vector machines) [2–4], 
deep learning (DL) models (e.g., CNNs, RNNs, LSTMs, 
GRUs, DBNs) [5–8], and transformer-based pretrained 

language models [9–12] have been increasingly adopted for 
attack identification. These methods autonomously learn 
features from raw payload data, significantly reducing 
reliance on manual feature engineering and expert knowledge. 
Nevertheless, existing approaches still suffer from the 
aforementioned limitations. Table 1 summarizes the 
differences and constraints of current web attack detection 
methods regarding sample conditions, decision strategies, 
data utilization, and false positive rate (FPR) mitigation. 

Table 1. Comparison of limitations in web vulnerability attack behavior identification methods 

Method Dataset Decision Method Data Balance Research on FPR 

Nguyen et al.[14] ECML PKDD 
CISIC 2010 

Single model classification decision 
Combine harvester No No 

Vartouni et al.[15] CISIC 2010 Single model classification decision 
Random tree partitioning No No 

Luo et al.[13] CSIC 2010 Feature fusion of different DL layers No No 

Zhang et al.[16] CSIC 2010 Single model classification decision No Yes 
(1.37%) 

Tian et al.[17] Private Dataset 
(Balanced) Single model classification decision No Yes 

(3.21%) 
Althubiti et al. [18] CSIC 2010 Single model classification decision No No 

BL-IDS[19] CSIC 2010 Single model classification decision No Yes 
(1.4%) 

Zhu et al.[8] CSIC 2010 Feature fusion of different models No Yes 
(0.43%) 

Odumuyiwa et 
al.[20] 

ECML PKDD 
CSIC 2010 

Hybrid 2020 
Single model classification decision No Yes 

ATPAD[21] CIC-IDS-2017 
CSIC 2010 Single model classification decision No No 

Our Method Private Dataset 
(Unbalanced) Multi level model feature fusion Yes Yes 

As shown in the table, while many methods achieve high 
classification accuracy in specific tasks, they often overlook 
data imbalance and false positive control—two critical 
challenges in real-world large-scale traffic environments. The 
imbalanced distribution of benign and malicious traffic 
severely impacts classifier performance, and minimizing FPR 
for benign traffic is essential for practical deployment. 
Furthermore, most methods rely on single-model 
architectures for feature extraction and classification. 
Although some studies [8, 13] employ multi-model or multi-
layer fusion strategies, they still lack hierarchical textual 
analysis, failing to fully exploit the potential of annotated 
datasets. Recent techniques leverage generative adversarial 
networks (GANs) and diffusion models for data 
augmentation and synthesis, yet the inherent uncertainty of 
generative algorithms may compromise model reliability. 
Thus, the key challenge lies in integrating expert knowledge 
to extract more discriminative features while ensuring 
classifier robustness and efficiency in imbalanced, high-
volume traffic scenarios. 

Although existing methods have made progress in 
identifying web vulnerability attacks, there are still critical 
issues to be addressed: first, the false positive rate in large-
scale traffic environments cannot meet practical requirements; 
second, the imbalanced distribution of benign and malicious 
samples leads to poor identification performance for 

minority-class (attack) samples. Specifically, a high false 
positive rate not only increases the workload of security 
analysts but may also compromise the effectiveness of 
defense strategies. Due to imbalanced data distribution, 
current identification models often face performance 
bottlenecks when detecting minority-class (malicious) 
samples, further exacerbating the false positive issue. 
Therefore, improving the model's ability to identify malicious 
samples has become a key challenge. 

To address this problem, this paper proposes EBTM, a 
feature fusion-based method for identifying web vulnerability 
attacks. By standardizing irrelevant information in text and 
enhancing the model's ability to learn key features, combined 
with a multi-level feature fusion approach, we construct 
complementary base models at the word, sentence, and 
context level to improve identification accuracy in 
imbalanced data environments and reduce the false positive 
rate in large-scale traffic scenarios. 

The main contributions are as follows: 
1. To minimize interference from irrelevant information,

this study focuses on key features and incorporates expert 
knowledge to map URL requests into a relatively unified 
representation, thereby strengthening the model's ability to 
learn important characteristics. 
2. By combining a multi-level feature fusion method, we
build complementary feature extraction models at the word,
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sentence, and context levels. Through hierarchical feature 
enhancement, the model gains a more comprehensive 
understanding of samples, improving its ability to identify 
minority-class samples 

2. Method

2.1 Overall Framework 

The EBTM methodology comprises three core components: 
the feature learning module, the deep learning model 
module, and the integrated decision-making module. As 
illustrated in Fig. 1, the workflow proceeds as follows: 

Figure 1. EBTM architecture 

The input text information is first sent to the feature 
learning section for feature processing, which normalizes the 
URL string and maps it to a relatively uniform expression to 
reduce the impact of irrelevant information on feature 
representation and model performance. Secondly, the data 
that has undergone data preprocessing steps such as decoding 
and normalization is characterized and processed into feature 
vectors, which are then fed into various deep learning models 
to extract feature vectors at different levels using the 
characteristics of different models. After obtaining the feature 
vectors of each level, they are sent to the comprehensive 
decision-making section. The feature vectors of the three 
levels are concatenated in the second dimension to achieve 
the fusion of features at different levels. Finally, they are sent 
to the classifier for classification processing to obtain the final 
recognition result. The detailed dimensional flow between 
each module is shown in the characters in Fig. 1, and the 
correspondence between characters and specific meanings is 
detailed in Table 2. 

Table 2. Symbol definition correspondence table 

Symbol Corresponding Parameters Meaning Explanation 
B batch_size Batch size 

L max_len Input sequence length 

V vocab_size Character table size 

K num_kernels Number of convolution kernels 

E embedding_dim Word embedding dimension 

H hidden_dim LSTM hidden layer dimension 

D d_model Dimension of Transformer Model 

M memoryslot_num Number of memory units 

N num_classes Number of classification categories 

2.2 Feature Learning Section 

The EBTM methodology comprises three core components: 
the feature learning module, the deep learning model module, 
and the integrated decision-making mod-ule. As illustrated in 
Fig. 1, the workflow proceeds as follows: 

Feature learning serves as the first critical component of 
the EBTM method for web vulnerability attack behavior 
identification, playing a pivotal role in effective information 
extraction throughout the deep learning-based classification 
process. The quality of feature learning fundamentally 
determines the upper limit of identification capability. Our 
feature learning framework consists of two key steps: feature 
pro-cessing and feature representation. This section first 
addresses the feature processing of input text information. By 
focusing on key information and incorporating expert 
knowledge, we obtain task-relevant feature data. 
Subsequently, the processed features undergo feature 
representation. The complete data processing flow of the fea-
ture learning module is illustrated in Fig. 2. The following 
sections will elaborate in detail on the methodologies for 
feature processing and representation: 

Feature Information Processing 
URL String Processing 

In diverse environments encompassing various systems, 
platforms, and servers, URL requests exhibit multiple 
formats due to configuration differences. Furthermore, when 
executing attacks, attackers often deliberately craft URL 
variants to obfuscate their structures and parameters. To 
more effectively identify web attacks concealed in different 
URL request formats, this paper proposes a transformation 
vocabulary that maps URL requests to a relatively unified 
representation. This approach reduces interference from 
irrelevant information on model performance, decreases the 
complexity of the identification process, and enhances the 
model's capability to recognize key attack-type features. 
Specifically, we define a transformation vocabulary as 
shown in Table 3. Strings unrelated to attack types - such as 
pure numerical information, file type information, and other 
fixed data - are matched through purpose-built regular 
expressions and replaced with predefined category 
identifiers. This focuses the model on attack-relevant feature 
information within URL requests. It is important to note that 
all symbols are preserved to avoid losing structural, 
semantic, or other critical features, ensuring the model can 
capture potential attack information. Below is an example of 
a collected URL request that has undergone this unified 
representation processing: 

/C6/JHSoft.Web.WorkFlat/DBModules.aspx/?interfaceID
=1;WAITFOR+DELAY+'0:0:5'-- HTTP/1.1 

It is converted into a new expression as follows: 
/Path/JHSoft.Web.WorkFlat/DBModulesFiletype/?Sessio

n&ID=Number;WAITFOR+DELAY+'Number'-- 
HTTP/Number 
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Table 3. Convert word list 

Regular Expression Matching Target Example 
All pure numbers and strings composed of numbers and "." ":" 

in the URL 
Number 

.html,.php,.jsp,.asp,.json,.xml,.css,.js,.txt,.csv,.jpg,.png,.gif,.pdf
… 

Filetype 

debug,log,trace,error,info,warn… Debugging 

timestamp,date,time,expires,created,updated… Time&Date 

sessionId, userId, auth, login, logout, register, password, 
email… 

Session&I
D 

config, settings, preferences, options, admin, manage, 
dashboard 

Config 

The string composed of a-z and - in the path part of the URL Path 

MD5 string MD5 

Decoding Processing 
In response to increasingly sophisticated network security 

protections, attackers often employ various encoding 
techniques to bypass security mechanisms. The obfuscation 
methods include but are not limited to Base64 encoding, URL 
encoding, and HTML entity encoding, which are designed to 

conceal malicious code or data during transmission, making 
it more difficult for detection systems to identify them. By 
utilizing these encoding methods, attackers make their 
malicious activities harder to detect through conventional 
security measures, thereby enhancing the stealth and success 
rate of attacks. For the extracted data, decoding and 
restoration are required based on different encoding schemes. 
This section designs and implements a multi-layer text 
decoder specifically for common encoding methods, aiming 
to progressively decode complex texts containing multiple 
encoding formats. The decoder sequentially processes HTML 
entity encoding, single and double URL encoding, Unicode 
encoding, Base64 encoding, Java syntax encoding, and 
hexadecimal (Hex) encoding. When valid text encoding is 
detected, corresponding decoding operations are performed 
to enable batch processing of samples. This section uses SQL 
injection attack statements as an example to demonstrate the 
encoding methods processed in this study and their 
corresponding text before and after decoding, as detailed in 
Table 4. 

Table 4. Encoding method and examples (taking SQL injection vulnerability as an example) 

Encoding Method Before Mecoding After Decoding 
URL encoding (SELECT%20639%20FROM%20PG_SLEEP(1

5))--.filename.filetype 
(SELECT 639 FROM 

PG_SLEEP(15))--.filename.filetype 
Unicode encoding s\u0065\u006C\u0065\u0063\u0074\u0020\u006

6\u0072\u006F\u006D 
select from 

Base64 encoding c2VsZWN0ICogZnJvbSB1c2VycyB3aGVyZS
BpZCA9IDEgb3IgMSMiICggdW5pb24gc2VsZ

WN0IDEsdmVyc2lvbiAoICkgLS0gMQ== 

select * from users where id = 1 or 1#" 
( union select 1,version ( ) -- 1 

HTML entity 
encoding 

admin&#39; or 1 = 1&#35;,1 admin' or 1 = 1#,1 

Hex encoding 61 64 6D 69 6E 20 29 20 6F 72 20 28 20 31 20 
3D 20 31 20 29 

admin" ) or ( "1" = "1 

Java syntax 
encoding 

admin\\\" or 1=1 admin" or 1=1 

Two URL encodings admin%2527or%25201%253D1%2523 admin'or 1=1# 

Text Normalization 
To enhance the model's feature extraction capability for 

web vulnerability attack behavior samples and ensure input 
consistency, this study performs normalization processing on 
the decoded and restored text strings. The normalization 
process comprises five key aspects as follows: 

First, case unification is implemented by converting all 
uppercase English letters to lowercase, avoiding semantic 
duplication caused by case variations and improving text 
processing efficiency and accuracy. Second, full-width 
characters are uniformly converted to half-width characters to 
standardize text formats and prevent processing errors due to 
inconsistent character formats. Third, for SQL-based attack 
payloads, common MySQL comment information is removed 
by eliminating both single-line and multi-line MySQL 
comment content, thereby avoiding interference from 
meaningless characters such as author names and version 
numbers in attack detection. Fourth, rigorous validation and 
cleaning of input information is performed, including 

removal of redundant whitespace characters to prevent 
attackers from exploiting space insertion for obfuscation 
bypass, while simultaneously avoiding processing errors 
caused by excessive spaces to improve text processing 
robustness. Fifth, unified formatting is applied to date, time 
and numerical information appearing in the text to enhance 
feature stability and processing consistency. 

Feature Information Representation 
In the feature information representation section, a 

character level text encoding strategy is adopted to convert 
the original text sequence into a fixed length, structured 
numerical tensor, in order to achieve structured expression of 
information and unified representation of features. 

This strategy is based on a predefined character set 
1 2{ , ,..., }nC c c c=  and constructs a mapping relationship 

between characters and indexes: 

char2idx :f C +→  (1) 
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For any input text sequence 1 2{ , ,..., }LT t t t= , scan 
character by character and perform a lookup mapping 
operation to obtain the corresponding index sequence: 

char2idx{ ( ) | , }i i iX f t t T t C= ∈ ∈  (2) 

To achieve uniform tensor input dimensions, we perform 
standardized processing on the index sequence X through 
zero-padding and truncation operations to enforce a 
consistent text length according to the predefined threshold 
max_len. When the sequence length is insufficient, zero-
value vectors are appended to the end until reaching the 
predetermined length; when exceeding the limit, the trailing 
portion is discarded while preserving the leading valid 
characters. Finally, the feature vectors and their 
corresponding category labels are jointly packaged into 
PyTorch-format data tensors, providing the required input 
structure for subsequent deep learning frameworks. This 
encoding strategy not only effectively preserves fine-grained 
textual information but also avoids potential errors introduced 
by certain tokenization methods, thereby delivering high-
quality input representations for subsequent feature learning 
and model training. 

Figure 2. The data processing process of the feature 
learning part 

2.3 Deep Learning Model Section 

Deep learning achieves multi granularity feature extraction 
by designing deep learning models at the word level, sentence 

level, and context level. The architecture of the deep learning 
model is shown in Fig. 2. The following will specifically 
introduce the deep learning models for feature extraction at 
each level: 

Feature Information Processing 
To effectively extract word level features, this paper 

constructs an Enhanced WordCNN (EWC) feature 
extraction model based on multi-scale convolutional neural 
networks. This model fully utilizes the advantages of 
convolutional neural networks in local feature extraction, 
adopting a parallel multi branch convolution structure to 
achieve efficient representation of word level features. 

Specifically, for a given input text 1 2{ , ,..., }nX x x x= , the 
first step is to perform embedding mapping: 

Embedding( ) n dE X ×= ∈ (3) 

Among them, is the embedding dimension and is the 
number of characters. 

Then, different sizes of one-dimensional convolution 
kernels are used for feature extraction, and the feature 
extraction formula is as follows: 

GELU(Conv1D( , )+ )k k kC E W b= (4) 

Among them, kW  is the convolution kernel weight, kb  is the 
bias term, and k represents different convolution kernel 
widths, corresponding to different n-gram level features. 

GELU improves the stability of gradient propagation 
through a nonlinear smoothing transformation mechanism, 
and then applies adaptive max pooling for feature aggregation. 
Different convolution outputs are concatenated along the 
channel dimension, and some neurons are randomly 
suppressed through Dropout to enhance the model's 
generalization ability. Finally, the model outputs a 3K 
dimensional (see Table 2 for details) feature vector, 
effectively achieving word level feature extraction in the task 
of identifying web vulnerability attack types.

Figure 3. EBTM deep learning model Architectures
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Sentence Level Feature Extraction Model BTA 
In the sentence level feature extraction deep learning 

model BTA (BiLSTMAttention), BiLSTM is used to 
capture global dependencies at the sentence level. BiLSTM 
captures the contextual dependencies of each word through 
bidirectional information flow and generates word 
representations that contain contextual information. This 
ability is crucial for understanding the semantics of web 
attack sequences, as attack patterns often rely on specific 
word sequences and their semantic combination 
relationships. BiLSTM not only focuses on local word 
combinations, but also understands the semantic structure 
of the entire sentence. 

Based on the output of BiLSTM, the model introduces 
an attention mechanism to calculate the attention weights 
for each time step, in order to focus on the key parts of the 
sentence. This mechanism not only captures global 
dependencies, but also effectively enhances the model's 
perception of attack semantic features while maintaining 
computational efficiency. The specific calculation formula 
is as follows: 

1

exp( )
exp( )

a t
t n

a jj

W h
W h

α
=

=
∑

(5) 

Among them, aW  is the trainable attention weight matrix, 

tα  represents the importance of the t-th time step, and th
is the hidden state of each time step represented by the 
concatenation of forward and backward LSTM. 

Then, the output of BiLSTM is weighted and summed 
using attention weights, and the concatenated features are 
regularized through a Dropout layer to prevent overfitting, 
generating a sentence level global feature vector. The 
generation formula is as follows: 

BTA
1

Dropout( )
n

t t
t

F hα
=

= ∑  (6) 

The BTA model combines BiLSTM and attention 
mechanism to achieve efficient extraction and semantic 
understanding of sentence level features, making it more 
suitable for analyzing complex text data such as web attack 
sequences. 

Context Level Feature Extraction Model BTA 
The TRM (Transformer_Memory) model is based on the 

encoder part of the Transformer architecture, using self 
attention mechanism to represent the relationships between 
different positions in the sequence, and introducing a 
memory module on top of it to better extract contextual 
feature information. 

Specifically, after embedding is completed, the model 
injects positional information into the word embedding 
vector through positional encoding, enabling the model to 
capture the positional information of words in the sentence 
and better understand the contextual relationship of the 
entire text. At the same time, a learnable memory 
parameter is introduced to concatenate the word 

embedding vector injected with positional information, and 
the concatenated vector is used as the input of the 
Transformer encoder. The corresponding generation 
formula is as follows: 

[ ; PositionalEncoding]E M X= +  (7) 

Among them, M is a learnable global memory parameter. 
As the Transformer encoder performs self attention 

calculation on the input vector, the memory vector can 
interact with each token in the word embedding vector. 
During the training process, it updates with the gradient 
and gradually learns how to store global information that is 
effective for the task. The specific calculation formula is as 
follows: 

( )( )
softmax( )

T
Q K

V

W E W E
A EW

d
= (8) 

Among them, QW , KW , and VW  are trainable parameter 
matrices. 
Finally, the model output is extracted as sequence features, 
with special attention paid to the feature representation of 
the first position. The feature vector of this position is 
processed by the encoder to better integrate global 
contextual information, which can serve as a semantic 
summary of the entire input sequence and be fed into the 
feature fusion model to provide global information. 

Comprehensive Decision Section 
In the comprehensive decision section, the adaptive 

weight adjustment method FEF (Feature Fusion) is 
designed to fuse features of different granularities. 
Introducing a gating fusion mechanism to globally scale 
features, the EWC model, BTA model, and TRM model are 
responsible for extracting feature representations at 
different levels from input data. The output feature 
dimensions are [B, 3K], [B, 2H], and [B, D], respectively. 
After obtaining features at different levels, the gating 
feature fusion is used to calculate the importance weight of 
each feature vector. The specific calculation formula is as 
follows: 

EWC EWC EWC( )g W Fσ= ⋅ (9) 

BTA BTA BTA( )g W Fσ= ⋅ (10) 

TRM TRM TRM( )g W Fσ= ⋅ (11) 

Among them, σ  is the Sigmoid function, EWCW , BTAW , 

TRMW  are learnable parameter matrices, EWCF , BTAF , 

TRMF  are the eigenvectors output by EWC, BTA, and TRM 
models, respectively. 

Normalized by Sigmoid, used for weighted features, the 
specific formula is as follows: 

EWC EWC EWCF g F′ = ⋅ (12) 
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BTA BTA BTAF g F′ = ⋅  (13) 

TRM TRM TRMF g F′ = ⋅ (14) 

By using the above method to adaptively adjust the weights 
of different features, the fusion effect can be improved. 
Finally, concatenate along the feature dimension (dim=1) 
to form a comprehensive feature vector [B, 3K+2H+D]. In 
order to map the fused feature vectors to the target category 
space, the model uses an MLP as a classifier to complete 
the classification task. 

3. Experimental Setup

To better evaluate and validate the performance and 
effectiveness of the method, this paper conducts the 
following experimental settings, including the dataset, 
experimental environment, evaluation indicators, and 
model parameter settings. 

3.1 Dataset 

The publicly available dataset adopts the widely 
recognized CSIS-2010, while the self built dataset mainly 
consists of (1) vulnerabilities directly collected and 
replicated from public vulnerability databases such as CVE 
vulnerability database, CNVD database, and exploit db 
between 2018 and 2023 (2) Competition data for big data 
security analysis such as DataMen (3) The dataset provided 
by the cybersecurity competition (4) Organize data from 
datasets of HttpParams, CIC-IDS 2017, GitHub website, 
and Kaggle website. Due to the fact that the baseline 
dataset CSIC 2010 used in most previous experiments [8, 
13, 18] cannot cover the data of new vulnerability attack 
behaviors, it is difficult to accurately evaluate the 
recognition ability of the model for current mainstream 
attacks and their variants. Therefore, it is considered to 
merge and organize the CSIC 2010 dataset with relevant 
data from recent years to obtain a self-built dataset for 
future use, which contains a total of 36892 web 
vulnerability attack behaviors. By preprocessing the 
relevant data separately, standardizing the format and 
integrating the feature space. Although there are 
differences in nor-mal behavior patterns, attack feature 
distributions, and traffic baselines among data from 
different sources and periods, the benefits of increasing 
timeliness and coverage through data integration far 
outweigh controllable adverse effects such as feature 
distribution shifts and differences in attack manifestations. 
To approach the distribution characteristics dominated by 
normal traffic in real scenarios, 1143584 normal traffic 
were sorted out, and the experimental construction showed 
that the ratio of normal traffic to web vulnerability attack 
traffic was greater than 30:1. 

3.2 Experimental Environment 

The experiment was conducted on a server configured with 
60GB of memory, 96 core AMD EPYC 9654 CPU, and 
NVIDIA GeForce RTX 4090 (24GB of video memory). 
The server is running Ubuntu 20.04 operating system, and 
the experiment is based on Pytorch implementation. This 
chapter randomly divides the integrated dataset into three 
independent sets, with 80% of the samples used for training 
and adjusting bias, 10% of the samples used for validation 
during the training phase, and the final 10% of the samples 
used for testing the model. 

3.3 Evaluation Indicators 

In order to better evaluate the classification performance of 
the EBTM model on imbalanced datasets, this chapter uses 
four different performance evaluation metrics: 

Macro Average Precision measures the accuracy of a 
model in predicting positive cases for each category. 

1

1-
N

i

i i i

TP
Macro Precision

N TP FP=

=
+∑ (15) 

Macro Average Recall measures the model's ability to 
identify positive examples for each category. 

1

1-
N

i

i i i

TP
Macro Recall

N TP FN=

=
+∑ (16) 

Macro Average F1 Score takes into account the balance 
between precision and recall for each category. 

1

·
1-  (2 )

i i
N

i i i i

i ii

i i i i

TP TP
TP FP TP FN

Macro F1 Score
TP TPN

TP FP TP FN
=

+ +
= ⋅

+
+ +

∑  (17) 

The False Positive Rate reflects the misjudgement of 
positive cases in application scenarios by the model. 

FPFPR
FP TN

=
+

(18) 

Accuracy is a global score that quantifies the correctness 
of a model's performance across all categories, but it is 
bound to achieve good results under extremely imbalanced 
sample conditions, and the accuracy of various methods 
will generally be high. Because in imbalanced data, the 
model can achieve higher accuracy by predicting the 
majority of samples as the majority class, so accuracy is not 
considered to evaluate the performance of the model 

3.4 Model Parameter Setting 

The model training adopts the AdamW optimizer, with 
an initial learning rate of 1e-3, and the loss function uses a 
cross entropy loss function suitable for classification tasks. 
The experiment improved the model performance by 
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optimizing some hyperparameter settings, and plotted the 
loss and macro average F1 score of the training and 
validation sets as a function of epoch, as shown in Fig. 4. 
After about 4 rounds, the model loss tended to converge 
steadily. During the training process, an early stopping 
mechanism (with a patch set to 5) was introduced to 
prevent overfit-ting. The batch size was fixed at 32, and the 
number of training epochs was 30. The experimental 
results were taken as the average of three runs. 

Figure 4. Loss/Macro Average F1 Score V.S. 
Training Round Chart 

4. Experimental Results and Analysis

To evaluate the performance of EBTM, this section 
discusses and analyzes its effectiveness in identifying web 
vulnerability attack behaviors from two aspects: 
performance comparison and ablation experiments, 
through a systematic experimental design. 

4.1 Performance Comparison 

In order to comprehensively evaluate the performance 
of the EBTM model, this method selected five baseline 
models for comparison, including: 

Zhu et al. [8]: In the preprocessing stage, this model 
improves the TF-IDF algorithm by introducing weighting 
factors to assign higher weights to data with attack content. 
Then, based on the improved algorithm, a dictionary is 
constructed to filter low-frequency information in the 
payload. Word2Vec is used to convert vocabulary into 
feature vectors, and TextCNN and BiLSTM Attention 
models are used to extract features and fuse them to 
determine the type of HTTP request. 

Tekerek et al. [22]: This model preprocesses and 
truncates HTTP request headers, segments URLs and 
payloads, and converts them into two-dimensional matrices, 
simplifying the complexity of input data. Then, it uses a 
bag of words model to convert URLs and payloads in 
HTTP requests into frequency features, preserving 
character level information while reducing data complexity. 
It effectively captures common string operations and 
patterns in web attacks, and finally uses a CNN model for 
classification tasks. 

BL-IDS [19]: This model segments the decoded HTTP 
request according to specific separators (such as "/", "&", 
"=", "?", etc.) to obtain a series of words or symbols. The 
Skip Gram model is used to generate word vectors, and the 
bidirectional long short-term memory network BiLSTM 
model is used to learn the temporal characteristics of the 
HTTP request. Finally, the Softmax classifier is used to 
determine whether the input HTTP request is a normal 
request or an attack request. 

ATPAD [21]: This model consists of an encoder RNN, a 
decoder RNN, and an attention network. The encoder RNN 
extracts sequence information, the attention mechanism 
focuses on key parts, and the decoder RNN performs 
classification prediction to identify abnormal loads in web 
applications. 

Web FTP [23]: This model treats web data as natural 
language sequences and uses the ELECTRA framework to 
learn deep features of sequence data through a generator 
discriminator structure. The pre trained model's 
discriminator is used as the backbone network, combined 
with fully connected layers and Softmax layers, to fine tune 
binary classification tasks through real-world traffic data, 
achieving binary classification detection of web data. 

The focus of this section is to compare the four indicators 
mentioned in section 3.3. As some baseline models are not 
open source, this section fine tunes them based on the 
original model design structure, hyperparameter design, 
and training method to achieve the best results. At the same 
time, the cost during training is ignored, and the baseline 
model is trained by maximizing the training epochs to 
complete the training process when all models converge. 
The results of the indicators for the self built dataset are 
shown in Table 5. The experimental results showed that 
some models had high macro average precision values, 
while others had relatively high macro average recall 
values. In this section, we analyzed that in the case of 
imbalanced samples, the high macro average recall rate 
proves that the model can better capture positive samples, 
resulting in low macro average precision because it may 
misjudge some negative samples as positive; If the macro 
average accuracy is high, it indicates that the model's 
predictions are conservative, but some positive samples 
may be missed. EBTM achieved better performance than 
other compared models in terms of macro average F1 score 
and false positive rate, which best reflect the model's 
attention. This proves the effectiveness and low false 
positive rate of the model under large-scale imbalanced 
sample conditions. 
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Table 5. Comparative experimental results 

Method Macro 
Precision 

Macro 
Recall 

Macro F1 
Score 

FPR 

Zhu et al.[8] 0.96897 0.97516 0.97180 0.00381 

Tekerek et 
al.[22] 

0.91737 0.84196 0.87819 0.01759 

BL-IDS[19] 0.92470 0.94155 0.93281 0.00917 

ATPAD[21] 0.94330 0.89252 0.91707 0.01193 

Web-FTP[23] 0.96841 0.95589 0.96225 0.00376 

EBTM 0.98352 0.99769 0.99046 0.00054 

To visually demonstrate the performance of different 
methods for classification tasks, ROC and PR curves were 
plotted to evaluate the performance of different methods, 
as shown in Fig. 5. EBTM and five baseline models were 
designated as curves 1-6 in the order of introduction. The 
horizontal axis of the ROC curve represents the false 
positive rate, and the vertical axis represents the true 
positive rate. The closer the curve is to the upper left corner, 
the smaller the area under the curve, indicating better 
performance of the model. From the experimental results, 
it can be seen that this method achieves better results 
compared to the other five methods. 

Figure 5. ROC and PR curves of different methods 

Under the condition of imbalanced samples, the PR 
curve can better evaluate the performance of the model 
compared to the ROC curve. The ROC curve focuses on 
the true positive rate and false positive rate, and has low 
sensitivity to sample imbalance, while the PR curve 
combines precision and recall, directly focusing on the 
performance of positive samples, and can better reflect the 
true performance under sample imbalance conditions. 
From the experimental results, it was found that the PR 
curve of our method is closer to the upper right corner and 
the offline area is also the largest, which proves the 
superiority of our method compared to other methods. 

4.2 Ablation Experiment 

In order to further analyze the impact of various parts 
of EBTM on model performance, four ablation 
experiments were designed to remove the feature 
information processing part (FIP), word level feature 
extraction part (EWC), sentence level feature extraction 
part (BTA), and context level feature extraction part 
(TRM) from EBTM. The experimental results are shown 
in Fig. 6. 

Figure 6. Experimental results of EBTM ablation 

w/o FIP: Without processing feature information, the 
interference of redundant in-formation makes it difficult 
for the model to extract feature information well, resulting 
in a decrease in the model's classification ability. By 
comparing the classification results of removing FIP 
module and complete EBTM, it is found that the main 
reason for the performance decline is the increase in false 
positives of benign traffic and malicious traffic to varying 
degrees. This proves that the setting of FIP module plays 
an important role in optimizing input information and 
improving model false positives. 

w/o EWC: Experimental results show that after 
removing the EWC module, the macro average F1 score 
decreased by 2.16% and the false positive rate increased by 
0.24%. After removing the EWC module, the model lacks 
capture of word level in-formation, resulting in a decrease 
in model performance. 
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w/o BTA: After removing the BTA module, the macro 
average F1 score decreased by 0.12% and the false positive 
rate increased by 0.12%. Compared to the absence of other 
feature extraction modules, the impact on model 
performance was minimal. Prove that the BTA module 
compensates for some sentence level features that EWC 
and TRM modules cannot capture, which is helpful for 
improving the overall model performance. 

w/o TRM: After removing the TRM module, although 
the macro average F1 score slightly increased compared to 
EWC, the false alarm rate did not decrease but instead 
increased. The analysis of the results shows that compared 
to the EWC module, the TRM module has a more 
significant recognition effect on web vulnerability attack 
behaviors. This phenomenon indicates that the TRM 
module plays an important role in improving the ability to 
identify attack behaviors. 

The results of the ablation experiment demonstrate that 
the design of FIP, EWC, BTA, and TRM modules all 
contribute to the model's recognition ability. When work-
ing together, they can fully analyze the input information 
and achieve optimal model performance. The absence of 
different modules will have varying degrees and aspects of 
impact on the model. 

Figure 7. T-SNE visualization 

In addition, to verify whether the features extracted by 
EBTM are helpful for recognition performance, t-SNE 
dimensionality reduction technique was used for 
visualization analysis, and the results are shown in Fig. 7. 
The complete model visualization is shown in the left 

figure. The results indicate that different categories of 
samples form obvious clustering distributions in the feature 
space, and only a few samples have classification errors. 
This result proves that the EBTM model can effectively 
extract discriminative features under large-scale 
imbalanced sample conditions through multi granularity 
feature fusion methods, and improve the classification 
performance of the model in such scenarios. In addition, 
this section also presents t-SNE visualization of the model 
after removing the FIP module, as shown in the figure on 
the right. Through comparison, it can be found that the 
design of feature information processing in this model can 
effectively reduce the impact of irrelevant in-formation on 
model performance, and has a good effect on aggregating 
feature in-formation and clarifying the boundaries of 
clustering regions. 

4.3 Hyperparameter Sensitivity Analysis 

To further understand the impact of hyperparameter 
settings on the performance of the EBTM model, a 
sensitivity analysis was conducted, with a focus on 
analyzing the number of layers in the Transformer encoder. 

The experimental results of hyperparameter sensitivity 
analysis for Transformer encoder layers are shown in 
Figure 8. The analysis results indicate that when the 
number of encoder layers is less than 2, the performance of 
the model improves with the increase of the number of 
encoder layers. However, when the number of encoder 
layers reaches 2 or more, the performance of the model 
tends to stabilize and fluctuates within a very small interval. 
And the training time increases continuously with the 
increase of encoder layers, especially when increasing 
from five to six layers, the training time increases 
exponentially. Analysis may be due to the non-linear 
increase in the time complexity of gradient calculation 
when it needs to go through more layers, especially in the 
5-6 layers, where the cumulative effect is more obvious. In
summary, selecting a two-layer Transformer encoder can
ensure training efficiency while maintaining good
performance.

Figure 8. Sensitivity analysis of Transformer 
encoding layers 
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5. Conclusions and Future Work

This chapter proposes a web vulnerability attack behavior 
recognition method EBTM for large-scale imbalanced 
network traffic environments, aiming to improve the 
model's recognition performance of web vulnerability 
attack behavior in real-world scenarios. This method 
focuses on key information and incorporates expert 
knowledge. By mapping URL requests relatively 
uniformly, it effectively reduces the interference of 
redundant information on recognition performance and 
strengthens the model's ability to learn important features. 
At the same time, EBTM performs multi-level feature 
extraction on the input text from three granularity levels: 
word level, sentence level, and context level. It utilizes an 
adaptive weight feature fusion strategy to achieve 
complementary enhancement of information at different 
semantic levels, and ultimately completes classification 
decisions. The experimental results show that EBTM 
exhibits better recognition performance compared to 
existing methods under large-scale imbalanced sample 
distribution conditions, while reducing false positive rates, 
and can better adapt to the recognition needs of web 
vulnerability attack behaviors in actual complex network 
environments. 

In the future, we will continue to study the following 
topics: 

1. The problem of identifying attack types in multi
vulnerability fusion scenarios. In actual attacks, different 
types of vulnerabilities may be compounded and applied to 
the same attack, forming a more covert and destructive 
attack chain. However, currently most detection models 
can only identify such composite attack behaviors as a 
single vulnerability type, making it difficult to achieve joint 
identification and accurate classification of multiple 
vulnerability applications. How to effectively enhance the 
detection capability of composite attacks will be the focus 
of the next research step. 

2. Further expand the methods for locating and
extracting auxiliary attack payloads. In the process of 
detecting web vulnerability attacks, there is a relative lack 
of research on extracting attack payloads. Currently, 
attention weight scores are mainly relied on for auxiliary 
extraction and analysis. However, for generative large 
language models, attention weights reflect the degree of 
attention paid to the input text when generating labels, and 
it is difficult to directly reflect the impact of the input text 
on the classification results. It lacks interpretability and can 
only assist in the localization and extraction of attack 
payloads. Therefore, future research can further explore 
more diverse and efficient auxiliary positioning strategies, 
such as introducing attack payload knowledge graphs to 
provide context related information, assisting in decision-
making and judgment during the extraction process, and 
further enhancing the practicality and trustworthiness of 
the system in practical environments.  
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