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Abstract 

Text matching is a process of finding the frequency of occurrences of text pattern in a corpus. It's very costly to store, 

process, and retrieve a vast volume of text data. In this paper, we present a method to keep the massive text corpus in 

lesser memory space by using text compression and to retrieve the results by matching directly on this compressed corpus 

without decompression using compressed pattern matching (CPM). The proposed approach also helps to minimize the 

time taken to perform matching without compromising the false matching results. We used word-based tagged coding to 

perform text compression and Wavelet Trees for representing the compressed text in memory. The proposed Text 

Matching in Compressed text using Parallel Wavelet Tree (TMC_PWT) method is quite fast in comparison to other 

existing text matching algorithms that support CPM. In the context of CPM, the proposed method provides a good 

compression ratio and does not suffer from the problem of false matching. 
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1. Introduction

The process of finding all the possible occurrences of a 

pattern (string/substring) inside a huge text content is 

popularly known as string matching. The various application 

areas of information retrieval that utilize the features of 

string matching are big data, text mining, plagiarism 

checking, etc. 

In the last couple of years, we've got seen heaps of 

growth in data Technology (IT) in terms of powerful devices 

like laptops, smartphones, wi-fi television, and some other 

electronic hand-held gazettes. All these devices are capable 

of connecting to the internet and can produce a lot of data 

itself. The huge amount of data is produced by the internet 

[1] using these devices. As we know, when the size of data

becomes too large, then storage, processing, retrieval, and

communication of such huge data become a costly affair.

So, to manage this, one needs to do data compression. Data

compression is finding redundancy in data to represent it in 

less space. Data compression includes encoding and 

decoding of data content. Many compression techniques are 

there for achieving text compression, but retrieving any text 

matching results on compressed data becomes quite an 

uphill task. In modern information retrieval, knowing the 

number of occurrences of any query pattern is more 

important rather the position where the match occurs as in 

DNA sequence matching. Here, encoding refers to the 

packing of data, whereas decoding refers to the unpacking of 

data. 

The problem with data compression is that it is not 

suitable for matching text directly because contents are not 

in its original form, so every time decompression is needed 

to perform matching. One solution to this problem is known 

as Compressed pattern matching (CPM) [2], [3], [4]. CPM is 

the process where matching of text directly performed on 

the compressed text without the need for decompression. 

There are very few compression techniques that support 
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CPM with or without getting a false match. The 

compression algorithm that supports CPM is considered 

more efficient in comparison to other algorithms. CPM 

saves time wasted during the decompression process and 

thus minimizes the matching time. CPM was used to save 

the disk space and is also useful in sending a huge amount 

of data over a communication network. The upsides of CPM 

are that it matches an example text in the packed document 

straightforwardly as opposed to matching it in the unpacked 

document, and it also minimizes match time as well as 

optimizes the compression ratio. 

The CPM was first presented by Amir et al. in [5] using 

the Lempel-Ziv-Welch (LZW) packing technique. They 

expressed that given a content T, packed content Z of length 

u, and an example P of length m, the CPM is seeking and 

discovering each of the events of P in T by utilizing only P 

and Z will require O(u+m) time. Later, M. Farach et al. [6] 

developed CPM by utilizing the LZ77 packing technique. 

Compression based on Huffman techniques is not suitable 

for large textual databases because using the Huffman 

packing technique, one gets an abysmal compression ratio 

and sometimes false matches too. In contrast, LZW family 

packing techniques (LZW77, LZ78, etc.) produces an 

excellent compression ratio. But the problem is that the 

LZW packing techniques are not efficient in matching a 

pattern directly in the packed text. CPM utilizing the 

straight-line program (SLP) was examined in [7], [8]. The 

SLP utilizes a sentence structure-based pressure plot. 

Example matching based on utilizing the Run Length 

Encoding technique (RLE) proposed in [9], where example 

matching was contrived utilizing Knuth Morris Pratt (KMP) 

[10] and Boyer Moore [11] calculations. In [12], the authors

created procedures for looking at Huffman packed records.

They utilized the KMP calculation for matching an example

inside the packed content, yet it isn't delivering the right

match dependably. False matching is one of the issues with

the Huffman packing technique, as discussed in [13] when

the Huffman packing technique for characters was adjusted

to deal with the words. In [14], the Huffman code for words

was adopted by utilizing byte rather than bits. In this

technique, a space-less word model is used and each unique

word of the example pattern was packed using an

arrangement of entire bytes rather than bits. The packing of

each word was done using either 128 bits (refers to "tagged

Huffman packing") or 256 bits (refers to "plain Huffman

packing"). In every byte of the tagged Huffman packing, 7

bits are utilized for the Huffman packing, and the remaining

1 bit was utilized as the sign bit. The sign bit was used to

show that the code of the word starts from here. Thus, using

this technique, cases of false matching are easily identified,

and by utilizing byte rather than bits doesn't affect the

performance of the packing technique. Using this technique,

unpacking of the content can begin anytime, and from any

position.

In [15], [16], a new packing technique introduced as a 

word-based tagged code (WBTC), which permits partial 

packing of content and supports quick unpacking of the 

content from any subjective position by utilizing marking 

bit. It also supports CPM and can identify false matching 

easily. WBTC is a packing technique that considers 'word' 

as its integral unit for compression. It assigns an even 

number of bits to each unique word present in the content. 

The codes provided by WBTC is usually longer than other 

packing technique, but as other popular packing technique 

sometimes gives you false matches. While matching, the 

strategies in [16] utilize linear matching over the packed 

content, which turns out to be expensive issues, when 

content size is huge.  

Wavelet Tree (WT) is an advanced data structure that is 

used to represent sequences and can answer queries on it. 

WT is a very space-efficient data structure used for creating 

indexes. WT is first used by [17] and is a self-indexed data 

structure that can be built for characters as well as for words. 

The symbols that are represented by WT, either it is 

character or words, are available at the leaf of a WT. WT 

can be utilized in web indexing [18], document indexing 

[19] as well as in geographical indexing [20], [21].

Motivation: In literature, many pieces of research have

been done to solve the problem of CPM, still there is room 

to improve the efficiency of compression as well as 

searching methodology. Many algorithms have been 

developed to solve the CPM problem such as [2], [4], [12], 

[13], [15], [16], [17], [22], [35], [36]. Some algorithm [16], 

[17] works very efficiently in the searching process but fails

to provide good compression ratio. On the other side, some

algorithm [13], [14], [15], [22], provide good compression

ratio but they sometimes suffer from the problem of false

matching. So, there is a need to propose an algorithm that

provides good compression ratio as well as an efficient

searching methodology without getting false matching

results.

Contribution: In this paper, we propose an efficient 

algorithm to access the compressed data with the help of 

WBTC and WT. We present an approach that decomposes 

the whole WT into different numbers of small WTs, based 

on the length of words in the text corpus. The construction 

of WTs are performed using the TMC_PWT algorithm by 

utilizing the multicore architecture of computers. The main 

purpose of doing the decomposition of a complete WT into 

several WTs is to load only those WTs into the main 

memory that are useful in the matching process. The 

proposed method of matching is quite fast as compared to 

other existed matching algorithms and does not suffer from 

the problem of false matching of text in the process of CPM.  

This paper is systematized in the following sections. 

Section 2 is presented for a better understanding of related 

works. Section 3 deals with the proposed algorithm. Section 

4 presents experimental work and results. At last, conclusion 

and future work are given in section 5. 

2. Related Work

In this paper, we utilize the WBTC packing technique that 

supports CPM and allow us to match any query text directly 

into the compressed file without getting a false match. The 

popular packing techniques that support CPM is Huffman 

coding. Here we discuss various types of Huffman coding 
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(characters/words) and WBTC packing, and examples are 

used to show how the codes are assigned to word/characters. 

2.1. Huffman Packing Technique for Text 

The Huffman packing utilizes a greedy methodology to 

create variable-length code. It is greedy towards the number 

of occurrences of the symbol in the source content. The 

symbols could be characters or separators. In this packing, 

we follow the methodology that higher the number of 

occurrences of any symbol, lower the number of bits is used 

to code that symbol and vice-versa. The insights regarding 

the development of the Huffman code is given in [22]. 

Precedent 1 represents the Huffman code for content.  

Precedent 1: We take the content: T = "this person is 

young, the way an actual young person is young" over the 

letters in order set {, , a, c, e, g, h, i, l, n, o, p, r, s, t, u, w, y}. 

We always consider the space-less content model for 

packing purposes. In the space-less content model, if any 

symbol ends with space, then that symbol is packed as it is, 

and the remaining other symbols that end with separator, 

then the symbol and the separator both are packed 

separately. 

Table 1. Huffman code for each character 

Symbol Frequency Huffman Code 

n 6 000 
o 5 0011 
s 5 0010 
a 4 0110 
u 4 0101 
y 4 0100 
e 3 1010 
g 3 1001 
i 3 1000 
t 3 0111 
h 2 1101 
p 2 1100 
r 2 1011 
c 1 11110 
l 1 11101 
w 1 11100 
, 1 11111  

Table 1 presents the Huffman packing of all the unique 

symbols. Utilizing character-based Huffman packing 

technique, the all number of bits necessary to represent the 

above content T (50 symbols) is 198 bits. In contrast, the 

same content T takes 50 * 8 = 400 bits using ASCII (8-bit 

code). It demonstrates the benefit of using the Huffman code 

in place of the ASCII code. The average compression ratio 

is increased by 22% when words are utilized as the 

fundamental components of vocabulary instead of symbols. 

Thus, the word-based Huffman packing technique acquires 

the preferred ratio of compression over the character-based 

Huffman packing technique. Table 2 presents the word-

based Huffman packing that utilizes a space-less word 

model for the same given content T. All the coding steps are 

similar for Huffman code for words as they used in Huffman 

compression for characters. Still, the basic component of 

coding is words instead of characters. Precedent 2 clarifies 

the Huffman compression for words.  

Precedent 2: We take the same content: T = "this person 

is young, the way an actual young person is young". The 

arrangement of the above sentence is done from the set 

{‘this', 'person', 'is', 'young', 'the', 'way', 'an', 'actual', ','}. By 

utilizing the method of Huffman compression for the word, 

we acquired codes for each unique word, as appeared in 

Table 2.  

Table 2. Huffman code for each word 

Words Frequencies Huffman Code 

young 3 11 

Is 2 10 

person 2 011 

An 1 0101 

the 1 0100 

way 1 0011 

this 1 0010 

actual 1 0001 

, 1 0000  

By using Table 2, the encoded content Tʹ = 0010 011 10 11 

0000 0100 0011 0101 0001 11 011 10 11 requires 40 bits, 

though content compression in Precedent 1 utilizes 198 bits, 

which demonstrates an uncommon improvement in terms of 

quantity of bits requirement.  

2.2. Byte-Oriented Huffman Packing 

In this packing technique, each word is packed using either 

128 bits (refers to "tagged Huffman packing") or 256 bits 

(refers to "plain Huffman packing"). As indicated by [14], 

this packing technique utilizes bytes rather than bits without 

compromising with the packing performance, yet makes 

unpacking a lot quicker than the binary Huffman code. In 

tagged Huffman packing, for every byte, they consider just 

seven lower bits, and these seven bits are utilized for 

packing purposes. The most significant bit (MSB) of every 

byte is packed using the following rule: codeword's first 

byte should have MSB as 1, and the rest following bytes 

have MSB as 0. The MSB bits are used for marking the 

beginning of each word in this packed content, and this 

allows direct matching of an example text into the packed 

content. The working of plain Huffman packing is the same 

as tagged Huffman packing, but it assigns 256 bits to the 

codewords of each word. Tagged Huffman code may lose 

some of its data because of an additional marking bit used 

for identifying the beginning of a word; that's why we use 

plane Huffman packing. 
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2.3. False Matching in Huffman code 

As we know, codes generated using Huffman packing are 

prefix-free. This quality of Huffman coding accelerates the 

packing procedure. Still, this method is not primarily used to 

perform direct matching inside the packed content because 

there are chances of false matching [14], [22], [35]. How 

false matching occurs in the process of CPM is clarified in 

Precedent 3.  

Precedent 3: From Table 3, comprising of four words that 

are 'young', 'person', 'is' and 'actual' with their codes 

(generated by some other compression method).  

Table 3: Words with their corresponding codes 

Word Frequencies Code 

young 3 55 120 

person 2 44 50 98 

is 2 50 98 

actual 1 120 44 50 

Assume the content T is: 'young person'. Its packed 

content Tʹ is 55 120 44 50 98. As shown in compressed 

content Tʹ, we analyse that the word 'is' and 'actual' isn't 

present in the first content T yet their codeword (50 98) and 

(120 44 50) are found in T, it represents that word 'is' and 

'actual' may be matched in the packed content Tʹ, but they 

are not present in T, and if it happens then, we say it's a false 

match. 

2.4. Word-Based Tagged Code 

It's an effective compression technique created for a 

dynamic dataset in 2008 by A. Gupta and S. Agarwal [15], 

[16]. In this technique, the word is considered an essential 

unit for compression. It keeps every one of the highlights of 

the tagged sub-optimal code while keeping up the great 

compression ratio. It also does not suffer from the problem 

of false matching and provides direct matching of patterns in 

the compressed text. Following are the steps utilized in the 

coding process:  

Step 1: For m=1, we assign a pair of bits as 10 and 01 to the 

first 2m unique words of an input text corpus. (level 1) 

Step 2: The next group of 2m (m=2) unique words are then 

coded by adding prefix pair of bits 11 and 00, to every code 

generated in the previous step. (level 2) 

Step 3: Using the above steps, we generalize the coding 

process as: for the next level, the remaining 2m unique 

words are going to code by adding prefix pair of bits 11 and 

00 to every code generated in the previous step. (level m) 

Step 4: Step 1– 3 are run again and again until every one of 

the words is encoded. Precedent 4 shows the coding 

strategy. 

Precedent 4: Let the given content T = "this person is 

young, the way an actual young person is young". We apply 

the WBTC packing technique to the above content T, to find 

the compressed content Tʹ. Table 4 shows the codes 

assigned to all the unique words. The of the content T is as 

per the following:  

Tʹ = 000001 0001 10 01 001101 1101 1110 0010 000010 

01 0001 10 01  

WBTC takes 48 bits for representing the above content T. 

As we see in precedent 2, the same content T is represented 

by 40 bits using Huffman compression for words, but that 

Huffman compression suffers from the problem of false 

matching as shown in precedent 3, whereas WBTC doesn't. 

So, WBTC is an effective and efficient compression 

technique to compress a large amount of data. 

Table 4: Word-based Tagged Code for each word 

Words Frequencies WBTC Codes 

young 3 01 

is 2 10 

person 2 0001 

an 1 0010 

the 1 1101 

way 1 1110 

this 1 000001 

actual 1 000010 

, 1 001101  

Matching stage: Matching request for word W inside the 

compressed content has fulfilled by utilizing the following 

steps:  

Step 1: First, we find the code C of W, which is assigned by 

the WBTC coding process.  

Step 2: Now, using code C, we perform CPM. 

Bits (10/01) are utilized as a flag to spot the finish of a 

code word. Because of this, the concatenation of bits (11/00) 

to form the code of next level words becomes prefix-free 

that is no two words in the vocabulary have the same start 

and end pair of codes. Therefore, codes provided by WBTC 

are free from false matching. Suppose substring p is postfix 

of string r (represented as p!r) such as r = qp where q ∈ Ʃ* 

and │p│≤│r│. For instance, suppose r is given as r = 

bccdaaabcaca, and from r, we pick substring p = bcaca. 

Since p is postfix of string r, then it is represented as p!r. 

Now suppose c1 and c2 are the codes assigned to r and p 

respectively as c1 = 0011001101 and c2 = 1101. Here, c2 is 

the postfix of c1. So, we can deduct that codes assigned by 

WBTC packing are not postfix free, so that we must confirm 

that the found match is a genuine match or not and we can 

verify the same as follows:  

Assume we have found a matching of any word at 

position "i" in the packing content. To verify it, we must 

check the successive pair of bits before this ith position. If 

we found that the past two bits are 10/01, then the match is 

genuine. Just the same, if we found that the past two bits are 

11/00, then the match isn't genuine. Identification of the 
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total number of matches and false matches are possible. For 

instance, consider we match the position of pattern P = 

'young'. First, we find its WBTC code that is 01. Next, we 

match the code 01 directly in the compressed content Tʹ 

such as: 

Tʹ = 000001 0001 10 01 001101 1101 1110 0010 000010 

01 0001 10 01.  

As we find that the pattern 'young' (code = 01) matches at 

three spots in compressed content Tʹ. The other matches 

with code 01, such as 000001 0001 001101 1101, are false 

matches because their successive pair of bits are neither 01 

nor 10. We choose WBTC coding to develop our algorithm 

because codes provided by WBTC for each unique word is 

either end with 01 or 10 and that’s why ending pair of bits of 

any word is never occur at the start of any other word and 

thus when these codes are implemented using WT then there 

is very less or no chance of getting false matching results in 

the process of CPM [23]. 

2.5. Wavelet Tree 

WT [17], is a space-efficient data structure, that 

represents a sequence and answers queries on it. A WT 

provides supports for the representation of sequences, 

reordering of elements, a grid of points, etc. By keeping up 

the index of content [24], we can recover any content at any 

point. In [25], [26], authors have presented various types of 

WT, their execution, and different type of tasks have been 

performed on it. By using the operations of WT, we can 

calculate: the number of occurrences (how many times any 

symbol present in the source content), position (match the 

exact position of any symbol), show (show the position of 

the symbol). These essential tasks are performed using two 

fundamental bitmap operations, such as rank and select. The 

execution of rank and select operations are briefly discussed 

in [27]. For any given sequence P (bit-maps), rankx(P, i) = 

returns the frequency of symbol x in P [1..i] and selectx(P, i) 

= returns the index of ith event of symbol x in P. For 

instance, suppose bitmap is P = 101100110001100, then 

rank1(P, 12) = 6 and select0(P, 6) = 3.  

As given in [28], [29] shows the advantage of 

compressibility of the content. Various symbols of letters 

are available at a leaf of a wavelet tree. Insights concerning 

the construction of WT are given in [17]. WT is a very 

versatile data structure that can solve the problems in the 

area of string processing very efficiently using its 

rank/select operations. WT. There are various advantages 

and disadvantages of using the WT [26] in indexing. One of 

the most important advantages of using WT is that its space 

complexity is O(log log n) and once the tree is generated 

then the operations like rank/select are performed in O(1) 

time. The disadvantage of using a WT is that it takes too 

much time to construct the tree. There are various 

construction paradigms proposed by different researchers. 

The construction of the WT is done either sequentially or 

parallelly, and each one of them has its very own troubles. 

To overcome this disadvantage of the WT, we try to build 

the tree parallelly. 

There exist bunches of theoretical work with regards to 

WT-construction. The first introduction of parallelism in the 

construction of a wavelet tree is given by Jose Fuentes-

Sepulveda et al. [30] in 2014. In this work, the authors 

proposed two linear O(n) time parallel algorithms for the 

most expensive operation on WT construction using log  

processors. The complexity of the above is O( log n) for 

work and O(n) for depth. In 2015, J. Shun [31] proposed a 

new parallel WT construction algorithm. They construct the 

tree level by level that requires O(n) work and O(log n) 

depth per level. If there are log  levels in the WT, then the 

complexity of the above is O(n log ) for work and O(log n 

log ) for depth. Another approach proposed by J. Labeit et 

al. [32] in 2016 presents a more space-efficient algorithm in 

comparison to Julian Shun [31] work but achieve the same 

bounds and complexity as he did. J. Shun implements his 

algorithm on 40 cores, whereas J. Labeit implemented his 

algorithm on 64 cores. Further optimization is done by 

executing the algorithm recursively instead of strictly level-

by-level, as done in [31]. In J. Shun [33] improved his work 

proposed in 2015 by using parallel integer sorting methods 

and minimizes his work up to O(n log  / (log )) and 

depth to O( + log n). In 2018, Johannes Fischer et al. [34] 

proposed the fastest sequential as well as the fastest parallel 

construction of the WT. They divided the text size n into 

Ɵ(n/p) and assigned it to each of the p cores of the multicore 

computer system. Thus, this parallelization of WT computes 

the WT in O(n) time with O(n log  ) work requiring 4  

log n  bits of extra space in addition to the input and 

output. 

This section focused on how data compression is 

performed and what is the problem we face when we do 

compression. Here we see that Huffman code is fast, and it 

takes less memory in terms of numbers of bit, but it gives 

false matching results when we do perform CPM. We also 

see that how WBTC avoids false matching so we implement 

this compression with the help of a WT and further 

minimize the time of constructing a WT by using the 

multicore architecture of the computer. We created an 

algorithm to minimize the time complexity further and 

provide faster matching of textual data. 

3. Proposed Algorithm and Analysis

As we all know that the size of data is increasing day by 

day, so the task of matching for any text in a faster way 

becomes quite challenging. That's why we need an 

algorithm that can minimize the size of the database, so it 

takes less space in the storage, and that can also perform 

faster matching. We use WBTC compression with the 

combination of WT and construct WT parallelly using the 

multicore architecture of the computer.  

According to various dictionaries average length of a 

meaningful word is about 15 characters. Hence, we divided 

the list of unique words from the text corpus into 16 disjoint 

parts, such as 1st part contains words with a length of one 

character, 2nd part contains words with a length of two 

characters, and so on till the 15th part. The 16th part contains 
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all the words with length greater than fifteen, and because 

there are very few meaningful words in English with a 

length of above 15 characters, thus 16th part is rarely taking 

part in matching. We achieve faster access by constructing 

separate WTs for each group of words such as for words 

with length one we create wavelet tree WT1, for words with 

length two WT2, and so on till WT16 parallelly. 

Faster Construction: The constructions of wavelet trees 

are done parallelly using the multicore architecture of the 

computer. First, we have already divided the whole text 

corpus into 16 disjoint parts as discussed above, and second, 

each disjoint part is assigned to a single core of the 

multicore system using the parallel for loops. At each core, 

the fastest sequential wavelet tree construction algorithm is 

applied, and separate WTs for each part of the corpus is 

formed. Each part of the corpus is different and independent 

of each other, so the output of one core does not affect the 

output of other cores. Figure 1 shows the pre-processing 

steps of the faster construction of WTs. 

Figure 1. Pre-processing before Construction of WTs 
parallelly 

Algorithm 1: Faster construction 

Input:  
Total of P term frequency tables. (maximum value of P is 16) 

In each table T in P, 

Text-words – t1, t2, t3 …………. tn 

Code-words – ct1, ct2, ct3 ………… ctn 

Output:  
Total of P wavelet trees 

Method:  
par-for x = 0 to P-1 do (parallel loop for accessing each table) 

for y = 1 to n do (loop executes at each core) 

 Ay,x = find first prefix pair of code-word cty 

 insert Ay,x in the root of wavelet tree Tx 

 curr_node = root (Tx) 

 z = 2 

 while (code-word cty is not empty) do 

Ay,z = find the next prefix pair bits from cty 

If (Ay,z-1 ={00})  

     curr_node=left-child (curr_node) 

elseif (Ay,z-1 = {11}) then 

     curr_node = right-child (curr_node) 

else 

     insert Ay,z into curr_node 

z = z+1 

end while 

end for 

end par-for. 

Faster Matching: Whenever a matching request comes 

for any query word, then we count the query word's length 

and load the corresponding WT into the main memory 

instead of loading the whole WT as previously done by all 

other matching algorithms. Figure 2 shows the pre-

processing steps of faster matching.  

Figure 2. Pre-processing before Matching of query 
patterns 

Algorithm 2: Faster word matching 
Input: 

code-words ct of each word present in the pattern 

Output: 

number of occurrences of the words Nocc in the corpus 

Method: 

for each word and their wavelet tree do 

B0 = root (t) // t is one wavelet tree 

A0 = find the first prefix pair from codeword ct 

x = 0 

while (Ax != {01} and Ax != {10}) do 

if (Ax == {00}) then 

Bx+1 = left-child (Bx) 

else 

Bx+1 = right-child (Bx) 

x = x +1 

Ax = find the xth prefix pair bits from ct 

end while 

Nocc = RankA
x
  (Bx, |Bx|)

end for 

For a better understanding of our proposed approach, we 

consider the same text content T = "this person is young, the 

way an actual young person is young". Now we perform the 

pre-processing before applying algorithm 1 as shown in 

Figure 1. Each unique word is extracted by their length and 

stored in the word-frequency table with their WBTC codes. 

Identify all unique word from the query. 

Find the length of each word and identify their 

wavelet tree accordingly. 

Find WBTC code for each word and start 

matching from the root of  each wavelet tree. 

Algorithm 2 

Identify all unique words and save them in different 

set of tables T according to the length of the word. 

Apply WBTC method for assigning codes to the 

words of all tables T and save them. 

Assign each table from the set of tables T to different 

core of the processor for processing. 

Algorithm 1 
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So, in our case, we have a total of six word-frequency 

tables, as shown in Tables 5-10, and after applying our 

algorithm 1 we get six different wavelet trees, as shown in 

Tables 11-16. Each WTs are going to store on the secondary 

memory. Now suppose we must match whether the word 

'young' is present in the source content T or not and if its 

present, then what is the frequency of it. To match the word 

'young', we first perform pre-processing, as shown in Figure 

2, and apply algorithm 2. The length of the word 'young' is 

five, and its corresponding WBTC code is 01, so we load the 

corresponding WT into the main memory and match only in 

the loaded WT instead in all other WTs. In this case, WT for 

word length of five will be loaded into the memory, and 

matching is performed from the root of the loaded wavelet 

tree. In this case, we find that the word is present in the WT 

by matching WBTC code for the word 'young'. To know the 

frequency of the word 'young' we further perform the rank 

operation on bitmap B0 because the WBTC code is matched 

in B0 bitmap as Rank01(B0, |B0|) = 3, this means this word 

appears three times in the source content. 

Table 5: Word-frequency table for length one 

indexing word frequencies WBTC code 

0 , 1 01 

Table 6: Word-frequency table for length two 

indexing word frequencies WBTC code 

0 is 2 01 
1 an 1 10 

Table 7: Word-frequency table for length three 

indexing word frequencies WBTC code 

0 the 1 01 
1 way 1 10 

Table 8: Word-frequency table for length four 

indexing word frequencies WBTC code 

0 this 1 01 

Table 9: Word-frequency table for length five 

Table 10: Word-frequency table for length six 

indexing word frequencies WBTC code 

0 person 2 01 
1 actual 1 10 

Table 11: Wt for Table 5 

Text: , 

Index: 0 

B0: 01 

Table 12: Wt for Table 6 

Text: is an 

Index: 0 1 

B0: 01 10 

Table 13: Wt for Table 7 

Text: the way 

Index: 0 1 

B0: 01 10 

Table 14: Wt for Table 8 

Text: this 

Index: 0 

B0: 01 

Table 15: Wt for Table 9 

Text: young 

Index: 0 

B0: 01 

Table 16: Wt for Table 10 

Text: person actual 

Index: 0 1 

B0: 01 10 

indexing word frequencies WBTC code 

0 young 3 01 

An approach for fast compressed text matching and to avoid false matching using WBTC and wavelet tree 
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Table 17. Running times of algorithms (for fixed alphabet size = 128) 

File size = 512kb File size = 1024kb File size = 2048kb 

Words in 
Pattern 

HC WBTC WT 
TMC_
PWT 

HC WBTC WT 
TMC_
PWT 

HC WBTC WT 
TMC_
PWT 

2 13.96 12.54 11.08 10.87 26.97 24.73 21.94 17.30 53.51 50.75 48.97 45.36 
4 9.43 8.32 6.97 5.12 19.61 18.07 16.25 14.06 32.67 29.81 28.03 27.07 
6 5.85 4.67 3.72 2.53 8.63 7.84 5.39 4.06 15.82 14.56 13.04 11.98 
8 3.72 2.14 1.54 0.85 4.06 3.88 2.07 1.35 9.04 8.59 6.33 4.09 

10 2.07 1.89 0.98 0.43 2.87 2.14 1.42 0.68 4.02 3.10 2.63 1.57 

Table 18. Running times of algorithms (for fixed file size = 1024kb) 

Alphabet size = 64 Alphabet size = 128 Alphabet size = 256 

Words in 
Pattern 

HC WBTC WT 
TMC_
PWT 

HC WBTC WT 
TMC_
PWT 

HC WBTC WT 
TMC_
PWT 

2 29.20 28.04 21.32 16.71 36.42 29.93 22.37 18.02 46.40 44.23 41.71 36.84 
4 18.65 17.05 14.81 14.05 20.48 18.41 16.61 14.23 21.29 19.73 17.87 15.06 
6 9.73 8.07 5.92 4.82 9.02 8.93 6.16 4.93 10.83 9.63 6.41 5.07 
8 4.98 4.02 2.04 0.99 4.28 4.14 2.08 1.28 4.98 3.66 2.19 1.39 
10 1.99 1.19 0.98 0.59 3.03 1.88 1.08 0.61 2.25 1.80 1.08 0.68 

4. Experimental Setup and Results

For the experiment purpose, we choose 3.40 GHz 

Intel(R) Xeon(R) CPU E3-1245 processors with 4 GB of 

primary memory and we have executed all our algorithms 

on Ubuntu 18.04 LTS. The language used for the algorithms 

in C++ and all the codes are compiled using the GCC 

compiler. Our approach consists of two algorithms, first is 

related to the construction of the wavelet trees, and the 

second algorithm is related to matching of a query word. So, 

the overall running time of our approach includes 

construction time and matching time both. We have 

performed our experiment on a self-made text corpus and 

compare the results with previous algorithms that support 

CPM, such as Huffman coding, WBTC, and simple WT. We 

have performed our experiment on different sizes of the text 

corpus first by fixing the alphabet size and varying the file 

size, and second by fixing the file size and varying the 

alphabet size. The steps are implemented multiple times for 

different query words of varying length; we have taken the 

average value of running time of all algorithms. Table 17 

used to show the comparison of methods when we fix the 

alphabet size and Table 18 shows the comparison of 

methods when we fix the file size. The performance of our 

proposed method TMC_PWT is better in comparison to 

other popular methods that support CPM shown using the 

running time of all algorithms. Whenever CPM is going to 

perform for any query then the words present in the query 

need not be in compressed form. In our proposed approach, 

when the number of words increases in the query, then we 

get an improvement in terms of matching time over other 

CPM methods. Table 19 shows the comparison of our 

proposed approach to different techniques that support CPM 

using various compression performance measures. 

In our approach, we require some extra space to store 

various word-frequency tables. Our method combines the 

advantages of both WT and WBTC. The main advantage of 

applying a wavelet tree is that it avoids false matching, and 

it's rank operations are performed in O(1) time. The parallel 

construction of the wavelet tree is performed in O(n) time 

with O(n log ) work and some extra space of 4 log n  

bits. The matching of the word takes O(1) time to complete. 

Thus, the proposed approach takes a total of O(n) time to 

perform the construction and the matching of the word. 

Table 19: Comparison between methods that supports 
CPM 

Compression Performance Measure 

Methods Ratio Speed 
Memory 
Needs 

CPM support 

Huffman 
coding (HC) 

Good Medium Low 
Yes (with false 
match) 

WBTC Good Fast High 
Yes (with false 
match) 

Wavelet tree 
(WT) 

Good 
Very 
Fast 

Low 
Yes (without a 
false match) 

TMC_PWT 
(Proposed) 

Better 
Very 
Fast 

Medium 
Yes (without a 
false match) 

5. Conclusion and Future work

In this paper, a new methodology is proposed for 

matching the word in the text corpus. This paper presents an 
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improvement of matching time in comparison to other 

algorithms. The proposed algorithm saves disk space using 

WBTC compression, provide faster matching using WT and 

improves the system performance by minimizing the 

number of page-faults when performing matching using our 

proposed approach of dividing the indexes into several WTs. 

We have utilized the WBTC packing technique with the 

help of a wavelet tree. We have minimized the construction 

time of WT, that is the main disadvantage of using WTs 

using parallel processing. We have partitioned the whole 

text corpus into 16 parts using the length of words in the 

corpus and construct a unique WT for each partition. The 

advantage of dividing whole text corpus and constructing 

several WTs based on the length of words is that in our 

approach we load only those indexes into the memory that 

are needed in the matching process instead of loading the 

whole indexes. This algorithm returns whether the query 

word is present in the corpus or not and what's the frequency 

of it. This saves a lot of time wasted during loading all the 

WTs from secondary memory into primary memory. Since 

the size of the main memory is less in comparison to the size 

of indexes saved in secondary memory; thus, our proposed 

approach will minimize the number of page faults and 

increase overall system performance. This approach takes 

less memory in the system and quite efficient in order of 

matching time of O(n). 

In the future, we use Machine Learning (ML) multi-

classification models to find unique words and their word 

frequency tables. We also use ML models for assigning the 

codes to all unique words and try to construct the wavelet 

tree because, by using ML, we can minimize the additional 

memory needs of our proposed algorithm. 
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