
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

An approach for fast compressed text matching and to

avoid false matching using WBTC and wavelet tree

Shashank Srivastav1, P. K. Singh1 and Divakar Yadav2*

1 Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
2 National Institute of Technology, Hamirpur, Himachal Pradesh, India

Abstract

Text matching is a process of finding the frequency of occurrences of text pattern in a corpus. It's very costly to store,

process, and retrieve a vast volume of text data. In this paper, we present a method to keep the massive text corpus in

lesser memory space by using text compression and to retrieve the results by matching directly on this compressed corpus

without decompression using compressed pattern matching (CPM). The proposed approach also helps to minimize the

time taken to perform matching without compromising the false matching results. We used word-based tagged coding to

perform text compression and Wavelet Trees for representing the compressed text in memory. The proposed Text

Matching in Compressed text using Parallel Wavelet Tree (TMC_PWT) method is quite fast in comparison to other

existing text matching algorithms that support CPM. In the context of CPM, the proposed method provides a good

compression ratio and does not suffer from the problem of false matching.

Keywords: Modern Information Retrieval, Wavelet Tree, Word-Based Tagged Code, Compressed Pattern Matching.

Received on 31 May 2020, accepted on 30 September 2020, published on 23 October 2020

Copyright © 2020 Shashank Srivastav et al., licensed to EAI. This is an open-access article distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.23-10-2020.166717

*Corresponding author. Email: dsy99@rediffmail.com

1. Introduction

The process of finding all the possible occurrences of a

pattern (string/substring) inside a huge text content is

popularly known as string matching. The various application

areas of information retrieval that utilize the features of

string matching are big data, text mining, plagiarism

checking, etc.

In the last couple of years, we've got seen heaps of

growth in data Technology (IT) in terms of powerful devices

like laptops, smartphones, wi-fi television, and some other

electronic hand-held gazettes. All these devices are capable

of connecting to the internet and can produce a lot of data

itself. The huge amount of data is produced by the internet

[1] using these devices. As we know, when the size of data

becomes too large, then storage, processing, retrieval, and

communication of such huge data become a costly affair.

So, to manage this, one needs to do data compression. Data

compression is finding redundancy in data to represent it in

less space. Data compression includes encoding and

decoding of data content. Many compression techniques are

there for achieving text compression, but retrieving any text

matching results on compressed data becomes quite an

uphill task. In modern information retrieval, knowing the

number of occurrences of any query pattern is more

important rather the position where the match occurs as in

DNA sequence matching. Here, encoding refers to the

packing of data, whereas decoding refers to the unpacking of

data.

The problem with data compression is that it is not

suitable for matching text directly because contents are not

in its original form, so every time decompression is needed

to perform matching. One solution to this problem is known

as Compressed pattern matching (CPM) [2], [3], [4]. CPM is

the process where matching of text directly performed on

the compressed text without the need for decompression.

There are very few compression techniques that support

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

http://creativecommons.org/licenses/by/3.0/

Shashank Srivastav, P. K. Singh and Divakar Yadav

2

CPM with or without getting a false match. The

compression algorithm that supports CPM is considered

more efficient in comparison to other algorithms. CPM

saves time wasted during the decompression process and

thus minimizes the matching time. CPM was used to save

the disk space and is also useful in sending a huge amount

of data over a communication network. The upsides of CPM

are that it matches an example text in the packed document

straightforwardly as opposed to matching it in the unpacked

document, and it also minimizes match time as well as

optimizes the compression ratio.

The CPM was first presented by Amir et al. in [5] using

the Lempel-Ziv-Welch (LZW) packing technique. They

expressed that given a content T, packed content Z of length

u, and an example P of length m, the CPM is seeking and

discovering each of the events of P in T by utilizing only P

and Z will require O(u+m) time. Later, M. Farach et al. [6]

developed CPM by utilizing the LZ77 packing technique.

Compression based on Huffman techniques is not suitable

for large textual databases because using the Huffman

packing technique, one gets an abysmal compression ratio

and sometimes false matches too. In contrast, LZW family

packing techniques (LZW77, LZ78, etc.) produces an

excellent compression ratio. But the problem is that the

LZW packing techniques are not efficient in matching a

pattern directly in the packed text. CPM utilizing the

straight-line program (SLP) was examined in [7], [8]. The

SLP utilizes a sentence structure-based pressure plot.

Example matching based on utilizing the Run Length

Encoding technique (RLE) proposed in [9], where example

matching was contrived utilizing Knuth Morris Pratt (KMP)

[10] and Boyer Moore [11] calculations. In [12], the authors

created procedures for looking at Huffman packed records.

They utilized the KMP calculation for matching an example

inside the packed content, yet it isn't delivering the right

match dependably. False matching is one of the issues with

the Huffman packing technique, as discussed in [13] when

the Huffman packing technique for characters was adjusted

to deal with the words. In [14], the Huffman code for words

was adopted by utilizing byte rather than bits. In this

technique, a space-less word model is used and each unique

word of the example pattern was packed using an

arrangement of entire bytes rather than bits. The packing of

each word was done using either 128 bits (refers to "tagged

Huffman packing") or 256 bits (refers to "plain Huffman

packing"). In every byte of the tagged Huffman packing, 7

bits are utilized for the Huffman packing, and the remaining

1 bit was utilized as the sign bit. The sign bit was used to

show that the code of the word starts from here. Thus, using

this technique, cases of false matching are easily identified,

and by utilizing byte rather than bits doesn't affect the

performance of the packing technique. Using this technique,

unpacking of the content can begin anytime, and from any

position.

In [15], [16], a new packing technique introduced as a

word-based tagged code (WBTC), which permits partial

packing of content and supports quick unpacking of the

content from any subjective position by utilizing marking

bit. It also supports CPM and can identify false matching

easily. WBTC is a packing technique that considers 'word'

as its integral unit for compression. It assigns an even

number of bits to each unique word present in the content.

The codes provided by WBTC is usually longer than other

packing technique, but as other popular packing technique

sometimes gives you false matches. While matching, the

strategies in [16] utilize linear matching over the packed

content, which turns out to be expensive issues, when

content size is huge.

Wavelet Tree (WT) is an advanced data structure that is

used to represent sequences and can answer queries on it.

WT is a very space-efficient data structure used for creating

indexes. WT is first used by [17] and is a self-indexed data

structure that can be built for characters as well as for words.

The symbols that are represented by WT, either it is

character or words, are available at the leaf of a WT. WT

can be utilized in web indexing [18], document indexing

[19] as well as in geographical indexing [20], [21].

Motivation: In literature, many pieces of research have

been done to solve the problem of CPM, still there is room

to improve the efficiency of compression as well as

searching methodology. Many algorithms have been

developed to solve the CPM problem such as [2], [4], [12],

[13], [15], [16], [17], [22], [35], [36]. Some algorithm [16],

[17] works very efficiently in the searching process but fails

to provide good compression ratio. On the other side, some

algorithm [13], [14], [15], [22], provide good compression

ratio but they sometimes suffer from the problem of false

matching. So, there is a need to propose an algorithm that

provides good compression ratio as well as an efficient

searching methodology without getting false matching

results.

Contribution: In this paper, we propose an efficient

algorithm to access the compressed data with the help of

WBTC and WT. We present an approach that decomposes

the whole WT into different numbers of small WTs, based

on the length of words in the text corpus. The construction

of WTs are performed using the TMC_PWT algorithm by

utilizing the multicore architecture of computers. The main

purpose of doing the decomposition of a complete WT into

several WTs is to load only those WTs into the main

memory that are useful in the matching process. The

proposed method of matching is quite fast as compared to

other existed matching algorithms and does not suffer from

the problem of false matching of text in the process of CPM.

This paper is systematized in the following sections.

Section 2 is presented for a better understanding of related

works. Section 3 deals with the proposed algorithm. Section

4 presents experimental work and results. At last, conclusion

and future work are given in section 5.

2. Related Work

In this paper, we utilize the WBTC packing technique that

supports CPM and allow us to match any query text directly

into the compressed file without getting a false match. The

popular packing techniques that support CPM is Huffman

coding. Here we discuss various types of Huffman coding

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

An approach for fast compressed text matching and to avoid false matching using WBTC and wavelet tree

3

(characters/words) and WBTC packing, and examples are

used to show how the codes are assigned to word/characters.

2.1. Huffman Packing Technique for Text

The Huffman packing utilizes a greedy methodology to

create variable-length code. It is greedy towards the number

of occurrences of the symbol in the source content. The

symbols could be characters or separators. In this packing,

we follow the methodology that higher the number of

occurrences of any symbol, lower the number of bits is used

to code that symbol and vice-versa. The insights regarding

the development of the Huffman code is given in [22].

Precedent 1 represents the Huffman code for content.

Precedent 1: We take the content: T = "this person is

young, the way an actual young person is young" over the

letters in order set {, , a, c, e, g, h, i, l, n, o, p, r, s, t, u, w, y}.

We always consider the space-less content model for

packing purposes. In the space-less content model, if any

symbol ends with space, then that symbol is packed as it is,

and the remaining other symbols that end with separator,

then the symbol and the separator both are packed

separately.

Table 1. Huffman code for each character

Symbol Frequency Huffman Code

n 6 000
o 5 0011
s 5 0010
a 4 0110
u 4 0101
y 4 0100
e 3 1010
g 3 1001
i 3 1000
t 3 0111
h 2 1101
p 2 1100
r 2 1011
c 1 11110
l 1 11101
w 1 11100
, 1 11111

Table 1 presents the Huffman packing of all the unique

symbols. Utilizing character-based Huffman packing

technique, the all number of bits necessary to represent the

above content T (50 symbols) is 198 bits. In contrast, the

same content T takes 50 * 8 = 400 bits using ASCII (8-bit

code). It demonstrates the benefit of using the Huffman code

in place of the ASCII code. The average compression ratio

is increased by 22% when words are utilized as the

fundamental components of vocabulary instead of symbols.

Thus, the word-based Huffman packing technique acquires

the preferred ratio of compression over the character-based

Huffman packing technique. Table 2 presents the word-

based Huffman packing that utilizes a space-less word

model for the same given content T. All the coding steps are

similar for Huffman code for words as they used in Huffman

compression for characters. Still, the basic component of

coding is words instead of characters. Precedent 2 clarifies

the Huffman compression for words.

Precedent 2: We take the same content: T = "this person

is young, the way an actual young person is young". The

arrangement of the above sentence is done from the set

{‘this', 'person', 'is', 'young', 'the', 'way', 'an', 'actual', ','}. By

utilizing the method of Huffman compression for the word,

we acquired codes for each unique word, as appeared in

Table 2.

Table 2. Huffman code for each word

Words Frequencies Huffman Code

young 3 11

Is 2 10

person 2 011

An 1 0101

the 1 0100

way 1 0011

this 1 0010

actual 1 0001

, 1 0000

By using Table 2, the encoded content Tʹ = 0010 011 10 11

0000 0100 0011 0101 0001 11 011 10 11 requires 40 bits,

though content compression in Precedent 1 utilizes 198 bits,

which demonstrates an uncommon improvement in terms of

quantity of bits requirement.

2.2. Byte-Oriented Huffman Packing

In this packing technique, each word is packed using either

128 bits (refers to "tagged Huffman packing") or 256 bits

(refers to "plain Huffman packing"). As indicated by [14],

this packing technique utilizes bytes rather than bits without

compromising with the packing performance, yet makes

unpacking a lot quicker than the binary Huffman code. In

tagged Huffman packing, for every byte, they consider just

seven lower bits, and these seven bits are utilized for

packing purposes. The most significant bit (MSB) of every

byte is packed using the following rule: codeword's first

byte should have MSB as 1, and the rest following bytes

have MSB as 0. The MSB bits are used for marking the

beginning of each word in this packed content, and this

allows direct matching of an example text into the packed

content. The working of plain Huffman packing is the same

as tagged Huffman packing, but it assigns 256 bits to the

codewords of each word. Tagged Huffman code may lose

some of its data because of an additional marking bit used

for identifying the beginning of a word; that's why we use

plane Huffman packing.

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

Shashank Srivastav, P. K. Singh and Divakar Yadav

4

2.3. False Matching in Huffman code

As we know, codes generated using Huffman packing are

prefix-free. This quality of Huffman coding accelerates the

packing procedure. Still, this method is not primarily used to

perform direct matching inside the packed content because

there are chances of false matching [14], [22], [35]. How

false matching occurs in the process of CPM is clarified in

Precedent 3.

Precedent 3: From Table 3, comprising of four words that

are 'young', 'person', 'is' and 'actual' with their codes

(generated by some other compression method).

Table 3: Words with their corresponding codes

Word Frequencies Code

young 3 55 120

person 2 44 50 98

is 2 50 98

actual 1 120 44 50

Assume the content T is: 'young person'. Its packed

content Tʹ is 55 120 44 50 98. As shown in compressed

content Tʹ, we analyse that the word 'is' and 'actual' isn't

present in the first content T yet their codeword (50 98) and

(120 44 50) are found in T, it represents that word 'is' and

'actual' may be matched in the packed content Tʹ, but they

are not present in T, and if it happens then, we say it's a false

match.

2.4. Word-Based Tagged Code

It's an effective compression technique created for a

dynamic dataset in 2008 by A. Gupta and S. Agarwal [15],

[16]. In this technique, the word is considered an essential

unit for compression. It keeps every one of the highlights of

the tagged sub-optimal code while keeping up the great

compression ratio. It also does not suffer from the problem

of false matching and provides direct matching of patterns in

the compressed text. Following are the steps utilized in the

coding process:

Step 1: For m=1, we assign a pair of bits as 10 and 01 to the

first 2m unique words of an input text corpus. (level 1)

Step 2: The next group of 2m (m=2) unique words are then

coded by adding prefix pair of bits 11 and 00, to every code

generated in the previous step. (level 2)

Step 3: Using the above steps, we generalize the coding

process as: for the next level, the remaining 2m unique

words are going to code by adding prefix pair of bits 11 and

00 to every code generated in the previous step. (level m)

Step 4: Step 1– 3 are run again and again until every one of

the words is encoded. Precedent 4 shows the coding

strategy.

Precedent 4: Let the given content T = "this person is

young, the way an actual young person is young". We apply

the WBTC packing technique to the above content T, to find

the compressed content Tʹ. Table 4 shows the codes

assigned to all the unique words. The of the content T is as

per the following:

Tʹ = 000001 0001 10 01 001101 1101 1110 0010 000010

01 0001 10 01

WBTC takes 48 bits for representing the above content T.

As we see in precedent 2, the same content T is represented

by 40 bits using Huffman compression for words, but that

Huffman compression suffers from the problem of false

matching as shown in precedent 3, whereas WBTC doesn't.

So, WBTC is an effective and efficient compression

technique to compress a large amount of data.

Table 4: Word-based Tagged Code for each word

Words Frequencies WBTC Codes

young 3 01

is 2 10

person 2 0001

an 1 0010

the 1 1101

way 1 1110

this 1 000001

actual 1 000010

, 1 001101

Matching stage: Matching request for word W inside the

compressed content has fulfilled by utilizing the following

steps:

Step 1: First, we find the code C of W, which is assigned by

the WBTC coding process.

Step 2: Now, using code C, we perform CPM.

Bits (10/01) are utilized as a flag to spot the finish of a

code word. Because of this, the concatenation of bits (11/00)

to form the code of next level words becomes prefix-free

that is no two words in the vocabulary have the same start

and end pair of codes. Therefore, codes provided by WBTC

are free from false matching. Suppose substring p is postfix

of string r (represented as p!r) such as r = qp where q ∈ Ʃ*

and │p│≤│r│. For instance, suppose r is given as r =

bccdaaabcaca, and from r, we pick substring p = bcaca.

Since p is postfix of string r, then it is represented as p!r.

Now suppose c1 and c2 are the codes assigned to r and p

respectively as c1 = 0011001101 and c2 = 1101. Here, c2 is

the postfix of c1. So, we can deduct that codes assigned by

WBTC packing are not postfix free, so that we must confirm

that the found match is a genuine match or not and we can

verify the same as follows:

Assume we have found a matching of any word at

position "i" in the packing content. To verify it, we must

check the successive pair of bits before this ith position. If

we found that the past two bits are 10/01, then the match is

genuine. Just the same, if we found that the past two bits are

11/00, then the match isn't genuine. Identification of the

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

5

total number of matches and false matches are possible. For

instance, consider we match the position of pattern P =

'young'. First, we find its WBTC code that is 01. Next, we

match the code 01 directly in the compressed content Tʹ

such as:

Tʹ = 000001 0001 10 01 001101 1101 1110 0010 000010

01 0001 10 01.

As we find that the pattern 'young' (code = 01) matches at

three spots in compressed content Tʹ. The other matches

with code 01, such as 000001 0001 001101 1101, are false

matches because their successive pair of bits are neither 01

nor 10. We choose WBTC coding to develop our algorithm

because codes provided by WBTC for each unique word is

either end with 01 or 10 and that’s why ending pair of bits of

any word is never occur at the start of any other word and

thus when these codes are implemented using WT then there

is very less or no chance of getting false matching results in

the process of CPM [23].

2.5. Wavelet Tree

WT [17], is a space-efficient data structure, that

represents a sequence and answers queries on it. A WT

provides supports for the representation of sequences,

reordering of elements, a grid of points, etc. By keeping up

the index of content [24], we can recover any content at any

point. In [25], [26], authors have presented various types of

WT, their execution, and different type of tasks have been

performed on it. By using the operations of WT, we can

calculate: the number of occurrences (how many times any

symbol present in the source content), position (match the

exact position of any symbol), show (show the position of

the symbol). These essential tasks are performed using two

fundamental bitmap operations, such as rank and select. The

execution of rank and select operations are briefly discussed

in [27]. For any given sequence P (bit-maps), rankx(P, i) =

returns the frequency of symbol x in P [1..i] and selectx(P, i)

= returns the index of ith event of symbol x in P. For

instance, suppose bitmap is P = 101100110001100, then

rank1(P, 12) = 6 and select0(P, 6) = 3.

As given in [28], [29] shows the advantage of

compressibility of the content. Various symbols of letters

are available at a leaf of a wavelet tree. Insights concerning

the construction of WT are given in [17]. WT is a very

versatile data structure that can solve the problems in the

area of string processing very efficiently using its

rank/select operations. WT. There are various advantages

and disadvantages of using the WT [26] in indexing. One of

the most important advantages of using WT is that its space

complexity is O(log log n) and once the tree is generated

then the operations like rank/select are performed in O(1)

time. The disadvantage of using a WT is that it takes too

much time to construct the tree. There are various

construction paradigms proposed by different researchers.

The construction of the WT is done either sequentially or

parallelly, and each one of them has its very own troubles.

To overcome this disadvantage of the WT, we try to build

the tree parallelly.

There exist bunches of theoretical work with regards to

WT-construction. The first introduction of parallelism in the

construction of a wavelet tree is given by Jose Fuentes-

Sepulveda et al. [30] in 2014. In this work, the authors

proposed two linear O(n) time parallel algorithms for the

most expensive operation on WT construction using log 

processors. The complexity of the above is O( log n) for

work and O(n) for depth. In 2015, J. Shun [31] proposed a

new parallel WT construction algorithm. They construct the

tree level by level that requires O(n) work and O(log n)

depth per level. If there are log  levels in the WT, then the

complexity of the above is O(n log ) for work and O(log n

log ) for depth. Another approach proposed by J. Labeit et

al. [32] in 2016 presents a more space-efficient algorithm in

comparison to Julian Shun [31] work but achieve the same

bounds and complexity as he did. J. Shun implements his

algorithm on 40 cores, whereas J. Labeit implemented his

algorithm on 64 cores. Further optimization is done by

executing the algorithm recursively instead of strictly level-

by-level, as done in [31]. In J. Shun [33] improved his work

proposed in 2015 by using parallel integer sorting methods

and minimizes his work up to O(n log  / (log )) and

depth to O( + log n). In 2018, Johannes Fischer et al. [34]

proposed the fastest sequential as well as the fastest parallel

construction of the WT. They divided the text size n into

Ɵ(n/p) and assigned it to each of the p cores of the multicore

computer system. Thus, this parallelization of WT computes

the WT in O(n) time with O(n log ) work requiring 4 

log n  bits of extra space in addition to the input and

output.

This section focused on how data compression is

performed and what is the problem we face when we do

compression. Here we see that Huffman code is fast, and it

takes less memory in terms of numbers of bit, but it gives

false matching results when we do perform CPM. We also

see that how WBTC avoids false matching so we implement

this compression with the help of a WT and further

minimize the time of constructing a WT by using the

multicore architecture of the computer. We created an

algorithm to minimize the time complexity further and

provide faster matching of textual data.

3. Proposed Algorithm and Analysis

As we all know that the size of data is increasing day by

day, so the task of matching for any text in a faster way

becomes quite challenging. That's why we need an

algorithm that can minimize the size of the database, so it

takes less space in the storage, and that can also perform

faster matching. We use WBTC compression with the

combination of WT and construct WT parallelly using the

multicore architecture of the computer.

According to various dictionaries average length of a

meaningful word is about 15 characters. Hence, we divided

the list of unique words from the text corpus into 16 disjoint

parts, such as 1st part contains words with a length of one

character, 2nd part contains words with a length of two

characters, and so on till the 15th part. The 16th part contains

An approach for fast compressed text matching and to avoid false matching using WBTC and wavelet tree

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

Shashank Srivastav, P. K. Singh and Divakar Yadav

6

all the words with length greater than fifteen, and because

there are very few meaningful words in English with a

length of above 15 characters, thus 16th part is rarely taking

part in matching. We achieve faster access by constructing

separate WTs for each group of words such as for words

with length one we create wavelet tree WT1, for words with

length two WT2, and so on till WT16 parallelly.

Faster Construction: The constructions of wavelet trees

are done parallelly using the multicore architecture of the

computer. First, we have already divided the whole text

corpus into 16 disjoint parts as discussed above, and second,

each disjoint part is assigned to a single core of the

multicore system using the parallel for loops. At each core,

the fastest sequential wavelet tree construction algorithm is

applied, and separate WTs for each part of the corpus is

formed. Each part of the corpus is different and independent

of each other, so the output of one core does not affect the

output of other cores. Figure 1 shows the pre-processing

steps of the faster construction of WTs.

Figure 1. Pre-processing before Construction of WTs
parallelly

Algorithm 1: Faster construction

Input:
Total of P term frequency tables. (maximum value of P is 16)

In each table T in P,

Text-words – t1, t2, t3 …………. tn

Code-words – ct1, ct2, ct3 ………… ctn

Output:
Total of P wavelet trees

Method:
par-for x = 0 to P-1 do (parallel loop for accessing each table)

for y = 1 to n do (loop executes at each core)

 Ay,x = find first prefix pair of code-word cty

 insert Ay,x in the root of wavelet tree Tx

 curr_node = root (Tx)

 z = 2

 while (code-word cty is not empty) do

Ay,z = find the next prefix pair bits from cty

If (Ay,z-1 ={00})

 curr_node=left-child (curr_node)

elseif (Ay,z-1 = {11}) then

 curr_node = right-child (curr_node)

else

 insert Ay,z into curr_node

z = z+1

end while

end for

end par-for.

Faster Matching: Whenever a matching request comes

for any query word, then we count the query word's length

and load the corresponding WT into the main memory

instead of loading the whole WT as previously done by all

other matching algorithms. Figure 2 shows the pre-

processing steps of faster matching.

Figure 2. Pre-processing before Matching of query
patterns

Algorithm 2: Faster word matching
Input:

code-words ct of each word present in the pattern

Output:

number of occurrences of the words Nocc in the corpus

Method:

for each word and their wavelet tree do

B0 = root (t) // t is one wavelet tree

A0 = find the first prefix pair from codeword ct

x = 0

while (Ax != {01} and Ax != {10}) do

if (Ax == {00}) then

Bx+1 = left-child (Bx)

else

Bx+1 = right-child (Bx)

x = x +1

Ax = find the xth prefix pair bits from ct

end while

Nocc = RankA
x
 (Bx, |Bx|)

end for

For a better understanding of our proposed approach, we

consider the same text content T = "this person is young, the

way an actual young person is young". Now we perform the

pre-processing before applying algorithm 1 as shown in

Figure 1. Each unique word is extracted by their length and

stored in the word-frequency table with their WBTC codes.

Identify all unique word from the query.

Find the length of each word and identify their

wavelet tree accordingly.

Find WBTC code for each word and start

matching from the root of each wavelet tree.

Algorithm 2

Identify all unique words and save them in different

set of tables T according to the length of the word.

Apply WBTC method for assigning codes to the

words of all tables T and save them.

Assign each table from the set of tables T to different

core of the processor for processing.

Algorithm 1

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

7

So, in our case, we have a total of six word-frequency

tables, as shown in Tables 5-10, and after applying our

algorithm 1 we get six different wavelet trees, as shown in

Tables 11-16. Each WTs are going to store on the secondary

memory. Now suppose we must match whether the word

'young' is present in the source content T or not and if its

present, then what is the frequency of it. To match the word

'young', we first perform pre-processing, as shown in Figure

2, and apply algorithm 2. The length of the word 'young' is

five, and its corresponding WBTC code is 01, so we load the

corresponding WT into the main memory and match only in

the loaded WT instead in all other WTs. In this case, WT for

word length of five will be loaded into the memory, and

matching is performed from the root of the loaded wavelet

tree. In this case, we find that the word is present in the WT

by matching WBTC code for the word 'young'. To know the

frequency of the word 'young' we further perform the rank

operation on bitmap B0 because the WBTC code is matched

in B0 bitmap as Rank01(B0, |B0|) = 3, this means this word

appears three times in the source content.

Table 5: Word-frequency table for length one

indexing word frequencies WBTC code

0 , 1 01

Table 6: Word-frequency table for length two

indexing word frequencies WBTC code

0 is 2 01
1 an 1 10

Table 7: Word-frequency table for length three

indexing word frequencies WBTC code

0 the 1 01
1 way 1 10

Table 8: Word-frequency table for length four

indexing word frequencies WBTC code

0 this 1 01

Table 9: Word-frequency table for length five

Table 10: Word-frequency table for length six

indexing word frequencies WBTC code

0 person 2 01
1 actual 1 10

Table 11: Wt for Table 5

Text: ,

Index: 0

B0: 01

Table 12: Wt for Table 6

Text: is an

Index: 0 1

B0: 01 10

Table 13: Wt for Table 7

Text: the way

Index: 0 1

B0: 01 10

Table 14: Wt for Table 8

Text: this

Index: 0

B0: 01

Table 15: Wt for Table 9

Text: young

Index: 0

B0: 01

Table 16: Wt for Table 10

Text: person actual

Index: 0 1

B0: 01 10

indexing word frequencies WBTC code

0 young 3 01

An approach for fast compressed text matching and to avoid false matching using WBTC and wavelet tree

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

Shashank Srivastav, P. K. Singh and Divakar Yadav

Table 17. Running times of algorithms (for fixed alphabet size = 128)

File size = 512kb File size = 1024kb File size = 2048kb

Words in
Pattern

HC WBTC WT
TMC_
PWT

HC WBTC WT
TMC_
PWT

HC WBTC WT
TMC_
PWT

2 13.96 12.54 11.08 10.87 26.97 24.73 21.94 17.30 53.51 50.75 48.97 45.36
4 9.43 8.32 6.97 5.12 19.61 18.07 16.25 14.06 32.67 29.81 28.03 27.07
6 5.85 4.67 3.72 2.53 8.63 7.84 5.39 4.06 15.82 14.56 13.04 11.98
8 3.72 2.14 1.54 0.85 4.06 3.88 2.07 1.35 9.04 8.59 6.33 4.09

10 2.07 1.89 0.98 0.43 2.87 2.14 1.42 0.68 4.02 3.10 2.63 1.57

Table 18. Running times of algorithms (for fixed file size = 1024kb)

Alphabet size = 64 Alphabet size = 128 Alphabet size = 256

Words in
Pattern

HC WBTC WT
TMC_
PWT

HC WBTC WT
TMC_
PWT

HC WBTC WT
TMC_
PWT

2 29.20 28.04 21.32 16.71 36.42 29.93 22.37 18.02 46.40 44.23 41.71 36.84
4 18.65 17.05 14.81 14.05 20.48 18.41 16.61 14.23 21.29 19.73 17.87 15.06
6 9.73 8.07 5.92 4.82 9.02 8.93 6.16 4.93 10.83 9.63 6.41 5.07
8 4.98 4.02 2.04 0.99 4.28 4.14 2.08 1.28 4.98 3.66 2.19 1.39
10 1.99 1.19 0.98 0.59 3.03 1.88 1.08 0.61 2.25 1.80 1.08 0.68

4. Experimental Setup and Results

For the experiment purpose, we choose 3.40 GHz

Intel(R) Xeon(R) CPU E3-1245 processors with 4 GB of

primary memory and we have executed all our algorithms

on Ubuntu 18.04 LTS. The language used for the algorithms

in C++ and all the codes are compiled using the GCC

compiler. Our approach consists of two algorithms, first is

related to the construction of the wavelet trees, and the

second algorithm is related to matching of a query word. So,

the overall running time of our approach includes

construction time and matching time both. We have

performed our experiment on a self-made text corpus and

compare the results with previous algorithms that support

CPM, such as Huffman coding, WBTC, and simple WT. We

have performed our experiment on different sizes of the text

corpus first by fixing the alphabet size and varying the file

size, and second by fixing the file size and varying the

alphabet size. The steps are implemented multiple times for

different query words of varying length; we have taken the

average value of running time of all algorithms. Table 17

used to show the comparison of methods when we fix the

alphabet size and Table 18 shows the comparison of

methods when we fix the file size. The performance of our

proposed method TMC_PWT is better in comparison to

other popular methods that support CPM shown using the

running time of all algorithms. Whenever CPM is going to

perform for any query then the words present in the query

need not be in compressed form. In our proposed approach,

when the number of words increases in the query, then we

get an improvement in terms of matching time over other

CPM methods. Table 19 shows the comparison of our

proposed approach to different techniques that support CPM

using various compression performance measures.

In our approach, we require some extra space to store

various word-frequency tables. Our method combines the

advantages of both WT and WBTC. The main advantage of

applying a wavelet tree is that it avoids false matching, and

it's rank operations are performed in O(1) time. The parallel

construction of the wavelet tree is performed in O(n) time

with O(n log ) work and some extra space of 4 log n 

bits. The matching of the word takes O(1) time to complete.

Thus, the proposed approach takes a total of O(n) time to

perform the construction and the matching of the word.

Table 19: Comparison between methods that supports
CPM

Compression Performance Measure

Methods Ratio Speed
Memory
Needs

CPM support

Huffman
coding (HC)

Good Medium Low
Yes (with false
match)

WBTC Good Fast High
Yes (with false
match)

Wavelet tree
(WT)

Good
Very
Fast

Low
Yes (without a
false match)

TMC_PWT
(Proposed)

Better
Very
Fast

Medium
Yes (without a
false match)

5. Conclusion and Future work

In this paper, a new methodology is proposed for

matching the word in the text corpus. This paper presents an

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

9

improvement of matching time in comparison to other

algorithms. The proposed algorithm saves disk space using

WBTC compression, provide faster matching using WT and

improves the system performance by minimizing the

number of page-faults when performing matching using our

proposed approach of dividing the indexes into several WTs.

We have utilized the WBTC packing technique with the

help of a wavelet tree. We have minimized the construction

time of WT, that is the main disadvantage of using WTs

using parallel processing. We have partitioned the whole

text corpus into 16 parts using the length of words in the

corpus and construct a unique WT for each partition. The

advantage of dividing whole text corpus and constructing

several WTs based on the length of words is that in our

approach we load only those indexes into the memory that

are needed in the matching process instead of loading the

whole indexes. This algorithm returns whether the query

word is present in the corpus or not and what's the frequency

of it. This saves a lot of time wasted during loading all the

WTs from secondary memory into primary memory. Since

the size of the main memory is less in comparison to the size

of indexes saved in secondary memory; thus, our proposed

approach will minimize the number of page faults and

increase overall system performance. This approach takes

less memory in the system and quite efficient in order of

matching time of O(n).

In the future, we use Machine Learning (ML) multi-

classification models to find unique words and their word

frequency tables. We also use ML models for assigning the

codes to all unique words and try to construct the wavelet

tree because, by using ML, we can minimize the additional

memory needs of our proposed algorithm.

References

[1] D. Yadav, A. Singh, and V. Jain. Search results

optimization. Communications in Computer and

Information Science. 2011, vol. 168 CCIS, pp. 325–

334.

[2] R. Beal and D. Adjeroh. Compressed parameterized

pattern matching. Theor. Comput. Sci.. 2016, vol.

609, pp. 129–142.

[3] S. P. Mishra, C. G. Singh, and R. Prasad. A review

on compressed pattern matching. Perspect. Sci..

2016, vol. 8, pp. 727–729.

[4] R. Khetan, S. Agarwal, and R. Prasad. An efficient

approach towards compressed parameterized word

matching using wavelet tree. J. Inf. Optim. Sci..

2016, vol. 37, no. 2, pp. 285–301.

[5] A. Amir, G. Benson, and M. Farach. Let sleeping

files lie: Pattern matching in Z-compressed files. J.

Comput. Syst. Sci.. 1996, vol. 52, no. 2, pp. 299–

307.

[6] M. Farach and M. Thorup. String matching in

Lempel-Ziv compressed strings. Algorithmica (New

York) 1998, vol. 20, no. 4, pp. 388–404.

[7] Y. Lifshits. Processing Compressed Texts: A

Tractability Border. Combinatorial Pattern

Matching, LNCS, Berlin, Heidelberg: Springer

Berlin Heidelberg. 2007, vol. 4580, pp. 228–240.

[8] E. S. de Moura, N. Ziviani, G. Navarro, and R.

Baeza-Yates. Fast searching on compressed text

allowing errors. SIGIR Forum (ACM Spec. Interes.

Gr. Inf. Retrieval) 1998, pp. 298–306.

[9] T. Eilam-Tzoreff and U. Vishkin. Matching patterns

in strings subject to multi-linear transformations.

Theor. Comput. Sci.. 1988, vol. 60, no. 3, pp. 231–

254.

[10] D. Knuth, J. Morris, Jr, and V. Pratt. Fast pattern

matching in strings. SIAM J. Comput.. 1977, vol. 6,

no. 2, pp. 323–350.

[11] R. S. Boyer and J. S. Moore. A fast string searching

algorithm. Commun. ACM. 1977, vol. 20, no. 10, pp.

762–772.

[12] A. Mukherjee. Compressed pattern-matching. Proc.

IEEE Data Compression Conf.. 1994, no. March,

pp-468.

[13] N. Ziviani, E. S. De Moura, G. Navarro, and R.

Baeza-Yates. Compression: A key for next-

generation text retrieval systems. Proc. IEEE

Comput.. 2000, vol. 33, no. 11, pp. 37–44.

[14] E. Silva de Moura, G. Navarro, N. Ziviani, and R.

Baeza-Yates. Fast and flexible word searching on

compressed text. ACM Trans. Inf. Syst.. 2000, vol.

18, no. 2, pp. 113–139.

[15] S. Gupta, and A. Agarwal. A Scheme that Facilitates

Searching and Partial Decompression of Textual

Documents. Int. J. Adv. Comput. Eng.. 2008, vol. 1,

no. ii, pp. 99–109.

[16] R. Gupta, A. Gupta, and S. Agarwal. A novel

approach of data compression for dynamic data.

IEEE International Conference on System of

Systems Engineering. 2008, pp. 1–6.

[17] R. Grossi, A. Gupta, and J. S. Vitter. High-order

entropy-compressed text indexes. Proceedings of the

Annual ACM-SIAM Symposium on Discrete

Algorithms. 2003, pp. 841–850.

[18] A. K. Yadav, D. Yadav, and R. Prasad. Efficient

Textual Web Retrieval using Wavelet Tree. Int. J.

Inf. Retr. Res.. 2016, vol. 6, no. 4, pp. 16–29.

[19] A. K. Yadav, D. Yadav, and D. Rai. Efficient

methods to generate inverted indexes for ir.

Advances in Intelligent Systems and Computing.

2016, vol. 435, pp. 431–440.

[20] A. Yadav and D. Yadav. Wavelet tree based hybrid

geo-textual indexing technique for geographical

search. Indian J. Sci. Technol.. 2015, vol. 8, no. 33,

An approach for fast compressed text matching and to avoid false matching using WBTC and wavelet tree

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

Shashank Srivastav, P. K. Singh and Divakar Yadav

10

pp. 1–7.

[21] A. K. Yadav and D. Yadav. Wavelet tree based dual

indexing technique for geographical search. Int.

Arab J. Inf. Technol.. 2019, vol. 16, no. 4, pp. 624–

632.

[22] D. A. Huffman. A Method for the Construction of

Minimum-Redundancy Codes. Proc. IRE.. 1952,

vol. 40, no. 9, pp. 1098–1101.

[23] S. P. Mishra, R. Prasad, and G. Singh. Fast Pattern

Matching in Compressed Text using Wavelet Tree.

IETE J. Res.. 2018, vol. 64, no. 1, pp. 87–99.

[24] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro.

Implicit indexing of natural language text by

reorganizing bytecodes. Inf. Retr. Boston.. 2012,

vol. 15, no. 6, pp. 527–557.

[25] N. R. Brisaboa, Y. Cillero, A. Fariña, S. Ladra, and

O. Pedreira. A new approach for document indexing

using wavelet trees. Proc. - Int. Work. Database

Expert Syst. Appl. DEXA. 2007, pp. 69–73.

[26] G. Navarro. Wavelet trees for all. J. Discret.

Algorithms. 2014, vol. 25, pp. 2–20.

[27] F. Claude and G. Navarro. Practical rank/select

queries over arbitrary sequences. Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). 2008, vol. 5280 LNCS, pp. 176–

187.

[28] P. Ferragina, G. Manzini, V. Mäkinen, and G.

Navarro. Compressed representations of sequences

and full-text indexes. ACM Trans. Algorithms. 2007,

vol. 3, no. 2, pp. 1–25.

[29] G. Navarro and V. Mäkinen. Compressed Full-Text

Indexes. ACM Comp. Surv.. 2007, vol. 39, pp. 1–

61.

[30] J. Fuentes-Sepúlveda et al. Efficient Wavelet Tree

Construction and Querying for Multicore

Architectures. Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics). 2014, vol. 1, pp. 150–161.

[31] J. Shun. Parallel Wavelet Tree Construction. Data

Compression Conf. Proc.. 2015, vol. July, pp. 63–

72.

[32] J. Labeit, J. Shun, and G. E. Blelloch. Parallel

lightweight wavelet tree, suffix array and FM-index

construction. J. Discret. Algorithms. 2017, vol. 43,

pp. 2–17.

[33] J. Shun. Improved Parallel Construction of Wavelet

Trees and Rank/Select Structures. Data

Compression Conf. Proc.. 2017, vol. Part F1277, pp.

92–101.

[34] J. Fischer, F. Kurpicz, and M. Löbel. Simple, Fast

and Lightweight Parallel Wavelet Tree

Construction. Proc. Twent. Work. Algorithm Eng.

Exp.. 2018, pp. 9–20.

[35] K. Fredriksson and M. Mozgovoy. Efficient

parameterized string matching. Inf. Process. Lett..

2006. vol. 100, no. 3, pp. 91–96.

[36] S. T. Klein, D. Shapira, E. S. De Moura, G. Navarro,

N. Ziviani, and R. Baeza-Yates. Compressed

Matching in Dictionaries. ACM Trans. Inf. Syst..

2011, vol. 18, no. 1, pp. 61–74.

EAI Endorsed Transactions
Scalable Information Systems

01 2021 - 04 2021 | Volume 8 | Issue 30 | e6

