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Abstract 

INTRODUCTION: The teaching-learning based optimization (TLBO) algorithm is a recently developed algorithm. The 
proposed work presents a design of a master-slave TLBO algorithm. 
OBJECTIVES: This research aims to design a master-slave TLBO algorithm to improve its performance and system 
utilization for CEC2006 single-objective benchmark functions. 
METHODS: The proposed approach implemented using OpenMP and CUDA C, a hybrid programming approach to 
enhance the utilization of the system’s computational resources. The device utilization and performance of the proposed 
approach evaluated using CEC2006 benchmark functions. 
RESULTS: The proposed approach obtains best results in significantly reduced time for CEC2006 benchmark functions. 
The maximum speed-up achieved is 30.14X. The average GPGPU utilization is 90% and the average utilization of logical 
processors is more than 90%. 
CONCLUSION: The master-slave TLBO algorithm improves the utilization of computational resources significantly and 
obtains the best results for CEC2006 benchmark functions. 
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1. Introduction

Optimization is defined as “Finding an alternative with the 
most cost effective or highest achievable performance, by 
maximizing desired factors and minimizing undesired ones” 
[1]. Optimization functions are discrete/continuous and 
constrained/unconstrained types. The optimization problems 
found in engineering and other domains are constrained and 
unconstrained in nature. The constrained optimization 
problems are optimized concerning certain restrictions. The 
restrictions exist on different things like resources 

availability, time, etc. The unconstrained optimization 
problems are free from such restrictions. These problems are 
optimized with respect to design variables and their range as 
well as dimensionality. The constrained and unconstrained 
optimization problems are of single and multi-objective 
optimizations [2-5].  

In literature, different classical methods used to solve the 
constrained and unconstrained optimization problems. These 
methods have their own merits and demerits. Researchers 
have developed nature-inspired approaches to solving 
complex engineering design and optimization problems [2]. 
When an algorithm is proposed newly, validation and 
efficiency of the algorithm need to be evaluated. Therefore, 
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the algorithm is tested on some standard benchmark 
functions. The test on benchmark functions ensures the 
suitability of the algorithm to problems with specific 
properties. The nature of benchmark functions is of different 
types. The functions are unimodal, multimodal, single and 
multidimensional. Real word applications belong to these 
categories and by implementing the proposed algorithm to 
these benchmark functions, one can determine which kinds 
of real-world problems the algorithm suits [3-5].  

The nature-inspired algorithms are problem-solving 
approaches inspired by different phenomena that exist in 
nature. The nature-inspired algorithms are developed by 
understanding the behaviour of swarms, biological systems, 
physical and chemical systems, etc. The popular nature-
inspired algorithms are Genetic algorithms, Particle swarm 
optimization, Artificial bee colony algorithm, Ant colony 
optimization, Intelligent water drop algorithm, Cuckoo 
search algorithm, Teaching-Learning based optimization 
algorithm, etc. The literature reveals various applications of 
nature-inspired algorithms in different domains. Recently, 
authors have used nature-inspired approaches for virtual 
machine placement in the cloud. Adhikari and Amgoth used 
intelligent water drop algorithm for workflow scheduling in 
cloud data-centre [6]. Abdessamia et al. developed an 
energy-efficient virtual machine placement using binary 
gravitational search algorithm [7]. Jangiti et al. used a 
heuristic approach to perform virtual machine placement in 
the heterogeneous cloud data centre [8]. Jangiti et al. 
presented bulk-bin-packing based migration management 
approach to address the reserved virtual machine request 
problem in green cloud computing [9]. Tian et al. have used 
a heuristic approach for scheduling of virtual machine 
reservations in cloud data centres [10]. Basiri and Kabiri 
developed a machine learning-based approach for opinion 
mining, a subfield of data mining [11]. Sharma et al. 
presented a genetic algorithm (GA) and ontology-based 
NLP frameworks for online opinion mining [12]. Sharma et 
al. presented a well-organised study on the use of nature-
inspired techniques in agriculture, finance, healthcare, 
education and engineering domains. Also, authors have 
presented the publication trends from 2010 to 2019 in 
selected domains [13]. Aljarah et al. developed a multi-verse 
optimization algorithm to solve data clustering problems 
[14]. Sharma and Kaur presented an analysis of nature-
inspired meta-heuristic techniques employed in stock 
prediction, intrusion detection, disease diagnosis, image 
processing, bioinformatics, agriculture, text mining, 
robotics, finance, and educational data mining for feature 
selection [15]. Mafarja et al. presented an extensive 
literature study about the binary variant of dragonfly 
algorithm for feature selection [16]. Vinay Kumar et al. used 
the interactive self-improvement based adaptive particle 
swarm optimization for optimal floor planning in VLSI 
circuit design [17]. Saremi et al. presented the application of 
grasshopper optimization algorithm in hand posture 
estimation. Authors have also presented literature study 
about grasshopper optimization algorithm [18]. Mirjalili and 
Dong introduced nature-inspired algorithms with its 
importance using TSP problem [19]. The cluster head 

selection is one of the challenging problem found in the 
wireless sensor network. John and Rodrigues presented a 
literature survey on different techniques used for cluster 
head selection. The nature-inspired optimization techniques 
such as particle swarm optimization, artificial bee colony, 
genetic algorithm and harmony search algorithm used to 
select the cluster head in wireless sensor network [20]. 
Miranda et al. compared the NSGA-II, SMS-EMOA, and 
MOEA/D multi-objective optimization algorithms to solve 
the cluster head selection problem [21].  The self-adaptive 
mutation factor cross-over probability-based differential 
evolution algorithm developed by Annepu and Rajesh to 
solve node localization problem in wireless sensor network 
[22]. The development in multi and many-objective nature-
inspired optimization techniques with its applications is 
presented in [23].   

The nature-inspired algorithms have algorithm-specific 
parameters. The success of such algorithms largely depends 
on the efficient tuning of algorithm-specific parameters. 
Inefficient tuning of algorithm-specific parameters affects 
the solution of optimization problems. To reduce the impact 
of algorithm-specific parameters the teaching-learning based 
optimization (TLBO) algorithm have developed [24]. It 
requires to tune only common control parameters namely 
population size and termination criteria. The TLBO 
algorithm is popular and used by various researchers to 
solve complex engineering optimization problems. The 
different variations of TLBO algorithms and their 
performance comparison presented in [25]. Rao has 
presented a survey about the applications of TLBO 
algorithm [26]. Zou et al. presented a TLBO algorithm to 
solve multi-objective optimization problems [27]. 

With the era of increasing processing speeds, computer 
architects are exploring new ways to increase throughput. 
One of the most promising technique is to exploit 
parallelism. If your application use parallelism, resources 
are used more efficiently and performance is increased. The 
main advantage is that the CPU overhead is minimized. 
Some of the applications require more time to solve the 
problem, as it contains a large number of tasks so 
distributing those tasks in a balanced way across available 
resources improves the performance. This is the basic need 
for parallelism. Due to advancement in computer systems 
processors, the utilization of such systems is the need of the 
hour. As evolutionary algorithms are inherent in parallel 
nature, the parallel development of optimization algorithms 
will take benefit of it [28-30]. Gong et al. presented a survey 
on the parallel implementation of evolutionary algorithms 
[31]. Authors have categorised the parallelization strategy 
adopted to develop parallel versions of evolutionary 
algorithms. The future research direction highlights the 
importance of the parallel development of evolutionary 
algorithms [31]. The GPGPU based development of the 
population and swarm-based implementation on GPU is 
discussed with real-world problems from different domains 
such as data mining, bioinformatics, drug discovery, 
crystallography, artificial chemistries, and Sudoku [32].  

The proposed work presents the design and 
implementation of a master-slave TLBO algorithm to solve 
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CEC2006 single-objective constrained optimization 
problems. The motivation behind this work is to improve the 
execution time, enhance device utilization and the 
performance of an algorithm. The novelty of this work is 
that the Teacher phase and Learner phase of TLBO 
algorithm is executed on GPGPU. Generally, in sequential 
program execution, the single-core (logical processor) of the 
multi-core CPU is utilized. In the proposed approach, to 
enhance the CPU utilization OpenMP programming model 
is used. The Odd-Even sorting is implemented to determine 
the best value from obtained solutions. The proposed 
algorithm tested using thirteen single-objective constrained 
benchmark functions. The master-slave strategy is adopted 
to develop GPGPU based TLBO algorithm.  

The main contributions of this paper are as follows. The 
Master-Slave TLBO algorithm is presented to improve the 
CPU and GPGPU utilization. The proposed approach 
implemented using OpenMP-CUDA C, a hybrid parallel 
programming approach. The proposed algorithm’s 
performance is evaluated using well-known CEC2006 
single-objective constrained benchmark functions. The 
device utilization, speed-up computed and performance of 
the algorithm is measured using a statistical test. 

The remaining paper is organized as follows: Section 2 
discusses the related work. Section 3 presents the proposed 
methodology. The single-objective benchmark functions 
used in the proposed work are discussed in section 4. The 
obtained results and discussion are presented in section 5. 
Section 6 outlines the conclusion and future research 
directions.  

2. Related work

This section presents the literature review of different 
evolutionary algorithms developed on GPGPU to solve 
benchmark problems, the variations of TLBO algorithms 
and parallel TLBO implementation.  

Johannes Hofmann et al. in [33] studied genetic algorithm 
on the graphics card. In this paper, the author tried to find 
out which steps of the genetic algorithm (GA) can be done 
on the graphics processing unit using profiler so that 
algorithm can effectively work in parallel. The algorithm is 
tested on the Weierstrass function. The first phase of 
generating population randomly is done on the GPU where 
the time required to generate a random number on each card 
is considered. In the second phase, crossover operation is 
performed in which each thread can operate on two 
offspring. The third phase of mutation is done parallel in 
which, each thread will operate on single offspring. In [34], 
the author implemented a genetic algorithm for three 
benchmark functions on GPGPU using CUDA. In [35], the 
GA on multi-core and many-core systems implemented 
using different approaches like master-slave, coarse-grained, 
fine-grained approaches. The multi-core and many-core 
architecture make use of thread-level parallelism to improve 
the performance. Luca Mussi et al. in [36] discussed 
possible approaches of parallelizing PSO on graphics 

hardware. The main attention was given to minimize the 
data transfer, minimize the use of global memory using one 
CUDA kernel per swarm. Jitendra Kumar et al. also 
implemented PSO on GPGPU. Initial population generated 
on GPU minimizes the time required for copying of data 
[37]. The Bees algorithm, artificial bee colony and multi-
hive artificial bee colony algorithm are implemented on 
GPU using CUDA to address the benchmark optimization 
problems [38-40]. The ant colony optimization algorithm is 
parallelized using CUDA on GPU [41-42]. 

In [43], the improved version of TLBO based on the 
orthogonal design, with a new selection strategy to decrease 
the number of generations is proposed. The classes of 
learners are divided into some vectors where each of them 
acts as a factor in the orthogonal design. In [44], the TLBO 
algorithm modified by adding the concept of tutorial class. 
To make a stochastic variation in the available solution, the 
random scale factor added to the learner solution. It helps to 
maintain diversity and a better value obtained in the 
multimodal surface. Rao and Patel proposed improved 
TLBO adding the number of teachers, self-adapting factor, 
and tutorial-based learning [45].  The TLBO tested for 
continuous non-linear large-scale benchmark functions [46]. 
Zou et al. presented a survey of TLBO. Authors discussed 
the working of basic TLBO algorithm and presented a 
survey of its variations and applications developed using 
TLBO. The analysis of TLBO also presented [47]. 

The researchers developed the parallel TLBO algorithm 
and implemented on GPU. Rico-Garcia et al. implemented 
TLBO on GPU and compared with Jaya on GPU. Authors 
used unconstrained benchmark functions to test the 
proposed approach. Authors also analysed the utilization of 
GPUs by each approach [48]. García-Monzó et al. 
developed a shared memory-based and message-passing 
based parallel TLBO algorithm. Authors have used thirty 
unconstrained benchmark functions to evaluate the 
performance of proposed approach [49]. Other parallel 
implementation of TLBO found in [2, 50] to solve 
unconstrained benchmark functions.  

The findings of the literature study are, the TLBO 
algorithm is an algorithm-specific parameter-less approach 
developed to solve various optimization problems. There 
exist different variations of TLBO. The evolutionary 
algorithms successfully implemented to solve standard 
benchmark problems on GPGPU. The few researchers have 
developed a multi-core or many-core system based TLBO 
algorithm. The parallel TLBO algorithms are tested mostly 
for unconstrained optimization problems. These findings 
motivate the author of this paper to develop a master-slave 
TLBO algorithm to solve constrained benchmark 
optimization problems. 

3. Methodology

This section presents the proposed master-slave TLBO 
algorithm with a flowchart. 
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3.1. Teaching-Learning based optimization 
algorithm 

The Teaching-Learning Based Optimization (TLBO) 
algorithm proposed by Rao et al. for solving various types of 
optimization problems. The TLBO algorithm is inspired by 
the teaching-learning process. The special feature of TLBO 
algorithm is that authors have removed the algorithm-
specific parameter tuning. The detailed working with the 
flowchart of the TLBO algorithm and demonstration with 
manually solved constrained and unconstrained optimization 
problems as well as its applications can be found in [26]. 

3.2. Proposed approach 

The proposed master-slave TLBO algorithm is described in 
this section. The proposed approach described with the 
flowchart. The master-slave based TLBO algorithm’s 
execution steps are also discussed. 

3.2.1 Master-slave model 
In the literature, there are different parallelization models 
exists to implement evolutionary algorithms in a parallel 
fashion. The widely used are master-slave, island, cellular, 
hierarchical, pool, coevolution and multi-agent models [51]. 
There are different levels of parallelism found in each 
model. The operation level parallelism is used in a master-
slave approach, where compute-intensive operations are 
executed on slaves. The limitation of the master-slave model 
is communication cost. It is due to the slave communicates 
frequently with the master to exchange results and data [51].  
The development of GPGPU eases the implementation of 
master-slave evolutionary algorithms. The CPU acts as 
master whereas GPGPU works as a slave. 

3.2.2 Master-slave TLBO algorithm 
This section presents the master-slave TLBO algorithm. 

The GPGPU based parallel TLBO algorithm is developed 
based on the master-slave model to solve constrained 
benchmark problems. The proposed approach designates 
CPU as a master while GPGPU works as slaves. The 
compute-intensive or the steps which require more time are 
executed on GPGPU. These include generation of the initial 
population, teacher phase, learner phase and fitness function 
evaluation. The step which compares the final solution at the 
end of the algorithm and identifying best value is only 
performed on CPU (master). This approach overcomes the 
limitation of the master-slave model, i.e. time required to 
perform frequent communication between master and slave.  
Figure 1 presents the flowchart of the proposed algorithm. 

The algorithms execution begins with memory allocation 
on CPU and GPGPU. The required input for the algorithm is 
transferred on GPGPU. The initial population is generated 
on GPGPU. As the TLBO algorithm consists of two phases, 
the teacher phase executes first and then learner phase. Both 
these phases are executed on the GPGPU. The GPGPU 
computes the mean of each design variable in teacher phase 

and transfers to CPU to identify the best individual 
(teacher). The odd-even sorting scheme implemented on 
CPU to find the best teacher. This step is developed using 
OpenMP – a multi-core approach to improve the utilization 
of all CPU cores in the multi-core CPU environment. The 
identified best value is transferred to the GPGPU to update 
the solution. The learner phase updates the solution based on 
identified best teacher on GPGPU. The final solution is 
better than earlier and/or if the termination criteria meet then 
algorithm exits. The initial population generation, teacher 
phase and learner phase implemented using CUDA 
framework, developed by Nvidia for implementation on 
Nvidia’s GPU.   

In minimization type of constrained single objective 
benchmark optimization functions, the teacher with null or 
minimum constraint violation is preferred and in case of a 
tie, the solution with minimum objective value is selected. 
In the case of maximization type of problem, the solution 
with maximum objective value is selected. The constraint 
violation checking rule is the same in both types of 
problems 

The pseudo-code of the master-slave TLBO algorithm is 
presented below. 

Algorithm 1: Pseudo-code of Master-Slave TLBO Algorithm 
Input: No. of subjects (design variables), No. of learners (population 
size), max_iteration number 
Output: Selected benchmark function’s optimal value 
1. Allocate memory on CPU and GPGPU for input data and results
2. Copy input from CPU to GPGPU. 
3. Initialize CUDA blocks  Number of design variable
4. Initialize CUDA Threads  population size 
5. Launch “kernel 1” to generate initial population 
6. While i ≤ max_iteration number do 
//Teacher phase 
7. To compute mean for each design variable: Launch “kernel 2” 
8. __global__ void cal(double *a,double *mean)
9.  { 
10.   for(int j=0;j<N;j++) 

    { 
11.  mean[blockIdx.x]=mean[blockIdx.x]+a[blockIdx.x*N+j]; 
12. } 
13. __syncthreads(); 
14. } 
15. To compute the difference between existing and new mean, update
value of each teacher and update the teacher: Launch “kernel 3” 
16. diff[j]=(r/11)*(s[bestpos*D+j]-tf*m[j]);
17. diff − mean = ri(Mnew − TF.Mi) 
18. Update the Teacher’s value 
// End of Teacher Phase 
// Learner Phase 
19. To improve the value of learner based on best teacher: Launch
“kernel 4” 
20. X''j,P,i= X'j,P,i+ ri(X'j,P,i- X'j,Q,i), If X'total-P,i<X'total-Q,i 
21. X''j,P,i= X'j,P,i+ ri(X'j,Q,i - X'j,P,i), If X'total-Q,i < X'total-P,i 
22. Update the Learner’s value 
//End Learner Phase 
23. End While 
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24. Copy the obtained values of the objective function from GPGPU to
CPU 
25. Perform odd-even sort to find best value

The proposed master-slave TLBO algorithm generates 
the initial solution on GPGPU to reduce the communication 
time required for data transfer from CPU to GPGPU. It is 
implemented in parallel on GPGPU using kernel-1. 
Objective function computation and evaluation is a 
compute-intensive task in any optimization problem. If the 
number of design variables and the population size is large 
then it increases the computational time for objective 
function evaluation. The kernel-2 and kernel-3 execute the 
teacher phase. The mean value of each design variable, the 
difference between the result of class and individual learners 

mean is computed and objective value is updated. The 
teacher phase ends and the obtained results are used for the 
next phase. The learner phase begins at the end of teacher 
phase. The learner phase updates the value of each learner 
using the updated function value from teacher phase. The 
kernel-4 is learner phase. It selects any two learners and 
improves the result of each learner according to best value 
among them. It results in improvement of the class mean. 
The obtained values of the objective function are copied to 
the host (CPU). The odd-even sorting is implemented on 
CPU using OpenMP to obtain the best value among all the 
individuals. The algorithm exits when it reaches the 
predefined termination criteria. 

Figure 1. The flow of Proposed GPGPU based Master-Slave TLBO Algorithm 
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3.2.3 Merits and demerits of master-slave TLBO 
algorithm 
The proposed approach has advantages and limitations. 
These are briefly explained here. The proposed approach 
enhanced the system’s computational resources utilization. 
The proposed approach preserves the characteristics of basic 
TLBO algorithm. The common controlling parameters are 
only required to tune. The execution time required is 
reduced very largely. The limitation of the proposed 
approach is, it requires more function evaluations. The data 
transfer time required to and from CPU to GPGPU affects 
the execution time. It can be overcome by using advanced 
CUDA libraries. The merits and limitation of the proposed 
master-slave TLBO algorithm verified after performing 
experimentation. 

4. Constrained benchmark functions

The various properties of optimization applications vary 
from one problem to another, so the testing of strength and 
weakness of the new or modified optimization algorithm 
becomes difficult. The new or modified optimization 
algorithms performance vary from one problem to another. 
The benchmark functions enable to test the hypothetical 
performance of optimization algorithm in practically. The 
benchmark functions are used to test any newly developed 
or modified optimization algorithm in an unbiased manner. 
The benchmark functions help researchers to understand the 
behaviour of the optimization algorithm. These benchmark 

problems used by researchers to test evolutionary 
algorithms. The IEEE Congress on Evolutionary 
Computation (CEC) competitions have announced the 
constrained benchmark optimization problems in 2006. One 
of the objectives of the proposed work is to test the 
performance of the proposed master-slave TLBO algorithm 
for the single-objective constrained optimization problem. 
Hence, the proposed work uses the CEC2006 single-
objective constrained benchmark functions. These functions 
are widely used in literature to test the newly developed 
single objective optimization algorithms. The selected 
benchmark functions have linear, nonlinear, cubic, and 
polynomial objective functions. The number of design 
variables varies from 2 to 20, depends on the type of 
benchmark function. The selected benchmark functions 
provide the common platform to evaluate the performance 
of optimization algorithms. The CEC2006 benchmark 
problems have characteristics similar to single-objective 
real-time optimization problems. The “Appendix A” 
presents the definition of selected CEC2006 constrained 
real-parameter optimization benchmark functions [52].  

The constrained benchmark functions with the number of 
design variables, function type, number of constraints with 
the nature of constraints, and known best solution are 
presented in Table 1. The known best solution indicates the 
best results obtained after solving the benchmark functions 
recently by any optimization algorithm. It will help new 
researchers to measure the quality of the solution by his/her 
proposed approach. 

Table 1. Benchmark functions with its properties 

Function No. of Design 
Variables 

Function Type Number and Type of 
constraints 

Known Best Solution 

G1 13 Quadratic 9 Linear Inequality -1.50E+01
G2 20 Nonlinear 2 Nonlinear Inequality -8.04E-01
G3 10 Polynomial 1 Nonlinear Equality -1.00E+00
G4 5 Quadratic 6 Nonlinear Inequality -3.07E+04
G5 4 Cubic 2 Linear Inequality and 

3 Nonlinear Equality 5.13E+03

G6 2 Cubic 2 Nonlinear Inequality -6.96E+03
G7 10 Quadratic 3 Linear Inequality 

5 Nonlinear Inequality 2.43E+01

G8 2 Nonlinear 2 Nonlinear Inequality -9.58E-02
G9 7 Polynomial 4 Nonlinear Inequality 6.81E+02
G10 8 Linear 3 Linear Inequality and 

3 Nonlinear Inequality -7.05E+03

G11 2 Quadratic 1 Nonlinear Equality -7.50E-01
G12 3 Quadratic 1 Nonlinear Inequality -1.00E+00
G13 5 Nonlinear 3 Nonlinear Equality -5.39E-02
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5. Results and discussion

The master-slave TLBO algorithm developed to test the 
improvement in the optimal solution, speed-up and device 
utilization. The obtained solution is evaluated using 
statistical tests such as best, mean, and standard deviation 
(SD). The experimental setup, parameter settings, results 
obtained, and its analysis is presented in this section.  

To perform experimentation the GeForce GTX 680 
Nvidia’s GPGPU used, which has 8 streaming 
multiprocessors with 1536 CUDA cores. The global 
memory is 2GB and its speed is 6.0 Gbps. The device has 
3.0 compute capability. The Intel’s i7 processor with 2.40 
GHz processing speed and 8 GB RAM is used. It has 4 

logical processors. The proposed approach is implemented 
on Ubuntu 16.04 using CUDA Toolkit 7.0 with the Thrust 
library and OpenMP 5.0. The G1 to G13 constrained 
benchmark functions from CEC2006 dataset used to 
evaluate the performance of proposed Master-slave TLBO 
algorithm.  

The basic TLBO algorithm is a parameter-less algorithm, 
in the proposed parallel version, the same behaviour is 
preserved. The common controlling parameter only 
initialized at the beginning. It is presented in Table 2. The 
execution parameters need to select cautiously to obtain 
good performance from the proposed algorithm. The 
parameter settings for the proposed master-slave TLBO 
algorithm are determined after performing extensive 
experimentation.

Table 2. Common Controlling Parameter Settings 

Parameters Values Functions 
Population size 512 

G1 to G6 and G9 Maximum iteration number 500 
CUDA Blocks Number of design variables of selected benchmark function 
CUDA Threads 512 
Population size 512 

G7, G8, and G10 to 
G13 

Maximum iteration number 1000 
CUDA Blocks Number of design variables of selected benchmark function 
CUDA Threads 512 

Table 3 presents the results obtained by the master-slave 
TLBO algorithm for CEC2006 single-objective constrained 
benchmark functions. The results are presented in the form 
of obtained best value, obtained worst value, standard 
deviation (SD), and mean. The execution time is presented 
in a millisecond. The proposed master-slave TLBO 
algorithm is executed for 30 times for each function and 
best, mean and standard deviation values obtained. The 

mean and standard deviation tests performed to measure the 
quality of the obtained results. The standard deviation is 
used to interpret the spread of solution from the mean value. 
The low value indicates that the best value obtained in each 
run is close to mean value while high value indicates results 
obtained are away from the mean. The mean value obtained 
is used to interpret where the obtained best values clustered.

Table 3. Results obtained using the master-slave TLBO algorithm for 13 benchmark functions 

Function Known Best Obtained Best Obtained Worst SD Mean Time (ms) No. of Iterations 

G1 -1.50E+01 -1.50E+01 -1.47E+01 9.63E-02 -1.50E+01 35.8224 500 
G2 -8.04E-01 -7.99E-01 -7.80E-01 5.33E-03 -7.95E-01 49.0347 500 
G3 -1.00E+00 -1.00E+00 -1.48E-01 3.01E-01 -9.98E-01 32.5706 500 
G4 -3.07E+04 -3.07E+04 -3.02E+04 1.41E+02 -3.06E+04 24.8815 500 
G5 5.13E+03 5.13E+03 5.13E+03 4.85E-01 5.13E+03 1.5902 500 
G6 -6.96E+03 -6.96E+03 -6.96E+03 4.08E-01 -6.96E+03 2.4098 500 
G7 2.43E+01 2.43E+01 2.65E+01 7.98E-01 2.45E+01 3.9212 1000 
G8 -9.58E-02 -9.58E-02 9.61E-02 9.70E-05 -9.59E-02 2.8407 1000 
G9 6.81E+02 6.81E+02 6.84E+02 1.16E+00 6.81E+02 1.8099 500 
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Function Known Best Obtained Best Obtained Worst SD Mean Time (ms) No. of Iterations 

G10 -7.05E+03 -7.05E+03 -7.04E+03 6.77E-01 -7.05E+03 3.3763 1000 
G11 -7.50E-01 -7.50E-01 -7.35E-01 9.50E-05 -7.50E-01 8.0081 1000 
G12 -1.00E+00 -9.98E-01 1.00E+00 8.40E-01 -9.96E-01 4.0277 1000 
G13 -5.39E-02 -5.37E-02 8.15E-02 9.34E-03 -5.35E-02 3.3492 1000 

The values in boldface indicate the best results 

The master-slave TLBO obtains know best results for G1, 
G3, G4, G5, G6, G7, G8, G9, G10, and G11 benchmark 
functions. The results obtained for G2, G12 and G13 
functions are close to the known best value. The population 
size used is 256. The parallel execution time recorded is 
from 1.59 milliseconds to 49.034 milliseconds.  From the 
obtained results concluded that master-slave TLBO 
performs same as sequential TLBO. The master-slave 
TLBO algorithm is a promising approach to solve real-time 
single-objective constrained optimization problems from 
different domains.  

Fig. 2 presents the number of iterations and function 
evaluation of master-slave TLBO algorithm. The number of 
iterations used is 500 (G1 to G6 and G9 benchmark 
functions) and 1000 (G7, G8, and G10 to G13 benchmark 
functions). The TLBO algorithm updates the solution in 
both the phases i.e. Teacher phase and Learner phase. The 
function evaluation is performed as discussed in [5]. The 
function evaluation varies based on population size and the 
number of iterations. The maximum function evaluation 
performed are 1024000 and minimum are 512000. 

Figure 2. No. of iterations and function evaluation of 
master-slave TLBO algorithm 

Table 4 shows the execution time taken by sequential TLBO 
algorithm and Master-slave TLBO algorithm. Using 
Amdahl's law, it is found that, the proposed approach is 
11.8X to 30.14X faster than the sequential TLBO algorithm. 
The less speed-up is obtained for G12 function while G1 has 
highest speed-up. The G1 and G12 functions are quadratic 
but the G1 has 9 linear inequality constraint while G12 has 1 
non-linear inequality constraint. As compare to G12, the G1 
function in sequential execution taken more execution time. 
The G5 function has taken less execution time in both the 
versions. 

Table 4: Comparison of execution time and speed-up 
for sequential TLBO and master-slave TLBO algorithm 

Function 

Time (in ms) 

Speed-up Sequential 
TLBO 
Algorithm 

Proposed Master-
slave TLBO 
Algorithm 

G1 1079.6891 35.8224 30.14 
G2 1204.7845 49.0347 24.57 
G3 502.2398 32.5706 15.42 
G4 292.1090 24.8815 11.74 
G5 18.6223 1.5902 11.71 
G6 30.6291 2.4098 12.71 
G7 87.7570 3.9212 22.38 
G8 53.2633 2.8407 18.75 
G9 44.6155 1.8099 24.65 
G10 79.9191 3.3763 23.67 
G11 93.3756 8.0081 11.66 
G12 47.5273 4.0277 11.8 
G13 74.2874 3.3492 22.18 
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Figure 3. Execution time and Device utilization of Master-slave TLBO algorithm 

The speed-up and device utilization are the other two 
important metrics used to measure the performance of a 
parallel implementation of the proposed approach. Fig. 3 
presents the execution time and device (GPGPU) utilization 
of master-slave TLBO algorithm. The GPGPU utilization is 
measured using Nvidia’s profiler. The CPU utilization is 
computed using Ubuntu’s “system monitor” application. 
The speed-up is computed using Amdahl's law. The 
execution time and device utilization vary with 
characteristics of selected benchmark functions. The average 
GPGPU utilization is 90% and it varies from 86% to 94%. 

For G1 function the device utilization is maximum and it is 
94.83%. The minimum device utilization observed for G11 
test function, which is 86.57%. The device utilization 
affected by complexity and nature of the selected problem, 
the number of ideal threads in execution and divergence 
among thread execution. The execution time taken by the 
master-slave TLBO algorithm is from 1.590 milliseconds to 
49.034 milliseconds. The G5 function requires minimum 
time while G2 requires maximum time to execute. 

Figure 4. Logical processor (CPU) utilization by Master-Slave TLBO Algorithm 

The proposed master-slave TLBO algorithm 
implemented using a hybrid programming model, viz. 
OpenMP-CUDA. The CUDA toolkit used to implement 
kernels (the functions to be executed on GPGPU) and 
OpenMP used to implement the code-block, to be 

executed on CPU. One of the objectives of the proposed 
work is to improve system utilization. The Teacher phase 
and Learner phase is executed on GPGPU, due to which 
the GPGPU utilized from 86% to 94% (presented in Fig. 
3). The OpenMP facilitates the parallel implementation on 
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a multi-core system, which results in the utilization of all 
logical processors instead of utilizing a single logical 
processor during execution. Fig. 4 presents the average 
percentage (%) utilization of logical processors available 
on the system, which was used for experimentation in 60 
seconds. The significance of Fig. 4 is that it validates the 
utilization of all the cores of CPU by master-slave TLBO 
algorithm. The master-slave TLBO algorithm is 
implemented truly in a parallel fashion. The master phase 
of proposed approach utilizes all the logical processors 
(CPU1 to CPU4). Each logical processor’s average 
utilization is more than 90% in 60 seconds. 

6. Conclusion and Future Work

The design and implementation of a master-slave TLBO 
algorithm to solve CEC2006 single-objective constrained 
benchmark optimization is presented in this paper. The 
master-slave TLBO algorithm is developed to improve the 
computational resources of available systems. The best, 
worst, mean, and standard deviation, statistical tools used 
to measure the efficiency of the proposed algorithm. The 
proposed master-slave TLBO algorithm gives best results 
for G1, G3 to G9, G11 test functions. The results obtained 
for G2, G10, G12 and G13 are close to best-known results 
from the literature. The standard deviation confirms that 
the results obtained for each test function are close to 
mean results of that function. The Amdahl's law is used to 
compute speed-up obtained by master-slave TLBO 
algorithm. The proposed algorithm is 11.66X to 30.14X 
faster than sequential TLBO algorithm. The parallel 
execution time to exit the algorithm varies from 1.80 
milliseconds to 49.03 milliseconds based on the 
characteristics of selected benchmark functions. One of 
the motives behind the parallel implementation is to 
improve the utilization of the system’s computational 
resources.  The average GPGPU device utilization is 90%. 
The maximum device utilized is 94.83% for G1 function 
and minimum device utilized is 86.57% for G11 function. 
The average CPU utilization also recorded; it is more than 
90% for each logical processor. The function evaluation 
computed for proposed approach; it is from 5,12,000 to 
10,24,000. The function evaluation is more because the 
TLBO algorithm has two phases (Teacher phase and 
Learner phase). From obtained results, it is concluded that 
the master-slave TLBO algorithm is one of the promising 
approaches to solve CEC2006 single-objective 
constrained optimization problems by improving system 
utilization.  

In the future, the master-slave TLBO algorithm can be 
implemented to solve large-scale and complex 
constrained optimization problems.  The advanced feature 
of recent CUDA toolkit and various CUDA libraries can 
be used to implement the proposed master-slave TLBO 
algorithm. The real-world single-objective constrained 
optimization problems can be solved using the proposed 
master-slave TLBO algorithm to test its efficiency and 
system utilization. As future work, other parallelization 

strategy found in the literature can be used to develop a 
GPGPU based parallel TLBO algorithm. The system 
utilization with other parallel strategies can be tested in 
future, for the other benchmark problems. 
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2( ) 282 7 3 10 0

3( ) 196 23 6 8 12 0

4( ) 4 3 2

f x x x x x

x x x x x x x

g x x x x x x
g x x x x x

g x x x x x

g x x x x x x

= − + − + + −

+ + + − − −

= − + + + + + ≤

= − + + + − ≤

= − + + + − − ≤

= + − + 2
6 73 5 11 0

10 10  ( 1,...,7)
Number of design variables: 7
Best known  ( *) 680.630

i

x x
x i

f x

+ − ≤
− ≤ ≤ =

=

Function G10: 
1 2 3

4 6

5 7 4

8 5

1 6 4 1

2 7 5 2 4 4

3 8 3 5

min ( )
subject to 

1( ) 1 0.0025( ) 0
2( ) 1 0.0025( ) 0
3( ) 1 0.01( ) 0
4( ) 833.33252 100 83333.333 0
5( ) 1250 1250 0
6( ) 1250000 25

f x x x x

g x x x
g x x x x
g x x x
g x x x x x
g x x x x x x x
g x x x x x

= + +

= − + + ≤
= − + + − ≤
= − + + ≤
= − + + − ≤
= − + + + ≤
= − + + − 500 0

100 10000,  1000 10000 ( 2,3) and 
10 1000 ( 4,....,8)
Number of design variables: 8
Best known  ( *) 7049.2480

i i

i

x
x x i

x i

f x

≤
≤ ≤ ≤ ≤ =
≤ ≤ =

=

Function G11: 
2 2

21

2
2 1

1 2

min ( ) (  1)
subject to 
1( ) 0
1 1 and 1 1

Number of design variables: 2
Best known  ( *) 0.7499

f x x x

h x x x
x x

f x

= + −

= − =
− ≤ ≤ − ≤ ≤

=

Function G12: 
2 2 2

1 2 3

2 2 2
1 2 3

min ( ) (100 ( 5) ( 5) ( 5) ) /100
subject to 

1( ) ( ) ( ) ( ) 0.0625 0
0 10 ( 1,2,3) and , ,   1, 2,...,9.
Number of design variables: 3
Best known  ( *) 1

i

f x x x x

g x x p x q x r
x i p q r

f x

= − − − − − − −

= − + − + − − ≤
≤ ≤ = =

= −

Function G13: 
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

2 3 4 5

3 3
1 2

min ( )
subject to 
1( ) 10 0
2( ) 5 0
3( ) 1 0
2.3 2.3 ( 1,2) and 3.2 3.2 ( 3,4,5)

Number of design variables: 5
Best known  ( *) 0.05394

x x x x x

i i

f x e

h x x x x x x
h x x x x x
h x x x

x i x i

f x

=

= + + + + − =
= − =

= + + =
− ≤ ≤ = − ≤ ≤ =

=
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