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Abstract

INTRODUCTION: With the continuous expansion of network scale, effectively detecting web vulnerability attacks has
become a critical challenge for ensuring network security. Existing research, primarily focused on balanced sample
recognition, proves inadequate for real-world scenarios due to high false alarm rates in large-scale traffic and poor
recognition performance for minority attack samples caused by imbalanced data distribution.

OBJECTIVES: This paper aims to address the limitations of current web vulnerability attack detection methods in
imbalanced real-world environments. The objective is to propose a novel recognition method that reduces the false positive
rate and improves the identification performance for minority attack samples under highly skewed data distributions.
METHODS: We propose a feature fusion-based recognition method named EBTM for imbalanced samples. The method
integrates expert knowledge to optimize feature selection, focusing on key information and ensuring a more uniform
mapping of URL requests. It employs three output features from different advantageous models for feature fusion, thereby
generating a richer and more discriminative feature representation for the final recognition task.

RESULTS: Experimental results demonstrate that the proposed EBTM method significantly enhances the recognition of]
web vulnerability attack behaviors. Under a realistic imbalanced condition where attack samples constitute only about 3%
of the data, the model achieves a macro-average F1 score of 99.1% and reduces the false positive rate to 0.054%.
CONCLUSION: The EBTM method effectively improves the efficiency and accuracy of web vulnerability attack behavior
recognition in practical, imbalanced scenarios. By combining expert-guided feature optimization and multi-model feature
fusion, it successfully addresses key challenges of high false alarms and poor minority class recognition, offering a robust

solution for securing large-scale network environments.
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1. Introduction

The rapid expansion of the Internet has made HTTP traffic
indispensable for web applications and browsing, facilitating
vast data transmission and interaction. However, with the
surge in HTTP traffic, malicious traffic has also increased
significantly, particularly web vulnerability attacks, which
have become a major cybersecurity threat. Common attack
vectors—such as SQL injection, cross-site scripting (XSS),
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and distributed denial-of-service (DDoS) attacks—not only
lead to sensitive data breaches and system integrity
compromises but may also trigger large-scale service
disruptions, causing substantial financial losses and privacy
risks for businesses and users. Due to their high stealthiness,
low technical barriers, and frequent disguise as legitimate
HTTP traffic, these attacks often evade traditional security
mechanisms, making detection and mitigation challenging.
In recent years, research on web vulnerability attack
detection has continued to evolve. Conventional approaches,
such as parameterized input validation and filtering [1], rely
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on allowlists and regular expression matching to restrict and
sanitize user inputs. However, these methods are constrained
by predefined rule coverage, failing to detect novel attack
techniques. Moreover, their effectiveness heavily depends on
developers’ security expertise, limiting their robustness
against sophisticated attacks. With advancements in artificial
intelligence, machine learning (ML) models (e.g., logistic
regression, random forests, support vector machines) [2—4],
deep learning (DL) models (e.g., CNNs, RNNs, LSTMs,
GRUs, DBNs) [5-8], and transformer-based pretrained

language models [9-12] have been increasingly adopted for
attack identification. These methods autonomously learn
features from raw payload data, significantly reducing
reliance on manual feature engineering and expert knowledge.
Nevertheless, existing approaches still suffer from the
aforementioned limitations. Table 1 summarizes the
differences and constraints of current web attack detection
methods regarding sample conditions, decision strategies,
data utilization, and false positive rate (FPR) mitigation.

Table 1. Comparison of limitations in web vulnerability attack behavior identification methods

Method Dataset Decision Method Data Balance  Research on FPR
N ECML PKDD Single model classification decision
Nguyen etal.[14] CISIC 2010 Combine harvester No No
Vartouni etal[15]  CIsic2010  Single model classification decision No No
Random tree partitioning
Luo et al.[13] CSIC 2010 Feature fusion of different DL layers No No
Zhang et al.[16] CSIC 2010 Single model classification decision No (12?’/ )
. 0
. Private Dataset . . . - Yes
Tian et al.[17] (Balanced) Single model classification decision No (3.21%)
Althubiti et al. [18] CSIC 2010 Single model classification decision No No
BL-IDS[19] CSIC 2010 Single model classification decision No (IY:; )
B 0
Zhu et al.[8] CSIC 2010 Feature fusion of different models No (Ozg?’/ )
B 0
Odumuyiwa et ECML PKDD
al [%10] CSIC 2010 Single model classification decision No Yes
’ Hybrid 2020
ATPAD[21] CICCS_IIgSZ_OleOI 7 Single model classification decision No No
Our Method Private Dataset Multi level model feature fusion Yes Yes
(Unbalanced)

As shown in the table, while many methods achieve high
classification accuracy in specific tasks, they often overlook
data imbalance and false positive control—two critical
challenges in real-world large-scale traffic environments. The
imbalanced distribution of benign and malicious traffic
severely impacts classifier performance, and minimizing FPR
for benign traffic is essential for practical deployment.
Furthermore, most methods rely on single-model
architectures for feature extraction and classification.
Although some studies [8, 13] employ multi-model or multi-
layer fusion strategies, they still lack hierarchical textual
analysis, failing to fully exploit the potential of annotated
datasets. Recent techniques leverage generative adversarial
networks (GANs) and diffusion models for data
augmentation and synthesis, yet the inherent uncertainty of
generative algorithms may compromise model reliability.
Thus, the key challenge lies in integrating expert knowledge
to extract more discriminative features while ensuring
classifier robustness and efficiency in imbalanced, high-
volume traffic scenarios.

Although existing methods have made progress in
identifying web vulnerability attacks, there are still critical
issues to be addressed: first, the false positive rate in large-
scale traffic environments cannot meet practical requirements;
second, the imbalanced distribution of benign and malicious
samples leads to poor identification performance for

2 EA

minority-class (attack) samples. Specifically, a high false
positive rate not only increases the workload of security
analysts but may also compromise the effectiveness of
defense strategies. Due to imbalanced data distribution,
current identification models often face performance
bottlenecks when detecting minority-class (malicious)
samples, further exacerbating the false positive issue.
Therefore, improving the model's ability to identify malicious
samples has become a key challenge.

To address this problem, this paper proposes EBTM, a
feature fusion-based method for identifying web vulnerability
attacks. By standardizing irrelevant information in text and
enhancing the model's ability to learn key features, combined
with a multi-level feature fusion approach, we construct
complementary base models at the word, sentence, and
context level to improve identification accuracy in
imbalanced data environments and reduce the false positive
rate in large-scale traffic scenarios.

The main contributions are as follows:

1. To minimize interference from irrelevant information,
this study focuses on key features and incorporates expert
knowledge to map URL requests into a relatively unified
representation, thereby strengthening the model's ability to
learn important characteristics.

2. By combining a multi-level feature fusion method, we
build complementary feature extraction models at the word,
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sentence, and context levels. Through hierarchical feature
enhancement, the model gains a more comprehensive
understanding of samples, improving its ability to identify
minority-class samples

2. Method

2.1 Overall Framework

The EBTM methodology comprises three core components:
the feature learning module, the deep learning model
module, and the integrated decision-making module. As
illustrated in Fig. 1, the workflow proceeds as follows:

~ WordLewl |
il i Fearure Vecrar
H [

Figure 1. EBTM architecture

The input text information is first sent to the feature
learning section for feature processing, which normalizes the
URL string and maps it to a relatively uniform expression to
reduce the impact of irrelevant information on feature
representation and model performance. Secondly, the data
that has undergone data preprocessing steps such as decoding
and normalization is characterized and processed into feature
vectors, which are then fed into various deep learning models
to extract feature vectors at different levels using the
characteristics of different models. After obtaining the feature
vectors of each level, they are sent to the comprehensive
decision-making section. The feature vectors of the three
levels are concatenated in the second dimension to achieve
the fusion of features at different levels. Finally, they are sent
to the classifier for classification processing to obtain the final
recognition result. The detailed dimensional flow between
each module is shown in the characters in Fig. 1, and the
correspondence between characters and specific meanings is
detailed in Table 2.

Table 2. Symbol definition correspondence table

Symbol Corresponding Parameters Meaning Explanation

B batch_size Batch size

L max_len Input sequence length

14 vocab_size Character table size

K num_kernels Number of convolution kernels
E embedding dim Word embedding dimension
H hidden_dim LSTM hidden layer dimension
D d_model Dimension of Transformer Model
M memoryslot_num Number of memory units
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N num_classes Number of classification categories

2.2 Feature Learning Section

The EBTM methodology comprises three core components:
the feature learning module, the deep learning model module,
and the integrated decision-making mod-ule. As illustrated in
Fig. 1, the workflow proceeds as follows:

Feature learning serves as the first critical component of
the EBTM method for web vulnerability attack behavior
identification, playing a pivotal role in effective information
extraction throughout the deep learning-based classification
process. The quality of feature learning fundamentally
determines the upper limit of identification capability. Our
feature learning framework consists of two key steps: feature
pro-cessing and feature representation. This section first
addresses the feature processing of input text information. By
focusing on key information and incorporating expert
knowledge, we obtain task-relevant feature data.
Subsequently, the processed features undergo feature
representation. The complete data processing flow of the fea-
ture learning module is illustrated in Fig. 2. The following
sections will elaborate in detail on the methodologies for
feature processing and representation:

Feature Information Processing

URL String Processing

In diverse environments encompassing various systems,
platforms, and servers, URL requests exhibit multiple
formats due to configuration differences. Furthermore, when
executing attacks, attackers often deliberately craft URL
variants to obfuscate their structures and parameters. To
more effectively identify web attacks concealed in different
URL request formats, this paper proposes a transformation
vocabulary that maps URL requests to a relatively unified
representation. This approach reduces interference from
irrelevant information on model performance, decreases the
complexity of the identification process, and enhances the
model's capability to recognize key attack-type features.
Specifically, we define a transformation vocabulary as
shown in Table 3. Strings unrelated to attack types - such as
pure numerical information, file type information, and other
fixed data - are matched through purpose-built regular
expressions and replaced with predefined category
identifiers. This focuses the model on attack-relevant feature
information within URL requests. It is important to note that
all symbols are preserved to avoid losing structural,
semantic, or other critical features, ensuring the model can
capture potential attack information. Below is an example of
a collected URL request that has undergone this unified
representation processing:

/C6/JHSoft. Web.WorkFlat/DBModules.aspx/?interfacelD
=1;WAITFOR+DELAY+'0:0:5'-- HTTP/1.1

It is converted into a new expression as follows:

/Path/JHSoft. Web. WorkFlat/DBModulesFiletype/?Sessio
n&ID=Number; WAITFOR+DELAY+'Number'--
HTTP/Number
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Table 3. Convert word list

Regular Expression Matching Target Example
All pure numbers and strings composed of numbers and "." ":" Number
in the URL
.html,.php,.jsp,.asp,.json,.xml,.css,.js,.txt,.csv,.jpg,.png,.gif,.pdf  Filetype
debug,log,trace,error,info,warn. .. Debugging
timestamp,date,time,expires,created,updated. .. Time&Date
sessionld, userld, auth, login, logout, register, password, Session&l
email... D
config, settings, preferences, options, admin, manage, Config
dashboard
The string composed of a-z and - in the path part of the URL Path
MDS string MD5

Decoding Processing

In response to increasingly sophisticated network security
protections, attackers often employ various encoding
techniques to bypass security mechanisms. The obfuscation
methods include but are not limited to Base64 encoding, URL
encoding, and HTML entity encoding, which are designed to

conceal malicious code or data during transmission, making
it more difficult for detection systems to identify them. By
utilizing these encoding methods, attackers make their
malicious activities harder to detect through conventional
security measures, thereby enhancing the stealth and success
rate of attacks. For the extracted data, decoding and
restoration are required based on different encoding schemes.
This section designs and implements a multi-layer text
decoder specifically for common encoding methods, aiming
to progressively decode complex texts containing multiple
encoding formats. The decoder sequentially processes HTML
entity encoding, single and double URL encoding, Unicode
encoding, Base64 encoding, Java syntax encoding, and
hexadecimal (Hex) encoding. When valid text encoding is
detected, corresponding decoding operations are performed
to enable batch processing of samples. This section uses SQL
injection attack statements as an example to demonstrate the
encoding methods processed in this study and their
corresponding text before and after decoding, as detailed in
Table 4.

Table 4. Encoding method and examples (taking SQL injection vulnerability as an example)

Encoding Method

Before Mecoding

After Decoding

URL encoding

Unicode encoding

(SELECT%20639%20FROM%20PG_SLEEP(1
5))--.filename.filetype
s\u0065\u006C\u0065\u0063\u0074\u0020\u006
6\u0072\u006F\u006D

(SELECT 639 FROM
PG _SLEEP(15))--.filename.filetype
select from

select * from users where id = 1 or 1#"
( union select 1,version () -- 1

admin' or 1 = 1#,1

Base64 encoding c2VsZWNOICogZnlJvbSB1c2VycyB3aGVyZS
BpZCA9IDEgb3IgMSMilCggdW5pb24gc2VsZ
WNOIDEsdmVyc2lvbiAoICkgLS0gMQ==
HTML entity admin&#39; or 1 = 1&#35;,1
encoding

Hex encoding

Java syntax admin\\\" or 1=1
encoding
Two URL encodings admin%25270r%25201%253D1%2523

61 64 6D 69 6E 20 29 20 6F 72 20 28 20 31 20
3D 20312029

admin" )or ("1"="1
admin" or 1=1

admin'or 1=1#

Text Normalization

To enhance the model's feature extraction capability for
web vulnerability attack behavior samples and ensure input
consistency, this study performs normalization processing on
the decoded and restored text strings. The normalization
process comprises five key aspects as follows:

First, case unification is implemented by converting all
uppercase English letters to lowercase, avoiding semantic
duplication caused by case variations and improving text
processing efficiency and accuracy. Second, full-width
characters are uniformly converted to half-width characters to
standardize text formats and prevent processing errors due to
inconsistent character formats. Third, for SQL-based attack
payloads, common MySQL comment information is removed
by eliminating both single-line and multi-line MySQL
comment content, thereby avoiding interference from
meaningless characters such as author names and version
numbers in attack detection. Fourth, rigorous validation and
cleaning of input information is performed, including

removal of redundant whitespace characters to prevent
attackers from exploiting space insertion for obfuscation
bypass, while simultaneously avoiding processing errors
caused by excessive spaces to improve text processing
robustness. Fifth, unified formatting is applied to date, time
and numerical information appearing in the text to enhance
feature stability and processing consistency.

Feature Information Representation

In the feature information representation section, a
character level text encoding strategy is adopted to convert
the original text sequence into a fixed length, structured
numerical tensor, in order to achieve structured expression of
information and unified representation of features.

This strategy is based on a predefined character set
C={c,c,,....,c,} and constructs a mapping relationship

between characters and indexes:

f&‘:harZidx : C - D " (1)
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For any input text sequence 7 ={¢,t,,....,t,} , scan

character by character and perform a lookup mapping
operation to obtain the corresponding index sequence:

X = {.fcharZidx (ti) ‘ t,eT,t C} (2)

To achieve uniform tensor input dimensions, we perform
standardized processing on the index sequence X through
zero-padding and truncation operations to enforce a
consistent text length according to the predefined threshold
max_len. When the sequence length is insufficient, zero-
value vectors are appended to the end until reaching the
predetermined length; when exceeding the limit, the trailing
portion is discarded while preserving the leading valid
characters. Finally, the feature vectors and their
corresponding category labels are jointly packaged into
PyTorch-format data tensors, providing the required input
structure for subsequent deep learning frameworks. This
encoding strategy not only effectively preserves fine-grained
textual information but also avoids potential errors introduced
by certain tokenization methods, thereby delivering high-
quality input representations for subsequent feature learning
and model training.

Figure 2. The data processing process of the feature
learning part

2.3 Deep Learning Model Section

Deep learning achieves multi granularity feature extraction
by designing deep learning models at the word level, sentence

embedding

level, and context level. The architecture of the deep learning
model is shown in Fig. 2. The following will specifically
introduce the deep learning models for feature extraction at
each level:

Feature Information Processing

To effectively extract word level features, this paper
constructs an Enhanced WordCNN (EWC) feature
extraction model based on multi-scale convolutional neural
networks. This model fully utilizes the advantages of
convolutional neural networks in local feature extraction,
adopting a parallel multi branch convolution structure to
achieve efficient representation of word level features.

Specifically, for a given input text X = {x,,x,,...,x,}, the

first step is to perform embedding mapping:
E = Embedding(X) e[ 3)

Among them, is the embedding dimension and is the
number of characters.

Then, different sizes of one-dimensional convolution
kernels are used for feature extraction, and the feature
extraction formula is as follows:

C, = GELU(Conv1D(E, W, )+b,) (4)

Among them, ¥, is the convolution kernel weight, b, is the

bias term, and & represents different convolution kernel
widths, corresponding to different n-gram level features.

GELU improves the stability of gradient propagation
through a nonlinear smoothing transformation mechanism,
and then applies adaptive max pooling for feature aggregation.
Different convolution outputs are concatenated along the
channel dimension, and some neurons are randomly
suppressed through Dropout to enhance the model's
generalization ability. Finally, the model outputs a 3K
dimensional (see Table 2 for details) feature vector,
effectively achieving word level feature extraction in the task
of identifying web vulnerability attack types.

Figure 3. EBTM deep learning model Architectures
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Sentence Level Feature Extraction Model BTA

In the sentence level feature extraction deep learning
model BTA (BiLSTMAttention), BiLSTM is used to
capture global dependencies at the sentence level. BILSTM
captures the contextual dependencies of each word through
bidirectional information flow and generates word
representations that contain contextual information. This
ability is crucial for understanding the semantics of web
attack sequences, as attack patterns often rely on specific
word sequences and their semantic combination
relationships. BiLSTM not only focuses on local word
combinations, but also understands the semantic structure
of the entire sentence.

Based on the output of BiLSTM, the model introduces
an attention mechanism to calculate the attention weights
for each time step, in order to focus on the key parts of the
sentence. This mechanism not only captures global
dependencies, but also effectively enhances the model's
perception of attack semantic features while maintaining
computational efficiency. The specific calculation formula
is as follows:

a = M (5)
Zj:l eXp(VVahj)

Among them, W, is the trainable attention weight matrix,
a, represents the importance of the t-th time step, and #,

is the hidden state of each time step represented by the
concatenation of forward and backward LSTM.

Then, the output of BiLSTM is weighted and summed
using attention weights, and the concatenated features are
regularized through a Dropout layer to prevent overfitting,
generating a sentence level global feature vector. The
generation formula is as follows:

Fyra = DrOpOut(Z a,h) (6)

t=1

The BTA model combines BiLSTM and attention
mechanism to achieve efficient extraction and semantic
understanding of sentence level features, making it more
suitable for analyzing complex text data such as web attack
sequences.

Context Level Feature Extraction Model BTA

The TRM (Transformer Memory) model is based on the
encoder part of the Transformer architecture, using self
attention mechanism to represent the relationships between
different positions in the sequence, and introducing a
memory module on top of it to better extract contextual
feature information.

Specifically, after embedding is completed, the model
injects positional information into the word embedding
vector through positional encoding, enabling the model to
capture the positional information of words in the sentence
and better understand the contextual relationship of the
entire text. At the same time, a learnable memory
parameter is introduced to concatenate the word
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embedding vector injected with positional information, and
the concatenated vector is used as the input of the
Transformer encoder. The corresponding generation
formula is as follows:

E =[M; X + PositionalEncoding] @)

Among them, M is a learnable global memory parameter.

As the Transformer encoder performs self attention
calculation on the input vector, the memory vector can
interact with each token in the word embedding vector.
During the training process, it updates with the gradient
and gradually learns how to store global information that is
effective for the task. The specific calculation formula is as
follows:

(W EYWE)'

Jd

and W, are trainable parameter

A = softmax( VEW, (8)

Among them, W, , W, ,
matrices.

Finally, the model output is extracted as sequence features,
with special attention paid to the feature representation of
the first position. The feature vector of this position is
processed by the encoder to better integrate global
contextual information, which can serve as a semantic
summary of the entire input sequence and be fed into the
feature fusion model to provide global information.

Comprehensive Decision Section

In the comprehensive decision section, the adaptive
weight adjustment method FEF (Feature Fusion) is
designed to fuse features of different granularities.
Introducing a gating fusion mechanism to globally scale
features, the EWC model, BT A model, and TRM model are
responsible for extracting feature representations at
different levels from input data. The output feature
dimensions are [B, 3K], [B, 2H], and [B, D], respectively.
After obtaining features at different levels, the gating
feature fusion is used to calculate the importance weight of
each feature vector. The specific calculation formula is as
follows:

Zewe =0 Weye  Frwe) )
8ura =0 Wyra - Fyra) (10)
&rem = Wiy - Frrm) (11)

Among them, o is the Sigmoid function, W ., Wys >

F,

Wi are learnable parameter matrices, F BTA >

EWC >

Fo\ arethe eigenvectors output by EWC, BTA, and TRM

models, respectively.
Normalized by Sigmoid, used for weighted features, the
specific formula is as follows:
F/

ewc — &ewce *

Fewe (12)
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FBITA = Zora " Fara (13)
FT,RM = Zrrum  Frru (14)

By using the above method to adaptively adjust the weights
of different features, the fusion effect can be improved.
Finally, concatenate along the feature dimension (dim=1)
to form a comprehensive feature vector [B, 3K+2H+D]. In
order to map the fused feature vectors to the target category
space, the model uses an MLP as a classifier to complete
the classification task.

3. Experimental Setup

To better evaluate and validate the performance and
effectiveness of the method, this paper conducts the
following experimental settings, including the dataset,
experimental environment, evaluation indicators, and
model parameter settings.

3.1 Dataset

The publicly available dataset adopts the widely
recognized CSIS-2010, while the self built dataset mainly
consists of (1) wvulnerabilities directly collected and
replicated from public vulnerability databases such as CVE
vulnerability database, CNVD database, and exploit db
between 2018 and 2023 (2) Competition data for big data
security analysis such as DataMen (3) The dataset provided
by the cybersecurity competition (4) Organize data from
datasets of HttpParams, CIC-IDS 2017, GitHub website,
and Kaggle website. Due to the fact that the baseline
dataset CSIC 2010 used in most previous experiments [8,
13, 18] cannot cover the data of new vulnerability attack
behaviors, it is difficult to accurately evaluate the
recognition ability of the model for current mainstream
attacks and their variants. Therefore, it is considered to
merge and organize the CSIC 2010 dataset with relevant
data from recent years to obtain a self-built dataset for
future use, which contains a total of 36892 web
vulnerability attack behaviors. By preprocessing the
relevant data separately, standardizing the format and
integrating the feature space. Although there are
differences in nor-mal behavior patterns, attack feature
distributions, and traffic baselines among data from
different sources and periods, the benefits of increasing
timeliness and coverage through data integration far
outweigh controllable adverse effects such as feature
distribution shifts and differences in attack manifestations.
To approach the distribution characteristics dominated by
normal traffic in real scenarios, 1143584 normal traffic
were sorted out, and the experimental construction showed
that the ratio of normal traffic to web vulnerability attack
traffic was greater than 30:1.

3.2 Experimental Environment

2 EA

The experiment was conducted on a server configured with
60GB of memory, 96 core AMD EPYC 9654 CPU, and
NVIDIA GeForce RTX 4090 (24GB of video memory).
The server is running Ubuntu 20.04 operating system, and
the experiment is based on Pytorch implementation. This
chapter randomly divides the integrated dataset into three
independent sets, with 80% of the samples used for training
and adjusting bias, 10% of the samples used for validation
during the training phase, and the final 10% of the samples
used for testing the model.

3.3 Evaluation Indicators

In order to better evaluate the classification performance of
the EBTM model on imbalanced datasets, this chapter uses
four different performance evaluation metrics:

Macro Average Precision measures the accuracy of a
model in predicting positive cases for each category.

L. 1Y TP
Macro-Precision = —z—’ (15)
NS TP +FP

Macro Average Recall measures the model's ability to
identify positive examples for each category.
1Y TR

Macro-Recall = — z

P — (16)
N4 TP +FN,

Macro Average F1 Score takes into account the balance
between precision and recall for each category.

T TP,
1 & TP + FP TP + FN,
_ - . i i i i 1
Macro-F1 Score m ;:1 (2 TP i TP ) (17)

TP +FP TP +FN,

The False Positive Rate reflects the misjudgement of
positive cases in application scenarios by the model.

FP

FPR=———
FP+TN

(18)

Accuracy is a global score that quantifies the correctness
of a model's performance across all categories, but it is
bound to achieve good results under extremely imbalanced
sample conditions, and the accuracy of various methods
will generally be high. Because in imbalanced data, the
model can achieve higher accuracy by predicting the
majority of samples as the majority class, so accuracy is not
considered to evaluate the performance of the model

3.4 Model Parameter Setting

The model training adopts the AdamW optimizer, with
an initial learning rate of le-3, and the loss function uses a
cross entropy loss function suitable for classification tasks.
The experiment improved the model performance by
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optimizing some hyperparameter settings, and plotted the
loss and macro average F1 score of the training and
validation sets as a function of epoch, as shown in Fig. 4.
After about 4 rounds, the model loss tended to converge
steadily. During the training process, an early stopping
mechanism (with a patch set to 5) was introduced to
prevent overfit-ting. The batch size was fixed at 32, and the
number of training epochs was 30. The experimental
results were taken as the average of three runs.

Training and validation loss
0.5

Training loss
Validation loss

0.4 4

0.3+

loss

0.2 4

0.1+

0.0 T T T T T

0 2 4 6 8 10
Epochs

Training and validation Macro-F1

0.98 4

0.96

loss

0.94

0.92

[=— Training Macro-F1
[— Validation Macro-F1

0 2 4 6 8 10
Epochs

Figure 4. Loss/Macro Average F1 Score V.S.
Training Round Chart

4. Experimental Results and Analysis

To evaluate the performance of EBTM, this section
discusses and analyzes its effectiveness in identifying web
vulnerability attack behaviors from two aspects:
performance comparison and ablation experiments,
through a systematic experimental design.

4.1 Performance Comparison

In order to comprehensively evaluate the performance
of the EBTM model, this method selected five baseline
models for comparison, including:

Zhu et al. [8]: In the preprocessing stage, this model
improves the TF-IDF algorithm by introducing weighting
factors to assign higher weights to data with attack content.
Then, based on the improved algorithm, a dictionary is
constructed to filter low-frequency information in the
payload. Word2Vec is used to convert vocabulary into
feature vectors, and TextCNN and BiLSTM Attention
models are used to extract features and fuse them to
determine the type of HTTP request.
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Tekerek et al. [22]: This model preprocesses and
truncates HTTP request headers, segments URLs and
payloads, and converts them into two-dimensional matrices,
simplifying the complexity of input data. Then, it uses a
bag of words model to convert URLs and payloads in
HTTP requests into frequency features, preserving
character level information while reducing data complexity.
It effectively captures common string operations and
patterns in web attacks, and finally uses a CNN model for
classification tasks.

BL-IDS [19]: This model segments the decoded HTTP
request according to specific separators (such as "/", "&",
"="_"?" etc.) to obtain a series of words or symbols. The
Skip Gram model is used to generate word vectors, and the
bidirectional long short-term memory network BiLSTM
model is used to learn the temporal characteristics of the
HTTP request. Finally, the Softmax classifier is used to
determine whether the input HTTP request is a normal
request or an attack request.

ATPAD [21]: This model consists of an encoder RNN, a
decoder RNN, and an attention network. The encoder RNN
extracts sequence information, the attention mechanism
focuses on key parts, and the decoder RNN performs
classification prediction to identify abnormal loads in web
applications.

Web FTP [23]: This model treats web data as natural
language sequences and uses the ELECTRA framework to
learn deep features of sequence data through a generator
discriminator  structure. The pre trained model's
discriminator is used as the backbone network, combined
with fully connected layers and Softmax layers, to fine tune
binary classification tasks through real-world traffic data,
achieving binary classification detection of web data.

The focus of this section is to compare the four indicators
mentioned in section 3.3. As some baseline models are not
open source, this section fine tunes them based on the
original model design structure, hyperparameter design,
and training method to achieve the best results. At the same
time, the cost during training is ignored, and the baseline
model is trained by maximizing the training epochs to
complete the training process when all models converge.
The results of the indicators for the self built dataset are
shown in Table 5. The experimental results showed that
some models had high macro average precision values,
while others had relatively high macro average recall
values. In this section, we analyzed that in the case of
imbalanced samples, the high macro average recall rate
proves that the model can better capture positive samples,
resulting in low macro average precision because it may
misjudge some negative samples as positive; If the macro
average accuracy is high, it indicates that the model's
predictions are conservative, but some positive samples
may be missed. EBTM achieved better performance than
other compared models in terms of macro average F1 score
and false positive rate, which best reflect the model's
attention. This proves the effectiveness and low false
positive rate of the model under large-scale imbalanced
sample conditions.
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Table 5. Comparative experimental results

Method Macro Macro Macro F1 FPR
Precision Recall Score
Zhu et al.[8] 0.96897 0.97516 0.97180 0.00381
Tekerek et 0.91737 0.84196 0.87819 0.01759
al.[22]
BL-IDS[19] 0.92470 0.94155 0.93281 0.00917
ATPAD[21] 0.94330 0.89252 0.91707 0.01193
Web-FTP[23] 0.96841 0.95589 0.96225 0.00376
EBTM 0.98352 0.99769 0.99046  0.00054

To visually demonstrate the performance of different
methods for classification tasks, ROC and PR curves were
plotted to evaluate the performance of different methods,
as shown in Fig. 5. EBTM and five baseline models were
designated as curves 1-6 in the order of introduction. The
horizontal axis of the ROC curve represents the false
positive rate, and the vertical axis represents the true
positive rate. The closer the curve is to the upper left corner,
the smaller the area under the curve, indicating better
performance of the model. From the experimental results,
it can be seen that this method achieves better results
compared to the other five methods.
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Figure 5. ROC and PR curves of different methods
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Under the condition of imbalanced samples, the PR
curve can better evaluate the performance of the model
compared to the ROC curve. The ROC curve focuses on
the true positive rate and false positive rate, and has low
sensitivity to sample imbalance, while the PR curve
combines precision and recall, directly focusing on the
performance of positive samples, and can better reflect the
true performance under sample imbalance conditions.
From the experimental results, it was found that the PR
curve of our method is closer to the upper right corner and
the offline area is also the largest, which proves the
superiority of our method compared to other methods.

4.2 Ablation Experiment

In order to further analyze the impact of various parts
of EBTM on model performance, four ablation
experiments were designed to remove the feature
information processing part (FIP), word level feature
extraction part (EWC), sentence level feature extraction
part (BTA), and context level feature extraction part
(TRM) from EBTM. The experimental results are shown
in Fig. 6.

0.98924 0.96883 0.99046

0.93179 0.95891

F1-Score
s
P

w/o FIP w/io EWC w/o BTA w/o TRM Full Model

FPR

0.00862

0.00 % 0.00054

3
w/o FIP w/o EWC w/o BTA w/o TRM Full Model

Figure 6. Experimental results of EBTM ablation

w/o FIP: Without processing feature information, the
interference of redundant in-formation makes it difficult
for the model to extract feature information well, resulting
in a decrease in the model's classification ability. By
comparing the classification results of removing FIP
module and complete EBTM, it is found that the main
reason for the performance decline is the increase in false
positives of benign traffic and malicious traffic to varying
degrees. This proves that the setting of FIP module plays
an important role in optimizing input information and
improving model false positives.

w/o EWC: Experimental results show that after
removing the EWC module, the macro average F1 score
decreased by 2.16% and the false positive rate increased by
0.24%. After removing the EWC module, the model lacks
capture of word level in-formation, resulting in a decrease
in model performance.
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w/o BTA: After removing the BTA module, the macro
average F1 score decreased by 0.12% and the false positive
rate increased by 0.12%. Compared to the absence of other
feature extraction modules, the impact on model
performance was minimal. Prove that the BTA module
compensates for some sentence level features that EWC
and TRM modules cannot capture, which is helpful for
improving the overall model performance.

w/o TRM: After removing the TRM module, although
the macro average F1 score slightly increased compared to
EWC, the false alarm rate did not decrease but instead
increased. The analysis of the results shows that compared
to the EWC module, the TRM module has a more
significant recognition effect on web vulnerability attack
behaviors. This phenomenon indicates that the TRM
module plays an important role in improving the ability to
identify attack behaviors.

The results of the ablation experiment demonstrate that
the design of FIP, EWC, BTA, and TRM modules all
contribute to the model's recognition ability. When work-
ing together, they can fully analyze the input information
and achieve optimal model performance. The absence of
different modules will have varying degrees and aspects of
impact on the model.

L-SNE Visualicalion {Full Mol

L-SNE Wisuilizulion (o FIP)

Figure 7. T-SNE visualization

In addition, to verify whether the features extracted by
EBTM are helpful for recognition performance, t-SNE
dimensionality reduction technique was used for
visualization analysis, and the results are shown in Fig. 7.
The complete model visualization is shown in the left
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figure. The results indicate that different categories of
samples form obvious clustering distributions in the feature
space, and only a few samples have classification errors.
This result proves that the EBTM model can effectively
extract discriminative features under large-scale
imbalanced sample conditions through multi granularity
feature fusion methods, and improve the classification
performance of the model in such scenarios. In addition,
this section also presents t-SNE visualization of the model
after removing the FIP module, as shown in the figure on
the right. Through comparison, it can be found that the
design of feature information processing in this model can
effectively reduce the impact of irrelevant in-formation on
model performance, and has a good effect on aggregating
feature in-formation and clarifying the boundaries of
clustering regions.

4.3 Hyperparameter Sensitivity Analysis

To further understand the impact of hyperparameter
settings on the performance of the EBTM model, a
sensitivity analysis was conducted, with a focus on
analyzing the number of layers in the Transformer encoder.

The experimental results of hyperparameter sensitivity
analysis for Transformer encoder layers are shown in
Figure 8. The analysis results indicate that when the
number of encoder layers is less than 2, the performance of
the model improves with the increase of the number of
encoder layers. However, when the number of encoder
layers reaches 2 or more, the performance of the model
tends to stabilize and fluctuates within a very small interval.
And the training time increases continuously with the
increase of encoder layers, especially when increasing
from five to six layers, the training time increases
exponentially. Analysis may be due to the non-linear
increase in the time complexity of gradient calculation
when it needs to go through more layers, especially in the
5-6 layers, where the cumulative effect is more obvious. In
summary, selecting a two-layer Transformer encoder can
ensure training efficiency while maintaining good
performance.
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Figure 8. Sensitivity analysis of Transformer
encoding layers
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5. Conclusions and Future Work

This chapter proposes a web vulnerability attack behavior
recognition method EBTM for large-scale imbalanced
network traffic environments, aiming to improve the
model's recognition performance of web vulnerability
attack behavior in real-world scenarios. This method
focuses on key information and incorporates expert
knowledge. By mapping URL requests relatively
uniformly, it effectively reduces the interference of
redundant information on recognition performance and
strengthens the model's ability to learn important features.
At the same time, EBTM performs multi-level feature
extraction on the input text from three granularity levels:
word level, sentence level, and context level. It utilizes an
adaptive weight feature fusion strategy to achieve
complementary enhancement of information at different
semantic levels, and ultimately completes classification
decisions. The experimental results show that EBTM
exhibits better recognition performance compared to
existing methods under large-scale imbalanced sample
distribution conditions, while reducing false positive rates,
and can better adapt to the recognition needs of web
vulnerability attack behaviors in actual complex network
environments.

In the future, we will continue to study the following
topics:

1. The problem of identifying attack types in multi
vulnerability fusion scenarios. In actual attacks, different
types of vulnerabilities may be compounded and applied to
the same attack, forming a more covert and destructive
attack chain. However, currently most detection models
can only identify such composite attack behaviors as a
single vulnerability type, making it difficult to achieve joint
identification and accurate classification of multiple
vulnerability applications. How to effectively enhance the
detection capability of composite attacks will be the focus
of the next research step.

2. Further expand the methods for locating and
extracting auxiliary attack payloads. In the process of
detecting web vulnerability attacks, there is a relative lack
of research on extracting attack payloads. Currently,
attention weight scores are mainly relied on for auxiliary
extraction and analysis. However, for generative large
language models, attention weights reflect the degree of
attention paid to the input text when generating labels, and
it is difficult to directly reflect the impact of the input text
on the classification results. It lacks interpretability and can
only assist in the localization and extraction of attack
payloads. Therefore, future research can further explore
more diverse and efficient auxiliary positioning strategies,
such as introducing attack payload knowledge graphs to
provide context related information, assisting in decision-
making and judgment during the extraction process, and
further enhancing the practicality and trustworthiness of
the system in practical environments.
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