
1

Master-Slave TLBO Algorithm for Constrained Global
Optimization Problems
Sandeep U. Mane1,*, Amol C. Adamuthe2 and Rajshree R. Omane3

1Dept. of CSE, Rajarambapu Institute of Technology (affiliated to Shivaji University Kolhapur), Rajaramnagar, Dist. Sangli,
MH, India
2Dept. of CS&IT, Rajarambapu Institute of Technology (affiliated to Shivaji University Kolhapur), Rajaramnagar, Dist.
Sangli, MH, India.
3Associate Software Engineer, Amdocs, Pune, MH, India.

Abstract

INTRODUCTION: The teaching-learning based optimization (TLBO) algorithm is a recently developed algorithm. The
proposed work presents a design of a master-slave TLBO algorithm.
OBJECTIVES: This research aims to design a master-slave TLBO algorithm to improve its performance and system
utilization for CEC2006 single-objective benchmark functions.
METHODS: The proposed approach implemented using OpenMP and CUDA C, a hybrid programming approach to
enhance the utilization of the system’s computational resources. The device utilization and performance of the proposed
approach evaluated using CEC2006 benchmark functions.
RESULTS: The proposed approach obtains best results in significantly reduced time for CEC2006 benchmark functions.
The maximum speed-up achieved is 30.14X. The average GPGPU utilization is 90% and the average utilization of logical
processors is more than 90%.
CONCLUSION: The master-slave TLBO algorithm improves the utilization of computational resources significantly and
obtains the best results for CEC2006 benchmark functions.

Keywords: Master-slave TLBO algorithm, Parallel Evolutionary Algorithms, GPGPU, Constrained benchmark functions, Optimization
problems.

Received on 07 June 2020, accepted on 04 September 2020, published on 09 September 2020

Copyright © 2020 Sandeep U. Mane et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.26-5-2020.166292

*Corresponding author. Email: manesandip82@gmail.com

1. Introduction

Optimization is defined as “Finding an alternative with the
most cost effective or highest achievable performance, by
maximizing desired factors and minimizing undesired ones”
[1]. Optimization functions are discrete/continuous and
constrained/unconstrained types. The optimization problems
found in engineering and other domains are constrained and
unconstrained in nature. The constrained optimization
problems are optimized concerning certain restrictions. The
restrictions exist on different things like resources

availability, time, etc. The unconstrained optimization
problems are free from such restrictions. These problems are
optimized with respect to design variables and their range as
well as dimensionality. The constrained and unconstrained
optimization problems are of single and multi-objective
optimizations [2-5].

In literature, different classical methods used to solve the
constrained and unconstrained optimization problems. These
methods have their own merits and demerits. Researchers
have developed nature-inspired approaches to solving
complex engineering design and optimization problems [2].
When an algorithm is proposed newly, validation and
efficiency of the algorithm need to be evaluated. Therefore,

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:manesandip82@gmail.com

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

2

the algorithm is tested on some standard benchmark
functions. The test on benchmark functions ensures the
suitability of the algorithm to problems with specific
properties. The nature of benchmark functions is of different
types. The functions are unimodal, multimodal, single and
multidimensional. Real word applications belong to these
categories and by implementing the proposed algorithm to
these benchmark functions, one can determine which kinds
of real-world problems the algorithm suits [3-5].

The nature-inspired algorithms are problem-solving
approaches inspired by different phenomena that exist in
nature. The nature-inspired algorithms are developed by
understanding the behaviour of swarms, biological systems,
physical and chemical systems, etc. The popular nature-
inspired algorithms are Genetic algorithms, Particle swarm
optimization, Artificial bee colony algorithm, Ant colony
optimization, Intelligent water drop algorithm, Cuckoo
search algorithm, Teaching-Learning based optimization
algorithm, etc. The literature reveals various applications of
nature-inspired algorithms in different domains. Recently,
authors have used nature-inspired approaches for virtual
machine placement in the cloud. Adhikari and Amgoth used
intelligent water drop algorithm for workflow scheduling in
cloud data-centre [6]. Abdessamia et al. developed an
energy-efficient virtual machine placement using binary
gravitational search algorithm [7]. Jangiti et al. used a
heuristic approach to perform virtual machine placement in
the heterogeneous cloud data centre [8]. Jangiti et al.
presented bulk-bin-packing based migration management
approach to address the reserved virtual machine request
problem in green cloud computing [9]. Tian et al. have used
a heuristic approach for scheduling of virtual machine
reservations in cloud data centres [10]. Basiri and Kabiri
developed a machine learning-based approach for opinion
mining, a subfield of data mining [11]. Sharma et al.
presented a genetic algorithm (GA) and ontology-based
NLP frameworks for online opinion mining [12]. Sharma et
al. presented a well-organised study on the use of nature-
inspired techniques in agriculture, finance, healthcare,
education and engineering domains. Also, authors have
presented the publication trends from 2010 to 2019 in
selected domains [13]. Aljarah et al. developed a multi-verse
optimization algorithm to solve data clustering problems
[14]. Sharma and Kaur presented an analysis of nature-
inspired meta-heuristic techniques employed in stock
prediction, intrusion detection, disease diagnosis, image
processing, bioinformatics, agriculture, text mining,
robotics, finance, and educational data mining for feature
selection [15]. Mafarja et al. presented an extensive
literature study about the binary variant of dragonfly
algorithm for feature selection [16]. Vinay Kumar et al. used
the interactive self-improvement based adaptive particle
swarm optimization for optimal floor planning in VLSI
circuit design [17]. Saremi et al. presented the application of
grasshopper optimization algorithm in hand posture
estimation. Authors have also presented literature study
about grasshopper optimization algorithm [18]. Mirjalili and
Dong introduced nature-inspired algorithms with its
importance using TSP problem [19]. The cluster head

selection is one of the challenging problem found in the
wireless sensor network. John and Rodrigues presented a
literature survey on different techniques used for cluster
head selection. The nature-inspired optimization techniques
such as particle swarm optimization, artificial bee colony,
genetic algorithm and harmony search algorithm used to
select the cluster head in wireless sensor network [20].
Miranda et al. compared the NSGA-II, SMS-EMOA, and
MOEA/D multi-objective optimization algorithms to solve
the cluster head selection problem [21]. The self-adaptive
mutation factor cross-over probability-based differential
evolution algorithm developed by Annepu and Rajesh to
solve node localization problem in wireless sensor network
[22]. The development in multi and many-objective nature-
inspired optimization techniques with its applications is
presented in [23].

The nature-inspired algorithms have algorithm-specific
parameters. The success of such algorithms largely depends
on the efficient tuning of algorithm-specific parameters.
Inefficient tuning of algorithm-specific parameters affects
the solution of optimization problems. To reduce the impact
of algorithm-specific parameters the teaching-learning based
optimization (TLBO) algorithm have developed [24]. It
requires to tune only common control parameters namely
population size and termination criteria. The TLBO
algorithm is popular and used by various researchers to
solve complex engineering optimization problems. The
different variations of TLBO algorithms and their
performance comparison presented in [25]. Rao has
presented a survey about the applications of TLBO
algorithm [26]. Zou et al. presented a TLBO algorithm to
solve multi-objective optimization problems [27].

With the era of increasing processing speeds, computer
architects are exploring new ways to increase throughput.
One of the most promising technique is to exploit
parallelism. If your application use parallelism, resources
are used more efficiently and performance is increased. The
main advantage is that the CPU overhead is minimized.
Some of the applications require more time to solve the
problem, as it contains a large number of tasks so
distributing those tasks in a balanced way across available
resources improves the performance. This is the basic need
for parallelism. Due to advancement in computer systems
processors, the utilization of such systems is the need of the
hour. As evolutionary algorithms are inherent in parallel
nature, the parallel development of optimization algorithms
will take benefit of it [28-30]. Gong et al. presented a survey
on the parallel implementation of evolutionary algorithms
[31]. Authors have categorised the parallelization strategy
adopted to develop parallel versions of evolutionary
algorithms. The future research direction highlights the
importance of the parallel development of evolutionary
algorithms [31]. The GPGPU based development of the
population and swarm-based implementation on GPU is
discussed with real-world problems from different domains
such as data mining, bioinformatics, drug discovery,
crystallography, artificial chemistries, and Sudoku [32].

The proposed work presents the design and
implementation of a master-slave TLBO algorithm to solve

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

3

CEC2006 single-objective constrained optimization
problems. The motivation behind this work is to improve the
execution time, enhance device utilization and the
performance of an algorithm. The novelty of this work is
that the Teacher phase and Learner phase of TLBO
algorithm is executed on GPGPU. Generally, in sequential
program execution, the single-core (logical processor) of the
multi-core CPU is utilized. In the proposed approach, to
enhance the CPU utilization OpenMP programming model
is used. The Odd-Even sorting is implemented to determine
the best value from obtained solutions. The proposed
algorithm tested using thirteen single-objective constrained
benchmark functions. The master-slave strategy is adopted
to develop GPGPU based TLBO algorithm.

The main contributions of this paper are as follows. The
Master-Slave TLBO algorithm is presented to improve the
CPU and GPGPU utilization. The proposed approach
implemented using OpenMP-CUDA C, a hybrid parallel
programming approach. The proposed algorithm’s
performance is evaluated using well-known CEC2006
single-objective constrained benchmark functions. The
device utilization, speed-up computed and performance of
the algorithm is measured using a statistical test.

The remaining paper is organized as follows: Section 2
discusses the related work. Section 3 presents the proposed
methodology. The single-objective benchmark functions
used in the proposed work are discussed in section 4. The
obtained results and discussion are presented in section 5.
Section 6 outlines the conclusion and future research
directions.

2. Related work

This section presents the literature review of different
evolutionary algorithms developed on GPGPU to solve
benchmark problems, the variations of TLBO algorithms
and parallel TLBO implementation.

Johannes Hofmann et al. in [33] studied genetic algorithm
on the graphics card. In this paper, the author tried to find
out which steps of the genetic algorithm (GA) can be done
on the graphics processing unit using profiler so that
algorithm can effectively work in parallel. The algorithm is
tested on the Weierstrass function. The first phase of
generating population randomly is done on the GPU where
the time required to generate a random number on each card
is considered. In the second phase, crossover operation is
performed in which each thread can operate on two
offspring. The third phase of mutation is done parallel in
which, each thread will operate on single offspring. In [34],
the author implemented a genetic algorithm for three
benchmark functions on GPGPU using CUDA. In [35], the
GA on multi-core and many-core systems implemented
using different approaches like master-slave, coarse-grained,
fine-grained approaches. The multi-core and many-core
architecture make use of thread-level parallelism to improve
the performance. Luca Mussi et al. in [36] discussed
possible approaches of parallelizing PSO on graphics

hardware. The main attention was given to minimize the
data transfer, minimize the use of global memory using one
CUDA kernel per swarm. Jitendra Kumar et al. also
implemented PSO on GPGPU. Initial population generated
on GPU minimizes the time required for copying of data
[37]. The Bees algorithm, artificial bee colony and multi-
hive artificial bee colony algorithm are implemented on
GPU using CUDA to address the benchmark optimization
problems [38-40]. The ant colony optimization algorithm is
parallelized using CUDA on GPU [41-42].

In [43], the improved version of TLBO based on the
orthogonal design, with a new selection strategy to decrease
the number of generations is proposed. The classes of
learners are divided into some vectors where each of them
acts as a factor in the orthogonal design. In [44], the TLBO
algorithm modified by adding the concept of tutorial class.
To make a stochastic variation in the available solution, the
random scale factor added to the learner solution. It helps to
maintain diversity and a better value obtained in the
multimodal surface. Rao and Patel proposed improved
TLBO adding the number of teachers, self-adapting factor,
and tutorial-based learning [45]. The TLBO tested for
continuous non-linear large-scale benchmark functions [46].
Zou et al. presented a survey of TLBO. Authors discussed
the working of basic TLBO algorithm and presented a
survey of its variations and applications developed using
TLBO. The analysis of TLBO also presented [47].

The researchers developed the parallel TLBO algorithm
and implemented on GPU. Rico-Garcia et al. implemented
TLBO on GPU and compared with Jaya on GPU. Authors
used unconstrained benchmark functions to test the
proposed approach. Authors also analysed the utilization of
GPUs by each approach [48]. García-Monzó et al.
developed a shared memory-based and message-passing
based parallel TLBO algorithm. Authors have used thirty
unconstrained benchmark functions to evaluate the
performance of proposed approach [49]. Other parallel
implementation of TLBO found in [2, 50] to solve
unconstrained benchmark functions.

The findings of the literature study are, the TLBO
algorithm is an algorithm-specific parameter-less approach
developed to solve various optimization problems. There
exist different variations of TLBO. The evolutionary
algorithms successfully implemented to solve standard
benchmark problems on GPGPU. The few researchers have
developed a multi-core or many-core system based TLBO
algorithm. The parallel TLBO algorithms are tested mostly
for unconstrained optimization problems. These findings
motivate the author of this paper to develop a master-slave
TLBO algorithm to solve constrained benchmark
optimization problems.

3. Methodology

This section presents the proposed master-slave TLBO
algorithm with a flowchart.

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

4

3.1. Teaching-Learning based optimization
algorithm

The Teaching-Learning Based Optimization (TLBO)
algorithm proposed by Rao et al. for solving various types of
optimization problems. The TLBO algorithm is inspired by
the teaching-learning process. The special feature of TLBO
algorithm is that authors have removed the algorithm-
specific parameter tuning. The detailed working with the
flowchart of the TLBO algorithm and demonstration with
manually solved constrained and unconstrained optimization
problems as well as its applications can be found in [26].

3.2. Proposed approach

The proposed master-slave TLBO algorithm is described in
this section. The proposed approach described with the
flowchart. The master-slave based TLBO algorithm’s
execution steps are also discussed.

3.2.1 Master-slave model
In the literature, there are different parallelization models
exists to implement evolutionary algorithms in a parallel
fashion. The widely used are master-slave, island, cellular,
hierarchical, pool, coevolution and multi-agent models [51].
There are different levels of parallelism found in each
model. The operation level parallelism is used in a master-
slave approach, where compute-intensive operations are
executed on slaves. The limitation of the master-slave model
is communication cost. It is due to the slave communicates
frequently with the master to exchange results and data [51].
The development of GPGPU eases the implementation of
master-slave evolutionary algorithms. The CPU acts as
master whereas GPGPU works as a slave.

3.2.2 Master-slave TLBO algorithm
This section presents the master-slave TLBO algorithm.

The GPGPU based parallel TLBO algorithm is developed
based on the master-slave model to solve constrained
benchmark problems. The proposed approach designates
CPU as a master while GPGPU works as slaves. The
compute-intensive or the steps which require more time are
executed on GPGPU. These include generation of the initial
population, teacher phase, learner phase and fitness function
evaluation. The step which compares the final solution at the
end of the algorithm and identifying best value is only
performed on CPU (master). This approach overcomes the
limitation of the master-slave model, i.e. time required to
perform frequent communication between master and slave.
Figure 1 presents the flowchart of the proposed algorithm.

The algorithms execution begins with memory allocation
on CPU and GPGPU. The required input for the algorithm is
transferred on GPGPU. The initial population is generated
on GPGPU. As the TLBO algorithm consists of two phases,
the teacher phase executes first and then learner phase. Both
these phases are executed on the GPGPU. The GPGPU
computes the mean of each design variable in teacher phase

and transfers to CPU to identify the best individual
(teacher). The odd-even sorting scheme implemented on
CPU to find the best teacher. This step is developed using
OpenMP – a multi-core approach to improve the utilization
of all CPU cores in the multi-core CPU environment. The
identified best value is transferred to the GPGPU to update
the solution. The learner phase updates the solution based on
identified best teacher on GPGPU. The final solution is
better than earlier and/or if the termination criteria meet then
algorithm exits. The initial population generation, teacher
phase and learner phase implemented using CUDA
framework, developed by Nvidia for implementation on
Nvidia’s GPU.

In minimization type of constrained single objective
benchmark optimization functions, the teacher with null or
minimum constraint violation is preferred and in case of a
tie, the solution with minimum objective value is selected.
In the case of maximization type of problem, the solution
with maximum objective value is selected. The constraint
violation checking rule is the same in both types of
problems

The pseudo-code of the master-slave TLBO algorithm is
presented below.

Algorithm 1: Pseudo-code of Master-Slave TLBO Algorithm
Input: No. of subjects (design variables), No. of learners (population
size), max_iteration number
Output: Selected benchmark function’s optimal value
1. Allocate memory on CPU and GPGPU for input data and results
2. Copy input from CPU to GPGPU.
3. Initialize CUDA blocks  Number of design variable
4. Initialize CUDA Threads  population size
5. Launch “kernel 1” to generate initial population
6. While i ≤ max_iteration number do
//Teacher phase
7. To compute mean for each design variable: Launch “kernel 2”
8. __global__ void cal(double *a,double *mean)
9. {
10. for(int j=0;j<N;j++)

 {
11. mean[blockIdx.x]=mean[blockIdx.x]+a[blockIdx.x*N+j];
12. }
13. __syncthreads();
14. }
15. To compute the difference between existing and new mean, update
value of each teacher and update the teacher: Launch “kernel 3”
16. diff[j]=(r/11)*(s[bestpos*D+j]-tf*m[j]);
17. diff − mean = ri(Mnew − TF.Mi)
18. Update the Teacher’s value
// End of Teacher Phase
// Learner Phase
19. To improve the value of learner based on best teacher: Launch
“kernel 4”
20. X''j,P,i= X'j,P,i+ ri(X'j,P,i- X'j,Q,i), If X'total-P,i<X'total-Q,i
21. X''j,P,i= X'j,P,i+ ri(X'j,Q,i - X'j,P,i), If X'total-Q,i < X'total-P,i
22. Update the Learner’s value
//End Learner Phase
23. End While

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

5

24. Copy the obtained values of the objective function from GPGPU to
CPU
25. Perform odd-even sort to find best value

The proposed master-slave TLBO algorithm generates
the initial solution on GPGPU to reduce the communication
time required for data transfer from CPU to GPGPU. It is
implemented in parallel on GPGPU using kernel-1.
Objective function computation and evaluation is a
compute-intensive task in any optimization problem. If the
number of design variables and the population size is large
then it increases the computational time for objective
function evaluation. The kernel-2 and kernel-3 execute the
teacher phase. The mean value of each design variable, the
difference between the result of class and individual learners

mean is computed and objective value is updated. The
teacher phase ends and the obtained results are used for the
next phase. The learner phase begins at the end of teacher
phase. The learner phase updates the value of each learner
using the updated function value from teacher phase. The
kernel-4 is learner phase. It selects any two learners and
improves the result of each learner according to best value
among them. It results in improvement of the class mean.
The obtained values of the objective function are copied to
the host (CPU). The odd-even sorting is implemented on
CPU using OpenMP to obtain the best value among all the
individuals. The algorithm exits when it reaches the
predefined termination criteria.

Figure 1. The flow of Proposed GPGPU based Master-Slave TLBO Algorithm

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

6

3.2.3 Merits and demerits of master-slave TLBO
algorithm
The proposed approach has advantages and limitations.
These are briefly explained here. The proposed approach
enhanced the system’s computational resources utilization.
The proposed approach preserves the characteristics of basic
TLBO algorithm. The common controlling parameters are
only required to tune. The execution time required is
reduced very largely. The limitation of the proposed
approach is, it requires more function evaluations. The data
transfer time required to and from CPU to GPGPU affects
the execution time. It can be overcome by using advanced
CUDA libraries. The merits and limitation of the proposed
master-slave TLBO algorithm verified after performing
experimentation.

4. Constrained benchmark functions

The various properties of optimization applications vary
from one problem to another, so the testing of strength and
weakness of the new or modified optimization algorithm
becomes difficult. The new or modified optimization
algorithms performance vary from one problem to another.
The benchmark functions enable to test the hypothetical
performance of optimization algorithm in practically. The
benchmark functions are used to test any newly developed
or modified optimization algorithm in an unbiased manner.
The benchmark functions help researchers to understand the
behaviour of the optimization algorithm. These benchmark

problems used by researchers to test evolutionary
algorithms. The IEEE Congress on Evolutionary
Computation (CEC) competitions have announced the
constrained benchmark optimization problems in 2006. One
of the objectives of the proposed work is to test the
performance of the proposed master-slave TLBO algorithm
for the single-objective constrained optimization problem.
Hence, the proposed work uses the CEC2006 single-
objective constrained benchmark functions. These functions
are widely used in literature to test the newly developed
single objective optimization algorithms. The selected
benchmark functions have linear, nonlinear, cubic, and
polynomial objective functions. The number of design
variables varies from 2 to 20, depends on the type of
benchmark function. The selected benchmark functions
provide the common platform to evaluate the performance
of optimization algorithms. The CEC2006 benchmark
problems have characteristics similar to single-objective
real-time optimization problems. The “Appendix A”
presents the definition of selected CEC2006 constrained
real-parameter optimization benchmark functions [52].

The constrained benchmark functions with the number of
design variables, function type, number of constraints with
the nature of constraints, and known best solution are
presented in Table 1. The known best solution indicates the
best results obtained after solving the benchmark functions
recently by any optimization algorithm. It will help new
researchers to measure the quality of the solution by his/her
proposed approach.

Table 1. Benchmark functions with its properties

Function No. of Design
Variables

Function Type Number and Type of
constraints

Known Best Solution

G1 13 Quadratic 9 Linear Inequality -1.50E+01
G2 20 Nonlinear 2 Nonlinear Inequality -8.04E-01
G3 10 Polynomial 1 Nonlinear Equality -1.00E+00
G4 5 Quadratic 6 Nonlinear Inequality -3.07E+04
G5 4 Cubic 2 Linear Inequality and

3 Nonlinear Equality 5.13E+03

G6 2 Cubic 2 Nonlinear Inequality -6.96E+03
G7 10 Quadratic 3 Linear Inequality

5 Nonlinear Inequality 2.43E+01

G8 2 Nonlinear 2 Nonlinear Inequality -9.58E-02
G9 7 Polynomial 4 Nonlinear Inequality 6.81E+02
G10 8 Linear 3 Linear Inequality and

3 Nonlinear Inequality -7.05E+03

G11 2 Quadratic 1 Nonlinear Equality -7.50E-01
G12 3 Quadratic 1 Nonlinear Inequality -1.00E+00
G13 5 Nonlinear 3 Nonlinear Equality -5.39E-02

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

7

5. Results and discussion

The master-slave TLBO algorithm developed to test the
improvement in the optimal solution, speed-up and device
utilization. The obtained solution is evaluated using
statistical tests such as best, mean, and standard deviation
(SD). The experimental setup, parameter settings, results
obtained, and its analysis is presented in this section.

To perform experimentation the GeForce GTX 680
Nvidia’s GPGPU used, which has 8 streaming
multiprocessors with 1536 CUDA cores. The global
memory is 2GB and its speed is 6.0 Gbps. The device has
3.0 compute capability. The Intel’s i7 processor with 2.40
GHz processing speed and 8 GB RAM is used. It has 4

logical processors. The proposed approach is implemented
on Ubuntu 16.04 using CUDA Toolkit 7.0 with the Thrust
library and OpenMP 5.0. The G1 to G13 constrained
benchmark functions from CEC2006 dataset used to
evaluate the performance of proposed Master-slave TLBO
algorithm.

The basic TLBO algorithm is a parameter-less algorithm,
in the proposed parallel version, the same behaviour is
preserved. The common controlling parameter only
initialized at the beginning. It is presented in Table 2. The
execution parameters need to select cautiously to obtain
good performance from the proposed algorithm. The
parameter settings for the proposed master-slave TLBO
algorithm are determined after performing extensive
experimentation.

Table 2. Common Controlling Parameter Settings

Parameters Values Functions
Population size 512

G1 to G6 and G9 Maximum iteration number 500
CUDA Blocks Number of design variables of selected benchmark function
CUDA Threads 512
Population size 512

G7, G8, and G10 to
G13

Maximum iteration number 1000
CUDA Blocks Number of design variables of selected benchmark function
CUDA Threads 512

Table 3 presents the results obtained by the master-slave
TLBO algorithm for CEC2006 single-objective constrained
benchmark functions. The results are presented in the form
of obtained best value, obtained worst value, standard
deviation (SD), and mean. The execution time is presented
in a millisecond. The proposed master-slave TLBO
algorithm is executed for 30 times for each function and
best, mean and standard deviation values obtained. The

mean and standard deviation tests performed to measure the
quality of the obtained results. The standard deviation is
used to interpret the spread of solution from the mean value.
The low value indicates that the best value obtained in each
run is close to mean value while high value indicates results
obtained are away from the mean. The mean value obtained
is used to interpret where the obtained best values clustered.

Table 3. Results obtained using the master-slave TLBO algorithm for 13 benchmark functions

Function Known Best Obtained Best Obtained Worst SD Mean Time (ms) No. of Iterations

G1 -1.50E+01 -1.50E+01 -1.47E+01 9.63E-02 -1.50E+01 35.8224 500
G2 -8.04E-01 -7.99E-01 -7.80E-01 5.33E-03 -7.95E-01 49.0347 500
G3 -1.00E+00 -1.00E+00 -1.48E-01 3.01E-01 -9.98E-01 32.5706 500
G4 -3.07E+04 -3.07E+04 -3.02E+04 1.41E+02 -3.06E+04 24.8815 500
G5 5.13E+03 5.13E+03 5.13E+03 4.85E-01 5.13E+03 1.5902 500
G6 -6.96E+03 -6.96E+03 -6.96E+03 4.08E-01 -6.96E+03 2.4098 500
G7 2.43E+01 2.43E+01 2.65E+01 7.98E-01 2.45E+01 3.9212 1000
G8 -9.58E-02 -9.58E-02 9.61E-02 9.70E-05 -9.59E-02 2.8407 1000
G9 6.81E+02 6.81E+02 6.84E+02 1.16E+00 6.81E+02 1.8099 500

EAI Endorsed Transactions on
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

8

Function Known Best Obtained Best Obtained Worst SD Mean Time (ms) No. of Iterations

G10 -7.05E+03 -7.05E+03 -7.04E+03 6.77E-01 -7.05E+03 3.3763 1000
G11 -7.50E-01 -7.50E-01 -7.35E-01 9.50E-05 -7.50E-01 8.0081 1000
G12 -1.00E+00 -9.98E-01 1.00E+00 8.40E-01 -9.96E-01 4.0277 1000
G13 -5.39E-02 -5.37E-02 8.15E-02 9.34E-03 -5.35E-02 3.3492 1000

The values in boldface indicate the best results

The master-slave TLBO obtains know best results for G1,
G3, G4, G5, G6, G7, G8, G9, G10, and G11 benchmark
functions. The results obtained for G2, G12 and G13
functions are close to the known best value. The population
size used is 256. The parallel execution time recorded is
from 1.59 milliseconds to 49.034 milliseconds. From the
obtained results concluded that master-slave TLBO
performs same as sequential TLBO. The master-slave
TLBO algorithm is a promising approach to solve real-time
single-objective constrained optimization problems from
different domains.

Fig. 2 presents the number of iterations and function
evaluation of master-slave TLBO algorithm. The number of
iterations used is 500 (G1 to G6 and G9 benchmark
functions) and 1000 (G7, G8, and G10 to G13 benchmark
functions). The TLBO algorithm updates the solution in
both the phases i.e. Teacher phase and Learner phase. The
function evaluation is performed as discussed in [5]. The
function evaluation varies based on population size and the
number of iterations. The maximum function evaluation
performed are 1024000 and minimum are 512000.

Figure 2. No. of iterations and function evaluation of
master-slave TLBO algorithm

Table 4 shows the execution time taken by sequential TLBO
algorithm and Master-slave TLBO algorithm. Using
Amdahl's law, it is found that, the proposed approach is
11.8X to 30.14X faster than the sequential TLBO algorithm.
The less speed-up is obtained for G12 function while G1 has
highest speed-up. The G1 and G12 functions are quadratic
but the G1 has 9 linear inequality constraint while G12 has 1
non-linear inequality constraint. As compare to G12, the G1
function in sequential execution taken more execution time.
The G5 function has taken less execution time in both the
versions.

Table 4: Comparison of execution time and speed-up
for sequential TLBO and master-slave TLBO algorithm

Function

Time (in ms)

Speed-up Sequential
TLBO
Algorithm

Proposed Master-
slave TLBO
Algorithm

G1 1079.6891 35.8224 30.14
G2 1204.7845 49.0347 24.57
G3 502.2398 32.5706 15.42
G4 292.1090 24.8815 11.74
G5 18.6223 1.5902 11.71
G6 30.6291 2.4098 12.71
G7 87.7570 3.9212 22.38
G8 53.2633 2.8407 18.75
G9 44.6155 1.8099 24.65
G10 79.9191 3.3763 23.67
G11 93.3756 8.0081 11.66
G12 47.5273 4.0277 11.8
G13 74.2874 3.3492 22.18

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

9

Figure 3. Execution time and Device utilization of Master-slave TLBO algorithm

The speed-up and device utilization are the other two
important metrics used to measure the performance of a
parallel implementation of the proposed approach. Fig. 3
presents the execution time and device (GPGPU) utilization
of master-slave TLBO algorithm. The GPGPU utilization is
measured using Nvidia’s profiler. The CPU utilization is
computed using Ubuntu’s “system monitor” application.
The speed-up is computed using Amdahl's law. The
execution time and device utilization vary with
characteristics of selected benchmark functions. The average
GPGPU utilization is 90% and it varies from 86% to 94%.

For G1 function the device utilization is maximum and it is
94.83%. The minimum device utilization observed for G11
test function, which is 86.57%. The device utilization
affected by complexity and nature of the selected problem,
the number of ideal threads in execution and divergence
among thread execution. The execution time taken by the
master-slave TLBO algorithm is from 1.590 milliseconds to
49.034 milliseconds. The G5 function requires minimum
time while G2 requires maximum time to execute.

Figure 4. Logical processor (CPU) utilization by Master-Slave TLBO Algorithm

The proposed master-slave TLBO algorithm
implemented using a hybrid programming model, viz.
OpenMP-CUDA. The CUDA toolkit used to implement
kernels (the functions to be executed on GPGPU) and
OpenMP used to implement the code-block, to be

executed on CPU. One of the objectives of the proposed
work is to improve system utilization. The Teacher phase
and Learner phase is executed on GPGPU, due to which
the GPGPU utilized from 86% to 94% (presented in Fig.
3). The OpenMP facilitates the parallel implementation on

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

10

a multi-core system, which results in the utilization of all
logical processors instead of utilizing a single logical
processor during execution. Fig. 4 presents the average
percentage (%) utilization of logical processors available
on the system, which was used for experimentation in 60
seconds. The significance of Fig. 4 is that it validates the
utilization of all the cores of CPU by master-slave TLBO
algorithm. The master-slave TLBO algorithm is
implemented truly in a parallel fashion. The master phase
of proposed approach utilizes all the logical processors
(CPU1 to CPU4). Each logical processor’s average
utilization is more than 90% in 60 seconds.

6. Conclusion and Future Work

The design and implementation of a master-slave TLBO
algorithm to solve CEC2006 single-objective constrained
benchmark optimization is presented in this paper. The
master-slave TLBO algorithm is developed to improve the
computational resources of available systems. The best,
worst, mean, and standard deviation, statistical tools used
to measure the efficiency of the proposed algorithm. The
proposed master-slave TLBO algorithm gives best results
for G1, G3 to G9, G11 test functions. The results obtained
for G2, G10, G12 and G13 are close to best-known results
from the literature. The standard deviation confirms that
the results obtained for each test function are close to
mean results of that function. The Amdahl's law is used to
compute speed-up obtained by master-slave TLBO
algorithm. The proposed algorithm is 11.66X to 30.14X
faster than sequential TLBO algorithm. The parallel
execution time to exit the algorithm varies from 1.80
milliseconds to 49.03 milliseconds based on the
characteristics of selected benchmark functions. One of
the motives behind the parallel implementation is to
improve the utilization of the system’s computational
resources. The average GPGPU device utilization is 90%.
The maximum device utilized is 94.83% for G1 function
and minimum device utilized is 86.57% for G11 function.
The average CPU utilization also recorded; it is more than
90% for each logical processor. The function evaluation
computed for proposed approach; it is from 5,12,000 to
10,24,000. The function evaluation is more because the
TLBO algorithm has two phases (Teacher phase and
Learner phase). From obtained results, it is concluded that
the master-slave TLBO algorithm is one of the promising
approaches to solve CEC2006 single-objective
constrained optimization problems by improving system
utilization.

In the future, the master-slave TLBO algorithm can be
implemented to solve large-scale and complex
constrained optimization problems. The advanced feature
of recent CUDA toolkit and various CUDA libraries can
be used to implement the proposed master-slave TLBO
algorithm. The real-world single-objective constrained
optimization problems can be solved using the proposed
master-slave TLBO algorithm to test its efficiency and
system utilization. As future work, other parallelization

strategy found in the literature can be used to develop a
GPGPU based parallel TLBO algorithm. The system
utilization with other parallel strategies can be tested in
future, for the other benchmark problems.

References

[1] Rao SS. Engineering optimization: theory and
practice. John Wiley & Sons; 2019 Nov 12.

[2] Mane SU, Omane R, Pawar A. GPGPU based
teaching learning based optimization and artificial
bee colony algorithm for unconstrained optimization
problems. In2015 IEEE International Advance
Computing Conference (IACC). IEEE; 2015 Jun 12.
pp. 1056-1061.

[3] Opara K, Arabas J. Benchmarking procedures for
continuous optimization algorithms. Journal of
Telecommunications and Information Technology.
2011; 73-80.

[4] Jamil M, Yang XS. A literature survey of benchmark
functions for global optimisation problems.
International Journal of Mathematical Modelling and
Numerical Optimisation. 2013 Jan 1; 4(2):150-94.

[5] Rao, R. Jaya: A simple and new optimization
algorithm for solving constrained and unconstrained
optimization problems. International Journal of
Industrial Engineering Computations. 2016; 7(1): 19-
34.

[6] Adhikari M, Amgoth T. An intelligent water drops-
based workflow scheduling for IaaS cloud. Applied
Soft Computing. 2019 Apr 1; 77: 547-66.

[7] Abdessamia F, Zhang WZ, Tian YC. Energy-
efficiency virtual machine placement based on binary
gravitational search algorithm. Cluster Computing.
2019 Nov 28:1-12.

[8] Jangiti S, Sriram E, Jayaraman R, Ramprasad H,
Sriram VS. Resource ratio based virtual machine
placement in heterogeneous cloud data centres.
Sādhanā. 2019 Dec 1; 44(12):236.

[9] Jangiti S, Subramaniyaswamy V, Shankar VS. Bulk-
bin-packing based migration management of reserved
virtual machine requests for green cloud computing.
EAI Endorsed Transactions on Energy Web. 2019
Oct 1; 6(24).

[10] Tian W, He M, Guo W, Huang W, Shi X, Shang M,
Toosi AN, Buyya R. On minimizing total energy
consumption in the scheduling of virtual machine
reservations. Journal of Network and Computer
Applications. 2018 Jul 1; 113:64-74.

[11] Basiri ME, Kabiri A. HOMPer: A new hybrid system
for opinion mining in the Persian language. Journal
of Information Science. 2020 Feb; 46(1):101-17.

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

11

[12] Sharma M, Singh G, Singh R. Design of GA and
Ontology based NLP Frameworks for Online Opinion
Mining. Recent Patents on Engineering. 2019 Jun 1;
13(2):159-65.

[13] Sharma S, Singh G, Singh D. Role and Performance
of Different Traditional Classification and Nature-
Inspired Computing Techniques in Major Research
Areas. EAI Endorsed Transactions on Scalable
Information Systems. 2019 Jun 1; 6(21).

[14] Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili
S. Multi-verse optimizer: theory, literature review,
and application in data clustering. In Nature-Inspired
Optimizers 2020 (pp. 123-141). Springer, Cham.

[15] Sharma M, Kaur P. A Comprehensive Analysis of
Nature-Inspired Meta-Heuristic Techniques for
Feature Selection Problem. Archives of
Computational Methods in Engineering. 2020 Feb
20:1-25.

[16] Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah
I. Dragonfly algorithm: theory, literature review, and
application in feature selection. In Nature-Inspired
Optimizers 2020 (pp. 47-67). Springer, Cham.

[17] Kumar SV, Rao PV, Singh MK. Optimal floor
planning in VLSI using improved adaptive particle
swarm optimization. Evolutionary Intelligence. 2019
Jul 9:1-14.

[18] Saremi S, Mirjalili S, Mirjalili S, Dong JS.
Grasshopper optimization algorithm: theory,
literature review, and application in hand posture
estimation. In Nature-Inspired Optimizers 2020 (pp.
107-122). Springer, Cham.

[19] Mirjalili S, Dong JS. Introduction to nature-inspired
algorithms. In Nature-Inspired Optimizers 2020 (pp.
1-5). Springer, Cham.

[20] John J, Rodrigues P. A survey of energy-aware
cluster head selection techniques in wireless sensor
network. Evolutionary Intelligence. 2019 Nov 27:1-
13.

[21] Miranda K, Zapotecas-Martínez S, López-Jaimes A,
García-Nájera A. A comparison of bio-inspired
approaches for the cluster-head selection problem in
WSN. In Advances in Nature-Inspired Computing
and Applications 2019 (pp. 165-187). Springer,
Cham.

[22] Annepu V, Rajesh A. Implementation of self adaptive
mutation factor and cross-over probability based
differential evolution algorithm for node localization
in wireless sensor networks. Evolutionary
Intelligence. 2019 Sep 1; 12(3):469-78.

[23] Mane S, Rao MN. Many-objective optimization:
Problems and evolutionary algorithms–a short

review. International Journal of Applied Engineering
Research. 2017; 12(20):9774-93.

[24] Rao RV, Savsani VJ, Vakharia DP. Teaching–
learning-based optimization: a novel method for
constrained mechanical design optimization
problems. Computer-Aided Design. 2011 Mar 1;
43(3):303-15.

[25] Kumar MS, Gayathri GV. A short survey on teaching
learning based optimization. In Emerging ICT for
Bridging the Future-Proceedings of the 49th Annual
Convention of the Computer Society of India CSI
Volume 2 2015 (pp. 173-182). Springer, Cham.

[26] Rao R. Review of applications of TLBO algorithm
and a tutorial for beginners to solve the unconstrained
and constrained optimization problems. Decision
science letters. 2016; 5(1):1-30.

[27] Zou F, Wang L, Hei X, Chen D, Wang B. Multi-
objective optimization using teaching-learning-based
optimization algorithm. Engineering Applications of
Artificial Intelligence. 2013 Apr 1; 26(4):1291-300.

[28] Jesshope CR. Computational physics and the need for
parallelism. Computer Physics Communications.
1986 Aug 1; 41(2-3):363-75.

[29] Alba E, Tomassini M. Parallelism and evolutionary
algorithms. IEEE transactions on evolutionary
computation. 2002 Dec 10; 6(5):443-62.

[30] Maitre O, Krüger F, Querry S, Lachiche N, Collet P.
EASEA: specification and execution of evolutionary
algorithms on GPGPU. Soft Computing. 2012 Feb 1;
16(2):261-79.

[31] Gong YJ, Chen WN, Zhan ZH, Zhang J, Li Y, Zhang
Q, Li JJ. Distributed evolutionary algorithms and
their models: A survey of the state-of-the-art. Applied
Soft Computing. 2015 Sep 1; 34:286-300.

[32] Collet P, Krüger F, Maitre O. Automatic
parallelization of EC on GPGPUs and clusters of
GPGPU machines with EASEA and EASEA-
CLOUD. In Massively Parallel Evolutionary
Computation on GPGPUs 2013 (pp. 35-59). Springer,
Berlin, Heidelberg.

[33] Hofmann J, Limmer S, Fey D. Performance
investigations of genetic algorithms on graphics
cards. Swarm and Evolutionary Computation. 2013
Oct 1; 12:33-47.

[34] Pospichal P, Jaros J, Schwarz J. Parallel genetic
algorithm on the CUDA architecture. In European
conference on the applications of evolutionary
computation 2010 Apr 7 (pp. 442-451). Springer,
Berlin, Heidelberg.

[35] Zheng L, Lu Y, Guo M, Guo S, Xu CZ. Architecture-
based design and optimization of genetic algorithms

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

12

on multi-and many-core systems. Future Generation
Computer Systems. 2014 Sep 1; 38:75-91.

[36] Mussi L, Daolio F, Cagnoni S. Evaluation of parallel
particle swarm optimization algorithms within the
CUDA™ architecture. Information Sciences. 2011
Oct 15; 181(20):4642-57.

[37] Kumar J, Singh L, Paul S. GPU based parallel
cooperative particle swarm optimization using C-
CUDA: a case study. In2013 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) 2013
Jul 7 (pp. 1-8). IEEE.

[38] Luo GH, Huang SK, Chang YS, Yuan SM. A parallel
Bees Algorithm implementation on GPU. Journal of
Systems Architecture. 2014 Mar 1; 60(3):271-9.

[39] Basturk A, Akay R. Performance analysis of the
coarse-grained parallel model of the artificial bee
colony algorithm. Information Sciences. 2013 Dec
20; 253:34-55.

[40] Mane SU, Adamuthe AC, Pawar AS. GPGPU based
Multi-hive ABC Algorithm for Constrained Global
Optimization Problems. EAI Endorsed Transactions
on Energy Web, 2020 Feb 14; 7(28).

[41] Cecilia JM, García JM, Nisbet A, Amos M, Ujaldón
M. Enhancing data parallelism for ant colony
optimization on GPUs. Journal of Parallel and
Distributed Computing. 2013 Jan 1; 73(1):42-51.

[42] Delévacq A, Delisle P, Gravel M, Krajecki M.
Parallel ant colony optimization on graphics
processing units. Journal of Parallel and Distributed
Computing. 2013 Jan 1; 73(1):52-61.

[43] Satapathy SC, Naik A, Parvathi K. A teaching
learning based optimization based on orthogonal
design for solving global optimization problems.
SpringerPlus. 2013 Dec 1; 2(1):130.

[44] Satapathy SC, Naik A. Modified Teaching–Learning-
Based Optimization algorithm for global numerical
optimization—A comparative study. Swarm and
Evolutionary Computation. 2014 Jun 1; 16:28-37.

[45] Rao RV, Patel V. An improved teaching-learning-
based optimization algorithm for solving
unconstrained optimization problems. Scientia
Iranica. 2013 Jun 1; 20(3):710-20.

[46] Rao RV, Savsani VJ, Vakharia DP. Teaching–
learning-based optimization: an optimization method
for continuous non-linear large scale problems.
Information sciences. 2012 Jan 15; 183(1):1-5.

[47] Zou, F., Chen, D., & Xu, Q. (2019). A survey of
teaching–learning-based optimization.
Neurocomputing, 335, 366-383.

[48] Rico-Garcia H, Sanchez-Romero JL, Jimeno-
Morenilla A, Migallon-Gomis H, Mora-Mora H, Rao
RV. Comparison of High Performance Parallel

Implementations of TLBO and Jaya Optimization
Methods on Many core GPU. IEEE Access. 2019 Sep
12; 7:133822-31.

[49] García-Monzó A, Migallón H, Jimeno-Morenilla A,
Sánchez-Romero JL, Rico H, Rao RV. Efficient
Subpopulation Based Parallel TLBO Optimization
Algorithms. Electronics. 2019 Jan; 8(1):19.

[50] Balande U, Shrimankar D, Funde N. MTLBO-MS:
Modified teaching learning based optimization on
multicore system. In2018 4th International
Conference on Recent Advances in Information
Technology (RAIT) 2018 Mar 15 (pp. 1-5). IEEE.

[51] Gong YJ, Chen WN, Zhan ZH, Zhang J, Li Y, Zhang
Q, Li JJ. Distributed evolutionary algorithms and
their models: A survey of the state-of-the-art. Applied
Soft Computing. 2015 Sep 1; 34:286-300.

[52] Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M,
Suganthan PN, Coello CC, Deb K. Problem
definitions and evaluation criteria for the CEC 2006
special session on constrained real-parameter
optimization. Journal of Applied Mechanics. 2006
Sep 18; 41(8):8-31.

Appendix A. CEC2006 benchmark
functions

Function G1:
4 4 13

2

1 1 5

1 2 10 11

1 3 10 12

2 3 11 12

1 10

2 11

3 12

4 5 10

min () 5 5

subject to
1() 2 2 10 0
2() 2 2 10 0
3() 2 2 10 0
4() 8 0
5() 8 0
6() 8 0
7() 2 0
8() 2

i ii
i i i

f x x xx

g x x x x x
g x x x x x
g x x x x x
g x x x
g x x x
g x x x
g x x x x
g x x

= = =

= − −

= + + + − ≤
= + + + − ≤
= + + + − ≤
= − + ≤
= − + ≤
= − + ≤
= − − + ≤
= −

∑ ∑ ∑

6 7 11

8 9 12

0
9() 2 0

0, 1,....,13
1, 1,....,13

Number of design variables: 13
Search space: 0 , 1, 2,...

(1,1,..1,100,100,100,1)
Best known at * (1,1,1,1,1,1,1,1,1,3,3,3,1),

(*

i

i

i i

x x
g x x x x
x i
x i

x u i n
u

x
f x

− + ≤
= − − + ≤

≥ =
≤ =

≤ ≤ =
=

=
) -15 =

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

 Master-Slave TLBO Algorithm for Constrained Global Optimization Problems

13

Function G2:

4 2
1

1

2

1

1

1

cos () 2 cos ()
min ()

subject to

1() 0.75 0

2() 7.5 0

Number of design variables: 20
Search space: 0 10, 1, 2,...
Best known (*) 0.8036

n n
i i

i
i

n

i
i

n

i

i
n

i
i

i

x x
f x

x

g x x

g x x n

x i n
f x

=
=

=

=

=

−
= −

= − ≤

= − ≤

≤ ≤ =
=

∑ ∏

∑

∏

∑

Function G3:

()
1

2
1

1

min ()

subject to

() 1 0

Number of design variables: 10
Search space: 0 1, 1, 2,...
Best known (*) -1.0005

nn
i

i

n

i
i

i

f x n x

h x x

x i n
f x

=

=

= −

= − =

≤ ≤ =
=

∏

∑

Function G4:
2
3 1 5

1

2 5 1 4

3 5

2 5

1 4 3 5

min () 5.3578547 0.8356891
37.293239 - 40792.141

subject to
1() 85.334407 0.0056858 0.0006262
0.0022053 92 0
2() 85.334407 0.0056858
0.0006262 0.0022053 0
3() 80.

f x x x x
x

g x x x x x
x x

g x x x
x x x x

g x

= +
+

= + +
− − ≤

= − −
− + ≤

=

3

2 5
2

1 2

2 5
2

1 2 3

3 5

1 3 3 4

51249 0.0071317

0.0029955 0.0021813 110 0

4() 80.51249 0.0071317

0.0029955 0.0021813 90 0
5() 9.300961 0.0047026
0.0012547 0.0019085 25 0
6() 9.300961 0.0047026

x x

x x x

g x x x

x x x
g x x x

x x x x
g x x

+

+ + − ≤

= − − −

− + ≤
= +

+ + − ≤
= − − 3 5

1 3 3 4

1 2

0.0012547 0.0019085 20 0 0
78 102, 33 45 and 27 45 (3,4,5)
Number of design variables: 5
Best known (*) 30665.539

i

x
x x x x

x x x i

f x

− − + ≤ ≤
≤ ≤ ≤ ≤ ≤ ≤ =

= −

Function G5:
3 3

1 21 2

4 3

3 4

3 4 1

3 3 4 2

min () 3 +0.000001 2 (0.000002 / 3)
subject to

1() 0.55 0
2() 0.55 0
3() 1000sin(0.25) 1000sin(0.25) 894.8 0
4() 1000sin(0.25) 1000sin(0.25) 894.8 0

f x x x x x

g x x x
g x x x
h x x x x
h x x x x x
h

= + +

= − + − ≤
= − + − ≤
= − − + − − + − =
= − + − − + − =

4 4 3

1 2 3

4

5() 1000sin(0.25) 1000sin(0.25) 1294.8 0
0 1200, 0 1200, 0.55 0.55 and

0.55 0.55
Number of design variables: 5
Best known (*) 5126.4967

x x x x
x x x

x

f x

= − + − − + =
≤ ≤ ≤ ≤ − ≤ ≤

− ≤ ≤

=

Function G6:
3 3

1 2

2 2
1 2

2 2
1 2

1 2

min () (10) (20)
subject to

1() (5) (5) 100 0
2() (6) (5) 82.81 0

13 100 and 0 100
Number of design variables: 2
Best known (*) 6961.813875

f x x x

g x x x
g x x x

x x

f x

= − + −

= − − − − + ≤

= − + − − ≤
≤ ≤ ≤ ≤

= −

Function G7:
2 2 2

1 2 1 2 31 2
2 2 2 2 2

4 5 6 87
2 2

9 10

1 2 7 8

1 2 7 8

1 2 9 10

min () 14 16 (10)
4(5) (3) 2(1) 5 7(11)

2(10) (7) 45
subject to

1() 105 4 5 3 9 0
2() 10 8 17 2 0
3() 8 2 5 2 12 0
4()

f x x x x x x x x
x x x x x

x x

g x x x x x
g x x x x x
g x x x x x
g x

= + + − − + −

+ − + − + − + + −

+ − + − +

= − + + − + ≤
= − − + ≤
= − + + − − ≤

2 2 2
1 2 43

2 2
2 3 41

2 2
2 1 2 5 61

2 2 2
1 2 65

2
1 2 9 10

3(2) 4(3) 2 7 120 0

5() 5 8 (6) 2 40 0
6() 2(2) 2 14 6 0
7() 0.5(8) 2(4) 3 30 0

8() 3 6 12(8) 7 0
10 10 (1,...,10)

Number of
i

x x x x

g x x x x x
g x x x x x x x
g x x x x x

g x x x x x
x i

= − + − + − − ≤

= + + − − − ≤

= + − − + − ≤

= − + − + − − ≤

= − + + − − ≤
− ≤ ≤ =

 design variables: 10
Best known (*) 24.306f x =

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

Sandeep U. Mane, Amol C. Adamuthe and Rajshree R. Omane

14

Function G8:
() ()3

1 2

3
1 11

2
21

2
1 2

1 2

sin 2 sin 2
min ()

()
subject to

1() 1 0
2() 1 (4) 0

0 10 and 0 10
Number of design variables: 2
Best known (*) 0.095825

x x
f x

x x x

g x x x
g x x x

x x

f x

π π
= −

+

= − + ≤

= − + − ≤
≤ ≤ ≤ ≤

= −

Function G9:
2 2 4 2

1 2 43
6 2 4

6 7 6 75 6 7

2 4 2
3 51 2 4

2
1 2 53

2 2
1 72 6

2 2
1 21 2

min () (10) 5(12) 3(11)

10 7 4 10 8
subject to

1() 127 2 3 4 5 0
2() 282 7 3 10 0

3() 196 23 6 8 12 0

4() 4 3 2

f x x x x x

x x x x x x x

g x x x x x x
g x x x x x

g x x x x x

g x x x x x x

= − + − + + −

+ + + − − −

= − + + + + + ≤

= − + + + − ≤

= − + + + − − ≤

= + − + 2
6 73 5 11 0

10 10 (1,...,7)
Number of design variables: 7
Best known (*) 680.630

i

x x
x i

f x

+ − ≤
− ≤ ≤ =

=

Function G10:
1 2 3

4 6

5 7 4

8 5

1 6 4 1

2 7 5 2 4 4

3 8 3 5

min ()
subject to

1() 1 0.0025() 0
2() 1 0.0025() 0
3() 1 0.01() 0
4() 833.33252 100 83333.333 0
5() 1250 1250 0
6() 1250000 25

f x x x x

g x x x
g x x x x
g x x x
g x x x x x
g x x x x x x x
g x x x x x

= + +

= − + + ≤
= − + + − ≤
= − + + ≤
= − + + − ≤
= − + + + ≤
= − + + − 500 0

100 10000, 1000 10000 (2,3) and
10 1000 (4,....,8)
Number of design variables: 8
Best known (*) 7049.2480

i i

i

x
x x i

x i

f x

≤
≤ ≤ ≤ ≤ =
≤ ≤ =

=

Function G11:
2 2

21

2
2 1

1 2

min () (1)
subject to
1() 0
1 1 and 1 1

Number of design variables: 2
Best known (*) 0.7499

f x x x

h x x x
x x

f x

= + −

= − =
− ≤ ≤ − ≤ ≤

=

Function G12:
2 2 2

1 2 3

2 2 2
1 2 3

min () (100 (5) (5) (5)) /100
subject to

1() () () () 0.0625 0
0 10 (1,2,3) and , , 1, 2,...,9.
Number of design variables: 3
Best known (*) 1

i

f x x x x

g x x p x q x r
x i p q r

f x

= − − − − − − −

= − + − + − − ≤
≤ ≤ = =

= −

Function G13:
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

2 3 4 5

3 3
1 2

min ()
subject to
1() 10 0
2() 5 0
3() 1 0
2.3 2.3 (1,2) and 3.2 3.2 (3,4,5)

Number of design variables: 5
Best known (*) 0.05394

x x x x x

i i

f x e

h x x x x x x
h x x x x x
h x x x

x i x i

f x

=

= + + + + − =
= − =

= + + =
− ≤ ≤ = − ≤ ≤ =

=

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e2

