
1

An astute LVQ approach using neural network for the
prediction of conditional branches in pipeline processor
Sweety Nain1,* and Prachi Chaudhary2

1Research Scholar, Department of E.C.E, D.C.R.U.S.T, Murthal, Haryana, 131001
2Assistant Professor, Department of E.C.E, D.C.R.U.S.T, Murthal, Haryana, 131001

Abstract

Nowadays, microprocessors use the deep pipeline to execute multiple instructions per cycle. The frequency and behavior
of conditional instructions mainly affect the performance of instruction-level parallelism. However, recent processors still
have problems with the correct prediction of conditional branches. Firstly, the perceptron neural network and global-based
perceptron prediction has been exploited and implemented. Further, a new approach, linear vector quantization (LVQ)
neural network, is explored and implemented to see its possibility and potentiality as a branch predictor in terms of
accuracy rate. Simulation is performed by varying the parameter of hardware budget and the length of history register
using different trace files for identification of the best branch predictor technique. The proposed LVQ perceptron branch
predictor achieves an 85.56% accuracy rate using a hardware budget and an 86.36% accuracy rate in terms of history
length by comparing the simulation results.

Keywords: branch prediction, perceptron branch predictor, pipeline, linear vector quantization, accuracy rate.

Received on 04 October 2020, accepted on 08 February 2021, published on 04 March 2021

Copyright © 2021 Sweety Nain et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.4-3-2021.168865

*Corresponding author. Email: sweetynain28@gmail.com

1. Introduction

In a microprocessor design, the pipeline is a prime high-
performance technology as it enables high clock rates and
instruction-level parallelism (ILP). The recent generation
of processors like Pentium has been towards deeper
pipelines to allow the increased clock speeds. As the
pipeline becomes more in-depth, the controlling hazard
due to conditional branches incurs the instruction's
execution flow. In this case, the pipeline would have to
wait for the branch output before fetching the next
instructions. Precise prediction of branches with high
predictive accuracy is required to resolve the problem in
the pipeline. The conditional branch to be identified in the
pipeline during the real-time prediction process. During
the fetch step in the pipeline, the branch result and the
target address must be predicted when the branch is

found. However, the accuracy of the correct prediction of
conditional instructions can lead to better performance of
the processor.

The branch prediction methods fall into two categories.
• Static Branch Prediction

This prediction is the simplest of all methods as it has a
predetermined branch action during the entire process. In
this, the prediction is fixed during the compile time.

• Dynamic Branch Prediction
In this prediction, the processor uses hardware to store

information about recently executed branches and their
outcomes. Mostly, dynamic branch prediction techniques
are based on pattern history tables (PHT) of saturating
counters. Saturating counter prediction is limited with the
branch history register and local information of the
recently executed branch.

However, there are many algorithms like bimodal
prediction, index sharing prediction, global and local
based prediction, and a hybrid-based prediction that is

Research Article
EAI Endorsed Transactions
on Scalable Information Systems

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:author@emailaddress.com

Sweety Nain and P. Chaudhary

2

extensively implemented to predict conditional branches.
These algorithms are straightforward and achieve a
normal prediction accuracy range.

It is recently possible to use machine learning
techniques to improve the performance of the processor
by replacing the saturating counter with the number of the
perceptron since neural networks are known to provide
better prediction accuracy using artificial neurons. The
use of artificial neurons in perceptron is relatively better
as their training process is speedy.

The rest of the paper is as follows: Section 2 gives a
literature survey of the different techniques used to
predict branches. The machine learning-based branch
predictors are proposed in section 3. Section 4 describes
the simulation framework for the branch predictors. The
simulation results of each branch predictors are presented
in section 5. Finally, in section 6, the research paper
concludes with future scope.

Contributions
In this paper, the concept of machine learning is explored
and tested to predict conditional branches.

• Firstly, the perceptron based neural network and
the global-based perceptron prediction has been
exploited and implemented.

• Secondly, a novel approach linear vector
quantization (LVQ) neural network is proposed
and implemented to see their possibility and
potentiality as a branch predictor in terms of
accuracy rate.

• Simulation is performed by varying the
parameter of hardware budget and the length of
history register using different trace files for
identification of the best branch predictor
technique.

The rest of the paper is as follows: Section 2 gives a
literature survey of the different techniques used to
predict branches. The machine learning-based branch
predictors are proposed in section 3. Section 4 describes
the simulation framework for the branch predictors. The
simulation results of each branch predictors are presented
in section 5. Finally, in section 6, the research paper
concludes with future scope.

2. Related Work

Many researchers have tried to compare various branch
predictors to highlight the efficiency of their approaches.
So, this section presents the state-of-the-art of different
branch prediction strategies for the prediction of branches.

Calder [1] provided the prediction of conditional
branches using static and compiler-time branch
prediction. This prediction is based on the preliminary
information about the program that the compiler can
readily determine. The significant drawbacks of Calder
prediction are unable to use the dynamical prediction of
branches. However, his static compiler optimization

scheme providing extra information to dynamic branch
predictors.

Franklin et al.[2] used the local and global history for
the identification of branches. This concept tracks the run
time behavior of an instruction in the front-end of the
pipeline. This mechanism has been established for each
dynamic branch predictor that regulates the computation
that affects the expected branch outcome.

Vinten and Florea [3] implemented the conditional
branch uses a back-propagation algorithm as a multilayer
perceptron. Based on the same prediction information,
this approach predicts the target address for indirect
jumps. Moreover, the author suggests this approach to be
more efficient for the prediction of branches but increases
the hardware cost and complexity.

Tarjan and Skadron [4] introduced the hashed concept
using the combination of gshare and perceptron branch
predictor. This proposed predictor reduces aliasing,
having a low hardware budget, and increase the accuracy
in correlating predictors.

Peram and Sudhakar [5] presented a piecewise neural
branch predictor for improving the perceptron branch
predictor's accuracy. In this predictor scheme, a
hyperplane is utilized to choose the conditional branch
prediction. The main feature of this predictor scheme is to
remove the complexity and give rise to more accurate
results for improving the processors' performance.

Smith [6] proposed a feed-forward network based on
the concept of a machine learning method. Further, a
combined predictor using a saturating counter is also
analyzed to compare accuracy and mis-prediction rate.
Unfortunately, this scheme enhances accuracy, but
tradeoff occurs between the number of hidden units.

Mao et al. [7] proposed a deep learning-based
algorithm for branch prediction. The author considers
branch prediction in this paper as a classification problem
and contrasts deep learning efficiency with current branch
predictors.

Su et al. [8] proposed a correlation-based hybrid
branch prediction for the conditional branch. This
approach combines the concept of static as well as
dynamic branch prediction. To significantly boost the
branch prediction accuracy, the dynamic branch predictor
uses the branch correlation data. At the same time, the
static profile based correlation is used to identify the
branches.

Shah and Prabhu [9] implemented a hybrid branch
predictor with higher predictive capabilities than global
branch predictors. In neighboring branches and local
branches, the branch prediction accuracy is enhanced by
basing prediction.

Jimenez [10] described two versions of perceptron
predictors by taking the parameter of long history lengths.
To explore the feasibility of predictors, a circuit-level
design of the perceptron predictor is designed. Further, it
shows that in modern CPUs, the complex perceptron
predictor can be used by providing a simple CPU.,
quicker and more feasible than the hybrid predictor.

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

An astute LVQ approach using neural network for the prediction of conditional branches in pipeline processor

3

In literature, the branch predictors lack performance
because of the utilization of smaller history length, lack of
hardware budget, and counter-based system. For this,
there is a lack of fast fetching and executing the process
of instructions. The proposed method is intelligent,
contributing to producing beneficial and accurate results
by including mathematical based calculation and using the
training module.

Table 1. Different branch prediction schemes used
for branch prediction with features

Different
branch
predictors

Features and challenges Reference

Smith
Algorithm

Improve the performance by a
small increment, but it does not
use the store history tables of an
instructions

[11], [12]

Two-level
predictor

Uses two separate levels of
branch history tables. However,
the trade-off between sizes of
two-tables occur

[13], [14]

Index sharing
predictor

The size of the history table is
large as compared to the two-
level predictor's. Hashing
together branch history register
and PC leads to better accuracy
in processor performance

[15], [16]

The agree
Predictor

Reduce destructive aliasing
interference by reinterpreting the
pattern history table counter

[17], [18]

Hybrid branch
predictor

Combine two or more predictor's
to make one final prediction but
sometimes partially
misunderstand the hybrid path at
the time of prediction

 [31][21]

The piece-
wise linear
neural branch
predictor

It provides much greater
precision but dramatically
increases the overhead of
control pointing and recovery
and the number of adders.

[22]–[24]

3. Machine Learning Branch Predictors

Recently, machine learning becomes a new research focus
and significantly improves the performance of processors.
In this section, the description of the machine learning-
based branch predictors is explored with their algorithm
of how they can be used to predict conditional branch
instructions.

3.1. Perceptron based branch predictor

A perceptron is one of many processing elements within
the artificial neural networks. A perceptron is a learning
device that takes input values and combines them with
weights to produce an output. Figure 1 presents the
conceptual view of a perceptron model. Given a vector of
inputsi nx x and a vector of weightsi nw w the
output of the perceptron is a dot product of data and

weight. ix is always set to 1 represent bias input. This
allows the perceptron to learn its activation threshold.
The output y is expressed in mathematical:

0
1
()i i

i
y w xw

∞

=

= +∑ (1)

Here,
y = Output of perceptron, 0w = Bias weight, iw =

Perceptron weight, ix Perceptron input
The output of the perceptron is a dot product of data and
weight. The perceptron's output is y ; if the 0y ≥ branch
is predicted to be taken, else branch is expected to be not-
taken.

Figure 1. A simplest perceptron structure

The basic block diagram in figure 2 represents the role of
perceptron for the prediction of branch instructions. For
the prediction of conditional branch instructions, a
perceptron uses a table in which n number of a perceptron
is stored. A training algorithm is used to train the module
when the outcome is not equal to the actual result.

Figure 2. The conceptual model of the perceptron
branch predictor

For the prediction of the branch using perceptron branch
predictor, the following steps are to be taken:

(i) The branch address is hashed to the table of the perceptron.

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

Sweety Nain and P. Chaudhary

4

(ii) Select the perceptron for computing the output.
(iii) Compute the branch prediction y

if y ≥ 0, prediction result to be saved
if y ≤ 0, prediction to be updated using train function

(iv) Train the selected perceptron using branch outcome.
(v) Update the trained perceptron back to the table.

Algorithm: Perceptron Based Branch Predictor

Step 1: Use the program counter to select the input
branch;
Step 2: Get the weight vector of each input branch ;
Step 3: Compute output using weight vector and input
branch;
Step 4: Make prediction based on output;
Step 4.1 If (prediction = incorrect or below threshold);

 then (adjust weight vector using train function);
Step 5: If (prediction = correct or above threshold);

 then {
 increment weight and return 1, if taken
 else
 decrement weight and return 0, if not-taken
 }

When the actual performance of the branch is known, a
training algorithm is used to update the predictor. The
training algorithm uses a threshold parameter to control
the magnitude of the weight value. The threshold value is
optimal to be [1.93 14]hθ = + , where h represents the
duration of the history bit. The following algorithm is
used to train the value of the perceptron.

Algorithm: Train Perceptron function

if (y) ≠ t or (|y| ≤ θ) then
for j = 0....h
do
{
wi = wi + 1, if (t = xi)
or
wi = wi - 1, if (t ≠ xi)
}
end

With this algorithm, the perceptron trains its weight table,
achieving more accuracy while predicting the branches.
One of the limitations of using perceptron is they are only
capable of learning linear separable function. The global
perceptron branch predictor overcomes this limitation by
using the linear inseparable function.

3.2. Global perceptron branch predictor

The global branch predictor is one of the best prediction
schemes among the correlating branch prediction
schemes. The prediction of this scheme is based on the
history table of recently executed predicted branches. To
index the bits in the history table, XOR to be used of the
least significant bit of the currently executing branch

address and the history of the recently completed branch
instruction.

Figure 3. The global perceptron branch predictor
fetches weights by indexing XOR of address

In this predictor, the perceptron table is indexed by the
correlation of bits assigned by the XOR of branch address
and the speculative global history register. The branch
address holds the address of currently executing
conditional instructions, whereas the global history
register holds the instruction's prior information. The
perceptron is trained according to their cumulative
prediction. The great advantage of using this predictor for
the branch prediction is that each weight is fetched with a
different mapping to get a more accurate prediction.

Algorithm: Global Perceptron Branch Predictor

Step 1: Use the program counter to select the input
branch;
Step 2: Get the weight vector of each input branch ;
Step 3: fetch the address in table of perceptron using xor
function
Step 4: Make prediction based on output;
Step 4.1 If (prediction = incorrect or below threshold);

 then (adjust weight vector using train function);
Step 5: If (prediction = correct or above threshold);

 then {
 increment weight and return 1, if taken
 else
 decrement weight and return 0, if not-taken
 }

Table 2 depicts the example of XOR used in the global
perceptron predictor. Using this indexing, they can predict
some linearly inseparable branches and overcome the
perceptron branch predictor problem.

Table 2. The bits XOR used in global perceptron
predictor

Branch
Address

Global History Register XOR
Indexing

0000 1010 0000 0001 0000 1011
0000 1110 1000 1010 1000 0100
1111 1001 0000 0001 1111 1000

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

An astute LVQ approach using neural network for the prediction of conditional branches in pipeline processor

5

1111 1110 1000 1111 0111 0001

The table utilization is significantly improved, which
makes global predictors achieve higher prediction
accuracy with the same hardware storage as compared to
the perceptron branch predictor.

3.3. Proposed Linear Vector Quantization
Neural Predictor

A proposed linear vector quantization (LVQ) predictor is
based on the supervised competitive artificial neural
network. This technique is associated with the neural
network class of learning algorithms. LVQ consist of
codebooks class of different parameter to refine the
statistical analysis of any complex problem. In conditional
branch instructions, the first codebook vector vt represents
the branch taken outcomes, and the second codebook
vector vnt represents the branch not-taken outcomes. For
the correct predictions, the vector value is to be increased
when the prediction to be accurate else the vector value is
to be decreased.
For computing the output outcomes, the results are based
on the hamming distance between the input vectors and
the codebook vectors associated with that particular input.
The hamming distance is calculated as :

2

1
() ()

n

i i
i

HD y x v
=

= −∑ (2)

Here, y = Prediction Outcome , ix = Input Vector , iv =
Codebook Vectors
To train the codebook vectors, the particular vector value
is adjusted as :

• If the target value is equal to the prediction then
update the codebook vector by
 (1) () (())j j jw t w t a x w t+ = − − (3)

(3)

• If the target value is not equal to the prediction
then update the codebook vector by

 (1) () (())j j jw t w t a x w t+ ≠ − −(4) (4)

Here, (1)jw t + = New Weight Value , ()jw t = Current
Weight Value , a = Learning Rate, the range lies between
0 1a< < .

Algorithm: Linear Vector Quantization Branch
Predictor

Function perceptron prediction lvq (pc,add: integer):
boolen:
index = pc mod num
outcome y = bias [index] (initialize index and output
value)
if (outcome == True):

vt = 1
for i in range(h)
if((self. ext & vt) == 0):
x = -1
else
x = 1
outcome y+= np.dot(.percept weight[index][i], x) (dot
product calculation)
if(self.y >= 0): (making a prediction)
self.prediction = True
else
self.prediction = False
end if
end

The LVQ neural model has continuously trained the
weights and provide faster processing than other neural
models. This model's main advantage is to reduce the
more massive data sets into a smaller number of codebook
vector for the easy classification.

4. Simulation Framework

In this section, we describe the details of the simulator,
trace-files, and parameters used to predict branches.

4.1. Simulator and trace file

Each branch predictor scheme's simulation is
implemented on python numpy and pycharm simulator for
visualization and computing the input trace files. The
trace file is the text files with space-separated branch
addresses and their actual outcomes. The trace files are
trace1k, trace2k, trace5k, trace10k, trace20k, trace40k and
trace files, including different instructions.

4.2. Influences of parameters

To evaluate each predictor scheme's performance, the
varying range of hardware budget and history length is
taken. The hardware budget is related to the memory size
of the processor in terms of kilobytes. The hardware
budget range is 4kb, 8kb, 16kb, 32kb, 64kb, and 80kb. At
the same time, the history length relates to storing
information on instructions in terms of bits. The range of
history length is 4bit, 8bit, 16bit, 24bit, 28bit, and 32bit.
The different size of trace files is used as input contains
the branch address and the outcomes of the instructions.
To identify the accuracy rate, each branch predictor is
analyzed by varying the hardware budget and history
length parameter using each trace file. The hardware
budget-related to the memory size of the processor in
terms of kilobytes. At the same time, the history length
relates to storing information on instructions in terms of
bits.

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

Sweety Nain and P. Chaudhary

6

5. Experimental Results

This section quantifies the performance of branch
predictors and compares the results in terms of their
accuracy rate. For performance assessment, a set of trace
files was used. To test the branch predictor's performance,
we evaluated the impact of changing branch hardware
budget and changing history length value with different
track files. The statics results of accuracy rate is termed as
:

(%) TotalNumberofAddressHitAccuracyrate
TotalNumberofInstructionExecuted

≡

Here,
Total number of address hit = Prediction on conditional
branch instruction is equal to their actual address path.
Total number of instruction executed = Number of
conditional instruction taken as an input.

5.1. Prediction based on hardware budget
in term of accuracy rate

To evaluate the performance of branch predictors,
different trace files are tested with varying budgets of
hardware. The hardware budget related to the memory
size of the processor in terms of kilobytes. The range of
hardware budget is 4kb, 8kb, 16kb, 32kb, 64kb, and 80kb.
Each predictor's accuracy is based on the actual prediction
of the branch instruction accurately match with the
predictor outcomes. The results of each branch predictor
in term of accuracy rate is presented in table 4 to table 6.
The comparison results show that the proposed LVQ
branch predictor is more accurate and provides a higher
accuracy rate when the hardware budget is varying.

Table 4. Accuracy Rate of Different Trace Files With
Varying Hardware Budget of Perceptron Based

Branch Predictor

Hardware Budget (kilo-bytes)

Trace
File

4kb 8kb 16kb 32kb 64kb 80kb

1k 76.30% 76.00% 76.40% 76.50% 76.20% 76.10%
2k 83.70% 83.30% 83.35% 83.45% 83.35% 83.60%
5k 82.64% 82.06% 82.14% 82.36% 82.44% 82.49%
10k 76.12% 77.47% 82.33% 77.91% 80.75% 82.45%
20k 81.29% 82.08% 82.90% 82.60% 82.63% 82.56%
40k 77.78% 83.98% 85.05% 83.27% 85.18% 84.38%

Table 5. Accuracy Rate of Different Trace Files With
Varying Hardware Budget of Global Perceptron

Branch Predictor

Hardware Budget (kilo-bytes)

Trace
File

4kb 8kb 16kb 32kb 64kb 80kb

1k 76.55% 71.50% 72.54% 71.40% 77.20% 74.30%
2k 80.60% 89.75% 78.10% 88.40% 77.30% 87.05%
5k 83.92% 72.72% 89.72% 71.34% 79.64% 89.78%
10k 87.23% 86.60% 86.48% 78.11% 86.10% 86.11%
20k 86.40% 77.24% 76.15% 77.33% 85.01% 74.98%
40k 86.12% 88.61% 88.06% 87.11% 77.83% 77.75%

Table 6. Accuracy Rate of Different Trace Files With
Varying Hardware Budget of Proposed Linear

Vector Quantization Branch Predictor

Hardware Budget (kilo-bytes)

Trace
File

4kb 8kb 16kb 32kb 64kb 80kb

1k 79.25% 75.50% 77.54% 73.40% 79.20% 74.30%
2k 83.50% 91.35% 79.12% 89.30% 78.30% 85.05%
5k 86.88% 75.00% 90.62% 78.20% 80.56% 91.08%
10k 88.23% 89.60% 87.48% 79.10% 87.12% 88.10%
20k 87.42% 78.23% 76.25% 79.33% 86.10% 76.98%
40k 88.12% 90.01% 89.06% 89.10% 79.84% 79.75%

Table 7. Average Accuracy rate of each branch
predictor by varying hardware budget

Hardware
Budget

Perceptron
Based
Branch
Predictor

Global
Perceptron
Branch
Predictor

Proposed LVQ
Neural Branch
Predictor

4kb 79.63% 81.47% 85.12%
8kb 80.81% 82.07% 84.65%
16kb 82.02% 84.84% 86.57%
32kb 81.33% 85.94% 86.24%
64kb 81.75% 85.51% 85.57%
80kb 81.93% 81.66% 85.26%

Figure 4 shows how the accuracy rate is changed by
increasing the hardware budget's size for the branch
predictors. Prediction accuracy is the number of branches
correctly predicted over the total number of branches. The
size of the hardware budget increases with the amount of
pattern history tables in which the information is
processed.

The prediction accuracy is varied between 79.63% and
81.93% in perceptron based branch predictor. In the
global perceptron branch predictor, the accuracy range
varies between 81.47% to 85.94%. In the proposed LVQ
branch predictor, the accuracy range varies between
85.12% to 86.57% and provides a better accuracy rate
than the other two predictor schemes.

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

An astute LVQ approach using neural network for the prediction of conditional branches in pipeline processor

7

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

4 kb 8 kb 16 kb 32 kb 64 kb 80 kb

C
o
n
d

it
io

n
al

 B
ra

n
ch

 P
re

d
ic

ti
o
n

A
cc

u
ra

cy
 %

Hardware Budget

Perceptron Based Branch
Predictor

Global Perceptron Branch
Predictor

Proposed LVQ Branch Predictor

Figure 4. Average accuracy rate of different branch
predictors by varying hardware budget

5.2. Prediction based on history length in
term of accuracy rate

The impact of history length on the prediction accuracy
has been studied for a while. So, to evaluate branch
predictors' performance, different trace files are tested
with varying history length. The range of history length is
4bits, 8bits, 16bits, 24bits, 28bits, and 32bits. Each
predictor's accuracy is based on the actual prediction of
the branch instruction accurately match with the predictor
outcomes. The results of each branch predictor in term of
accuracy rate is presented in table 8 to table 10.

Table 8. Accuracy Rate of Different Trace Files With
Varying History Length of Perceptron Based Branch

Predictor

History Length (bits)

Trace
File

4bits 8bits 16bits 24bits 28bits 32bits

1k 76.80% 77.70% 77.50% 76.90% 75.60% 75.70%
2k 81.80% 82.75% 84.00% 83.80% 83.45% 83.80%
5k 84.42% 83.26% 83.52% 82.48% 82.36% 82.18%
10k 87.73% 87.28% 84.40% 80.70% 79.91% 80.31%
20k 83.52% 83.65% 82.91% 81.39% 82.60% 82.20%
40k 75.50% 82.75% 82.12% 77.90% 78.49% 81.00%

Table 9. Accuracy Rate of Different Trace Files With
Varying History Length of Global Perceptron Branch

Predictor

History Length (bits)

Trace
File

4bits 8bits 16bits 24bits 28bits 32bits

1k 78.50% 78.90% 78.60% 79.50% 78.40% 79.50%
2k 83,75% 81.55% 79.20% 81.40% 78.42% 80.25%
5k 79.60% 83.84% 80.14% 82.84% 79.34% 81.50%
10k 83.50% 84.00% 82.90% 83.01% 82.75% 82.00%
20k 84.40% 84.45% 83.35% 84.40% 80.12% 81.36%
40k 76.60% 82.20% 82.80% 83.30% 81.20% 83.30%

Table 10. Accuracy Rate of Different Trace Files
With Varying History Length of Proposed Linear

Vector Quantization Branch Predictor

History Length (bits)

Trace
File

4bits 8bits 16bits 24bits 28bits 32bits

1k 79.15% 78.10% 78.90% 80.01% 78.50% 79.60%
2k 8.60% 82.35% 80.10% 82.20% 79.51% 81.10%
5k 79.65% 83.35% 81.10% 83.29% 80.10% 82.20%
10k 84.41% 84.45% 83.91% 83.03% 83.35% 82.10%
20k 85.51% 85.56% 84.40% 84.42% 81.10% 82.20%
40k 78.90% 83.31% 83.31% 84.41% 82.21% 84.45%

Table 11. Average accuracy rate of each branch
predictor by varying history length

History
Length

Perceptron
Based Branch
Predictor

Global
Perceptron
Branch
Predictor

Proposed LVQ
Neural Branch
Predictor

4 bits 82.85% 83.92% 84.04%
8 bits 82.92% 83.63% 83.90%
16 bits 82.46% 85.97% 87.04%
24 bits 81.05% 85.94% 86.14%
28 bits 80.96% 85.49% 88.57%
32 bits 80.83% 85.79% 88.51%

Figure 5 shows how the accuracy rate is changed by
increasing the branch predictors' number of history
lengths. The overall prediction accuracy is improved as
the number of entries in the history length increase.

The prediction accuracy is varied between 80.83% to
82.92% in perceptron based branch predictor. In the
global perceptron branch predictor, the accuracy range
varies between 83.63% to 85.97%. In the proposed LVQ
branch predictor, the accuracy range varies between
83.90% to 87.04% and provides a better accuracy rate
than the other two predictor schemes.

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

4 bits 8 bits 16 bits 24 bits 28 bits 32 bits

A
cc

u
ra

cy
 R

at
e

 %

History Length

Perceptron Based Branch
Predictor

Global Perceptron Branch
Prediction

Proposed LVQ Branch Predictor

Figure 5. Accuracy rate of different branch
predictors by varying history length

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

Sweety Nain and P. Chaudhary

8

The proposed LVQ branch predictor improves the
accuracy rate by varying both parameters (Hardware
Budget and History Length) over the perceptron based
branch predictor and global perceptron branch predictors.

5.3. Prediction Result in term of Confusion
matrix and F-Score

To obtain the precision results, all the input trace files are
profiled to determine each predictor scheme's branch
decision. A confusion matrix for all the branch predictor
scheme in each input trace files give some interesting
insights of its actual behaviour. The confusion matrix for
each branch predictor according to the input trace files has
been represented in this way:

 Actual Value
Taken (T) Not-Taken (NT)

Prediction
Value

Taken (T) TT TNT
Not-Taken (NT) NTT NTNT

Here,
Actual value means the actual outcome of the branch
instruction.
Prediction value means the prediction uses during the run
time on the branch instruction.
Taken means the prediction has been applied on the
branch instruction.
Not-Taken means the prediction has not been applied on
the branch instructions.
Further, the F-score is also calculated and it is a harmonic
mean of precision and recall. The F-score is calculated
using the given below formula:

_ (2* Re * Pr) / (Re Pr)F Score call ecision call ecision= +
Here,
Recall describes how many of the actual taken values to
be predicted correctly out of the model. It is useful when
false-negative dominates false positives. The formula for
calculating the recall is:

Re () / ()call TT TT NTT= +

Precision means the number of correct outputs given by
the model out of all the model's correctly predicted
positive values.

Pr () / ()ecision TT TT TNT= +

5.3.1 Confusion and F-score outcome of Perceptron
Based Branch Predictor
The confusion matrix and the f-score of input trace file 1k
and trace file 2k are presented in Figures 6 and 7. The
result is changing according to the branch predictor and
the input trace files. The similar results has been obtained
using other trace files for perceptron based branch
predictor.

Figure 6. Results of input trace1k

Figure 7. Results of input trace2k

5.3.2 Confusion and F-score outcome of Global
Perceptron Branch Predictor
The confusion matrix and the f-score of input trace file 1k
and trace file 2k is presented in figure 8 and figure 9
respectively. The result is changing according to the
branch predictor and the input trace trace files. This
global perceptron branch predictor gives better results as
compare with the perceptron based branch predictor. The
result of f-score of trace file 1k and trace file 2k is
improve by 0.01 and 0.02 respectively over the
perceptron based branch predictor. The similar results has
been obtained using other trace files for global perceptron
branch predictor.

Figure 8. Results of input trace1k

Figure 9. Results of input trace2k

5.3.3 Confusion and F-score outcome of Proposed
Linear Vector Quantization Branch Predictor
The confusion matrix and the f-score of input trace file 1k
and trace file 2k is presented in figure 10 and figure 11

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

An astute LVQ approach using neural network for the prediction of conditional branches in pipeline processor

9

respectively. The result is changing according to the
branch predictor and the input trace files. The similar
results has been obtained using other trace files for global
perceptron branch predictor. The proposed linear vector
quantization branch predictor gives better results as
compare with the perceptron based branch predictor and
the global perceptron branch predictor. It improve the f-
score by 0.04 and 0.10 using trace file 1k and trace file 2k
respectively over the perceptron based branch predictor
and 0.03 and 0.07 using trace file 1k and trace file 2k
respectively over the proposed linear vector quantization
branch predictor.

Figure 10. Results of input trace1k

Figure 11. Results of input trace2k

Table 12. The average accuracy rate of the branch
predictors

Algorithm Accuracy Rate
(Hardware

Budget)

Accuracy Rate
(History Length)

Perceptron Based
Branch Predictor

82.85% 83.92%

Global Perceptron
Branch Predictor

82.92% 83.63%

Proposed LVQ
Perceptron Branch
Predictor

82.46% 85.97%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

Accuracy Rate (Hardware
Budget)

Accuracy Rate (History Length)

A
cc

u
ra

cy
 R

at
e

%

Normal Perceptron Branch Predictor

Global Perceptron Branch Predictor

Proposed LVQ Perceptron Branch Predictor

Figure 12. Average accuracy rate of the branch
predictors

Table 12 shows the comparative analysis of different
methodologies used for the prediction of the conditional
branch. It clearly shows that:

• The accuracy rate of the proposed LVQ
perceptron branch predictor is 4.32% higher than
the perceptron based branch predictor and 1.98%
higher than the global perceptron branch
predictor as the effect of hardware budget is
varying.

• Further, the results in varying-parameter history
length also improve the accuracy rate of the
proposed LVQ branch predictor by 3.28% higher
than the perceptron based branch predictor, and
1.24% higher than the global perceptron branch
predictor.

5. Conclusion and Future Trends

In this paper, the concept of artificial intelligence based
neural networks is explored and tested to predict the
conditional branches. Firstly, the perceptron based neural
network and the global based perceptron prediction has
been exploited and implemented. To add more
preciseness, a novel approach LVQ neural network is
proposed and implemented to see their possibility and
potentiality as a branch predictor in terms of accuracy
rate. This neural based branch predictors replace the
saturating counters into the training function.
Furthermore, the propose LVQ approach achieves better
accuracy results than traditional branch predictors.
Simulation is performed by varying the parameter of
hardware budget and the history length using different
trace files for identification of the best branch predictor.

The obtained results suggest that the proposed LVQ
perceptron branch predictor provides increased accuracy
rate of 85.56% by using a hardware budget and an

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

Sweety Nain and P. Chaudhary

10

86.36% accuracy rate in terms of history length. The
accuracy rate of the proposed LVQ perceptron branch
predictor is 4.32% higher than the perceptron based
branch predictor and 1.98% higher than the global
perceptron branch predictor as the effect of hardware
budget is varying. Further, the results in varying-
parameter history length also improve the accuracy rate of
the proposed LVQ branch predictor by 3.28% higher than
the perceptron based branch predictor, and 1.24% higher
than the global perceptron branch predictor. These
improvements make this predictor a more promising
choice for future processors.

According to this research paper, the concept of neural
predictors could be a useful approach for understanding
the process of branch predictors. Further, this concept can
be used by using some other methods like back-
propagation, support vector machine algorithm for better
improvement in the accuracy rate.

Acknowledgements

I would like to thanks my guide Dr. Prachi Chaudhary for
providing many helpful contributions during this paper.

References

[1] B. Calder, D. Grunwald, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn, “Corpus-based static
branch prediction,” ACM Sigplan Notices, vol. 30,
no. 6, pp. 79–92, 1995.

[2] R. Thomas, M. Franklin, C. Wilkerson, and J.
Stark, “Improving branch prediction by dynamic
dataflow-based identification of correlated
branches from a large global history,”
Proceedings of the 30th annual international
symposium on Computer architecture, vol. 31, no.
2, pp. 314–323, 2003, doi:
10.1145/859654.859655.

[3] L. N. Vintan and A. Florea, “A new branch
prediction approach using neural networks,”
Proceedings of 10th International Symposium on
Computers and Informatics SINTES, no. 4, pp. 1–
7, 2000.

[4] D. Tarjan and K. Skadron, “Merging path and
gshare indexing in perceptron branch prediction,”
ACM Transactions on Architecture and Code
Optimization, vol. 2, no. 3, pp. 280–300, 2005,
doi: 10.1145/1089008.1089011.

[5] S. Rao and P. K. Sudhakar, “An analysis to
improve branch prediction accuracy by using
neural branch prediction,” International Journal
for Modern Trends in Science and Technology,
vol. 3, no. 5, pp. 1–7, 2018.

[6] A. Smith, S. Diego, and L. Jolla, “Branch
prediction with neural networks: Hidden layers
and recurrent connections,” Department of
Computer Science University of California, San
Diego La Jolla, CA, vol. 9, no. 2, pp. 1–15, 2004,

doi: 10.1.1.116.8548.
[7] Y. Mao, J. Shen, and X. Gui, “A study on deep

belief net for branch prediction,” IEEE Access,
vol. 6, pp. 10779–10786, 2017.

[8] X. Su, H. Wu, and Q. Yang, “An efficient wcet-
aware hybrid global branch prediction approach,”
in Proceedings - 2016 IEEE 22nd International
Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA
2016, 2016, pp. 195–201, doi:
10.1109/RTCSA.2016.46.

[9] P. Z. Shah and S. U. Prabhu, “Hybrid learning-
based branch predictor,” International Journal of
Engineering Research and Technology, vol. 3, no.
8, pp. 1135–1139, 2014.

[10] D. A. Jimenez and C. Lin, “Neural methods for
dynamic branch prediction,” ACM Transactions
on Computer Systems, vol. 20, no. 4, pp. 369–397,
2002, doi: 10.1145/571637.571639.

[11] C. H. Perleberg and A. J. Smith, “Branch target
buffer design and optimization,” IEEE
Transactions on Computers, vol. 42, no. 4, pp.
396–412, 1993, doi: 10.1109/12.214687.

[12] J. E. Smith, “A study of branch prediction
strategies,” in Proceedings of the 8th annual
symposium on Computer Architecture, 1981, pp.
135–148, doi: 10.1145/285930.285980.

[13] C. Egan, G. Steven, P. Quick, R. Anguera, F.
Steven, and L. Vintan, “Two-level branch
prediction using neural networks,” Journal of
Systems Architecture, vol. 49, no. 12–15, pp. 557–
570, 2003, doi: 10.1016/S1383-7621(03)00095-X.

[14] J. Goyal, Shivam and Singh, “Two-level alloyed
branch predictor based on genetic algorithm for
deep pipelining processors,” International
Journal of Modern Education and Computer
Science, vol. 9, no. 5, pp. 27–33, 2017.

[15] J. Lu et al., “The performance of runtime data
cache prefetching in a dynamic optimization
system,” Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, pp.
180–190, 2003, doi:
10.1109/MICRO.2003.1253194.

[16] A. Pandey, “Study of data hazard and control
hazard resolution techniques in a simulated five
stage pipelined RISC processor,” in International
Conference on Inventive Computation
Technologies (ICICT), 2016, vol. 2, pp. 1–4.

[17] R. Parihar, “Branch Prediction Techniques and
Optimizations,” University of Rochester, NY,
USA, 2015.

[18] S. Mittal, “A Survey of Techniques for Dynamic
Branch Prediction,” pp. 1–37, 2018, doi:
10.1145/2893356.

[19] S. Otiv, K. Garikipati, M. Patnaik, and V.
Kamakoti, “H-Pattern : A hybrid pattern based
dynamic branch predictor with performance based
adaptation,” in Proc. 4th JILP Workshop Comput.
Architecture Competitions: Championship Branch

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

An astute LVQ approach using neural network for the prediction of conditional branches in pipeline processor

11

Prediction, 2014, pp. 2–5.
[20] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using

hybrid branch predictors to improve branch
prediction accuracy in the presence of context
switches,” Proceedings of the 23rd annual
international symposium on Computer
architecture - ISCA 96, pp. 3–11, 1996, doi:
10.1145/232973.232975.

[21] J. Karimpour, S. Lotfi, and A. Tajari
Siahmarzkooh, “Intrusion detection in network
flows based on an optimized clustering criterion,”
Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 25, no. 3, pp. 1963–1975,
2017, doi: 10.3906/elk-1601-105.

[22] D. A. Jiménez, “An optimized scaled neural
branch predictor,” Proceedings - IEEE
International Conference on Computer Design:
VLSI in Computers and Processors, pp. 113–118,
2011, doi: 10.1109/ICCD.2011.6081385.

[23] P. Eng, L. N. Vin, U. Lucian, and F. De Inginerie,
“Dynamic neural branch prediction
fundamentals,” 2016.

[24] M. Palermo, “The combined perceptron branch
predictor,” in European Conference on Parallel
Processing, springer, 2005, pp. 487–496.

EAI Endorsed Transactions
Scalable Information Systems

04 2021 - 06 2021 | Volume 8 | Issue 31 | e7

