
1. Introduction
Identification of the defect prone classes before actual testing 
reduces the testing cost and efforts. It also leads to a more 
focused testing thereby enhancing the probability of fault free 
software [35]. Much research work has been carried out in 
within projects data. The availability of many different 
projects data leads to the motivation of cross project defect 
prediction. In the past decade much research has focused on 
binary classification of CPDP. The multinomial classification 
in CPDP is still an open area to be focused. 

The advantage of treating this problem as multinomial 
classification than a regression is that regression does not 
respect the bounds of zero. Here the target variable that needs 
to be predicted is a positive quantity. However, regression 
based approaches in prediction of the defects can give non-
integer or negative predictions. This can lead to invalid 
predictions. Therefore in this study substantiation of 
multinomial/multiclass classification has been done for cross 
projects. 

The multinomial classification provides information on 
severity of defect prone classes. Higher the number of defects 
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in a class higher is that class defect prone. In this work we 
have classified the class level defect data into different groups 
depending on the total number of defects in each class. The 
three classes defined are as below. The reason for taking 5 as 
the threshold value is included in Section 4 of the paper. 

• Class 0: Class with no bugs.

• Class 1: Class with bugs greater than 0 and less
than 5.
• Class 2: Class with bugs greater than and equal to
5. 

We have taken 15 open source object oriented projects. The 
classification is performed for cross projects and within 
project defect prediction. In our previous work [33] (G. Lipika 
et al., 2018) of binary classification for CPDP and WPDP, we 
inferred that Random forest and Gradient Boosting ensemble 
algorithms outperformed all the other algorithms ( LR, NVB, 
K-NN). Henceforth, in this paper we are using Gradient
Boosting and Random Forest ensemble techniques for
modeling. Ensemble learners combine multiple learners for a
predictive model. They improve the predictive performance of
the model.
The main research question directed is :
RQ: Whether multinomial classification of CPDP is feasible
and comparable to WPDP?
To answer the above stated question we conducted the
experiment for multinomial classification for the CPDP.
Multinomial classification was also done for within project
defect data. To determine the feasibility of multinomial
classification for CPDP we have compared our results of
multinomial classification of cross projects to within projects
on the basis of AUC-ROC value, f measure, precision and
recall. Cross validation is also performed to determine the
training accuracy of the model.

This paper is divided into the following sections: 
Section 2 presents a brief of the literature survey. Section 3 
summarizes the datasets, metrics, the performance measures 
and the models used. Section 4 states the proposed 
methodology. Section 5 tabulates the results. The threats to 
validity is stated in Section 6.Section 7 concludes the paper. 

2. State Of Art

In this section we present a brief summary of the state of art in 
the field of cross project defect prediction. Since multinomial 
classification is not much explored therefore the below state of 
art gives a big picture of the work done in CPDP. 

K-NN was used by Turhan et al in 2009 [3]  to reduce
the data distribution difference, then the Naïve Bayes 
classifierwas used  for defect prediction. The homogeneous 
metrics were selected and the Naïve Bayes classifier was 
applied on 10 different cross projects. The results of the cross 
projects were compared with within project. The author 
demonstrated the minimum number of data samples required 
to build an effective predictor. 

Logistic Regression model was used by T. Zimmermann 
et al in 2009 [4] for CPDP thereby giving  a new dimension to 
it. He concluded that selection of dataset characteristic has a 
significant impact on the performance of the model in defect 
prediction. He performed a big study on feasibility of CPDP 
and inferred that decision trees can improve the performance 
measures. 

S.J. Pan et al. in 2010 [5] focused on the categorizing and 
reviewing the progress of transfer learning in regression, 
classification and clustering problems. It inferred that transfer 
learning will be helpful in detection of defects with different 
training and testing dataset distribution. The authors gave a 
new dimension to defect prediction for cross projects using 
transfer learning approach. 

Menzies et al. in 2011 [6] used a WHERE algorithm for 
creating a local model through clustering of the training data. 
Then the WHICH rule learning algorithm was used for 
classification. The novel approach to classification showed 
better results then some existing classifiers. 

Ma et al. in 2012 [10] presented a new innovative 
approach named TNB-Transfer Naïve Bayes for CPDP. The 
results concluded that TNB showed better results than state of 
art in terms of area under curve. In inferred that even if few 
local training data is available , the knowledge from the 
different data distribution can also be used for defect 
prediction. 

Zhimin He et al. in 2012 [9] investigated the defect 
prediction in cross project context focusing on selection of 
training dataset. The author concluded that in some cases 
training data from cross projects provide better results than 
from the same project. The authors also proposed a method for 
automatic selection of training data for projects with no 
historical data. 

TCA- Transfer Component Analysis was implemented 
by Jaechang Nam et al. in 2013 [11]  for CPDP. TCA made 
the feature distribution in source and target datasets similar. In 
addition TCA + was also proposed to make better defect 
predictions. 

Herbold in 2013 [13] proposed NN Filtering and EM 
Clusterin as distance-based strategies for selecting the training 
data. Different classifiers like Logistic Regression, Naïve 
Bayes, Random Forest, ANN, Decision trees were used for 
prediction of the cross projects. Proper selection of the 
training data can lead to better defect prediction. 

Peters et al. in 2013 [17] proposed a new filter called the 
Peters filter. The results of peter filter were compared with the 
Burak filter. Peter filter outperformed for CPDP. It analyses 
the structure of the other available projects and selects the 
final training dataset. 

Dejaeger et al. in 2013 [15] contributed by studying 
fifteen different bayes networks and compared them to the 
other machine learning algorithms. The authors also 
investigated the Markov theory of feature selection. 

G. Canfora et al. in 2013 [12] proposed a novel multi-
objective model for cross project defect prediction. The multi-
objective logistic model used genetic algorithm. This model 
allowed engineers to choose predictors by achieving a 
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compromise between effectiveness and lines of code to be 
tested. 

Panichella et al. in 2014 [18] investigated the 
equivalence of the classifiers. He studied whether different 
classifiers identified the same defect prone classes. The 
authors proposed a combined defect predictor which 
outperformed with higher value of ROC. They concluded that 
combination of classifiers yields better results than a single 
classifier. 

Peng He et al. in 2014 [19] addressed the problem of 
imbalanced feature set between the source and the target 
dataset. Considering this the authors proposed a framework 
based on distribution characteristic instance mapping. They 
validated the results on the publicly available datasets an 
concluded that the proposed model improved the performance 
of CPDP. 

Peters et al. in 2015 [21] proposed an extension of 
MORPH and CLIFF. LACE2, a novel algorithm did not added 
all the data from the products to the defined shared cache. It 
decides which instance should be added. Kawata et al. in 2015 
[22] proposed the use of DBSCAN clustering algorithm. In
2015 Y.Zhang et al.[24]  used ensemble classifiers Maximum
Voting and Average Voting for classification. Amasaki et al.
in 2015 [25] proposed a combination of attribute selection and
relevance filtering. These were performed on the log
transformed data. Nam and Kim in 2015 [20] proposed
CLAMI, a novel fully automated unsupervised approach.
CLAMI included clustering and labeling of the training data
for prediction.

 The solution for heterogeneous cross project defect 
prediction by was provided X. Y. Jing and  Nam in 2015 [27] . 
Ryu, D et al. in 2016 [28]  investigated the applicability of 
class imbalance learning in CPDP scenario. They proposed a 
novel method as VCB-SVM.The proposed model improved 
the predictive performance by sampling and class imbalance 
learning. 

 Duksan Ryuet et al. in the year 2016 [30] provided a 
solution to the  class imbalance problem by proposing a model 
using  SVM with cognitive boosting.The combined approach 
of Genetic and Ensemble learning gave good results. Zhang et 
al. in the year 2016 [29] used unsupervised classification for 
heterogeneous Cross Project Defect P.rediction.   

Herbold Steffen et al. in 2017 [32] benchmarked the 
CPDP approaches. He concluded that CPDP has still not 
reached to a level where it can be used for the application in 
practice.  

3. Prerequisite Understanding

3.1. Metrics used and description of Datasets

We have taken the well-defined datasets from 
http://openscience.us. The original data is collected by Marian 
Jureczko, Institute of Computer Engineering, Wroclaw 
University of Technology. From each dataset the information 

at the  class level is considered. These datasets generally have 
multiple versions. Table 1 describes the datasets used. 

Table 1. Dataset Details 

Project Language Total no. of 
classes 

Defect prone 
classes 

Ant -1.5 Java 291 32 

Ant -1.6 Java 351 94 

Ant- 1.7 Java 745 168 

Ivy-1.1 Java 111 63 

Ivy-1.4 Java 241 17 

Ivy-2.0 Java 352 40 

Camel- 1.2 Java 608 216 

Camel- 1.4 Java 872 145 

Camel -1.6 Java 965 189 

Prop1 Java 18471 2738 

Prop2 Java 23041 2431 

Prop3 Java 10274 1180 

Jedit- 4.0 Java 306 75 

Jedit- 4.1 Java 312 79 

Jedit- 4.2 Java 367 47 

In this work we have focused on homogeneous CPDP for 
multinomial classification. The software metrics are important 
in defect prediction process [36]. The CK metrics (Chidamber 
and Kemerer, 1994) are selected and are used for software 
defect prediction. CBO [34,37], RFC and LCOM metrics of 
the CK suite were associated with the fault proneness of 
classes. Higher the value of these metrics higher is fault 
proneness of the class. WMC and RFC metrics of the CK suite 
to be highly related with number of defects in a class. The 
higher value of DIT [38] and lower value of NOC metrics of 
the CK suite to be also related to the fault proneness of the 
class. These studies infer the high association of the CK metric 
suite with the number of defects in a class. The table 2 gives 
the description of the CK metrics. 

The CK Metrics used in the analysis are as follows (Verma 
and Vyas, 2013) [14]: 
• DIT
• WMC
• CBO

3 EAI Endorsed Transactions on 
Scalable Information Systems 

01 2020 - 03 2020 | Volume 7 | Issue 25 | e5

http://openscience.us/


• NOC
• LCOM
• RFC

Table 2. Software Ck Metrics 

Metrics Description 

     WMC It describes the total time and effort required 
to develop and maintain the class. The level 
and complexity of WMC should be low. 

       DIT It gives the maximum distance from the root to 
the terminal nodes. The level and complexity 
of DIT should be low. 

      CBO It tells the number of classes to which a class 
is coupled. It describes the degree of 
interdependence between two classes. The 
level and complexity of CBO should be low to 
easily test and maintain the .software. 

     NOC It states the number of subclasses of a class. 
T The level and complexity of NOC should be 
low to easily test and maintain the software. 

 LCOM It describes the degree of relatedness 
between the methods of a class. The level 
and complexity of LCOM should be low. 

     RFC It states the number of methods of the class 
or any other methods called. The level and 
complexity of RFC should be low to easily test 
and maintain the software. 

3.2 Ensemble Learning Models 

An ensemble contains a combination of base/ weak learners to 
improve the performance of the model. The prediction 
accuracy of an ensemble is much higher than the base learners. 
Base learning algorithms can be neural network, decision tree 
or any other machine learning algorithm. The majority voting 
for classification and weighted averaging for the regression 
are the common strategies of combining base learners. The 
popular and effective ensemble methods are Bagging, 
Boosting and Stacking. The figure1. gives a diagrammatic 
representation of ensemble approach. The figure states that N 
classifiers are used on a set of input features for prediction. 
The results from the N classifiers are combined for the final 
outcome. 

 

 

Figure 1. Ensemble Learning Approach 

The ensemble learning models used in this experiment are 
Random Forest and Gradient Boosting. Random forest model 
is a bagging technique whereas Gradient Boosting is a 
boosting approach. 

1) Random Forest: Random Forest is a solution to
most of the data science problems. It is a flexible machine 
learning model which is competent to perform both 
classification and regression. It handles missing values, 
dimensionality reduction methods, outliers and thereby having 
better results. It is an ensemble of weak models (decision 
trees). To classify an object each tree votes, the forest chooses 
the classification which has the highest number of votes. For 
regression it computes the average of the output produced by 
each tree. The major advantage of Random forest is avoiding 
the problem of overfitting. 

Given a training set: - nxxxX ,...., 21= with responses

nyyy ,....., 21 . bagging it B times- selecting random samples. 

For  Nb ,....3,2,1=  We will train a regression or 

classification tree on bb YX , . After training the prediction of 
the sample x can be done either by averaging the prediction f 
all the regression trees or taking the majority votes in the case 
f classification trees. 

)(/1 ∑ ′= xfNF b      for  Nb ,....3,2,1=

The standard deviation of the predictions from different 
regression trees gives the estimate of uncertainty of the 
prediction. 

∑ −−′= )1/())(( 2 NFxfbσ

2) Gradient Boosting: It is an ensemble learning
technique (Dai, W. et al., 2007) . It has sequential predictors. 

Classifier1 Classifier2 
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The subsequent predictors improve its learning by faults of the 
existing predictors. It involves three elements: 

• A loss function to be optimized.
• A weak learner to make predictions.
• Model to add weak learners.

Gradient boosting uses decision trees as weak learners. A tree 
is parameterized and its parameters are modified and then it is 
added to the model to minimize the loss. 

For j=1…..n 
    F0(x) = arg min ∑ L(yi , γ )  
    γm = argmin  ∑ L (yi , F m-1(xi) + γ hm(xi) ) 
    Fm(x) = Fm-1(x) + γmhm(x). 

Where (xi, yi ) is the training set L(y,F(x)) is a differential loss 
function, M is the no. of  iterations, hm(x) is the base learner, 
γm is the multiplier. 

3.3. Evaluation  Measures 

The Table 3 summarizes the performance measures which are 
mostly used for evaluation of classification models. 

Table 3. Performance Measures 

Performance 
Measure Description 

Precision 

It is the proportion of cases that are 
correctly identified to belong to class A 
among all the cases which classifier claims 
to belong to A.  

Recall 

It is the proportion of cases that are 
correctly identified to belong to class A 
among all the cases that truly to belong to 
A.  

F-measure (2*Recall * Precision)/(Recall + Precision) 

Accuracy It is the ratio of all correctly identified and 
classified cases. 

AUC 
It is used in classification analysis to 

determine the performance of the model 
ie. Which model predicts the classes best 

MAP It is the average value of the maximum 
precision at different recall values. 

4. Proposed Methodology

4.1 Data Acquisition and Understanding

On collection of the datasets the identification of target 
variables and the input features is done. The total number of 
defects in a class is taken as the target variable. We have 
taken into assumption that higher the number of defects in a 
class higher is the class defect prone and higher is the 
severity.  When two or different projects have the same set of 
metrics then such metrics are called the homogeneous 
metrics. In our analysis we have taken the different projects 
with the homogeneous metrics thereby performing 
homogeneous CPDP. 

4.2 Data Preprocessing and Preparation 

The data preprocessing steps include data encoding, data 
normalization and feature selection. In the data encoding, label 
encoder is used to convert the categorical value to the numeric 
value. Z-score normalization is performed to normalize the 
data on a common scale. 

 We have conducted the experiment to classify our data 
of cross and within project into multi-classes. First of all. we 
made this problem as a 10 class multinomial classification 
Problem. Class with 0 defects has lowest severity, class 1, 
class 2 and so on and the class with 10 defects has highest 
severity (the maximum defects in a class were not more than 
10). On evaluation of the predicted values and actual values, 
we inferred that most of the values are belonging to class 0 or 
class 5 among the 10 classes defined above. Hence, in order to 
evaluate the severity into 3 buckets as low, medium and high 
we converted the 10 class problem to 3 class problem 
(multinomial) with 5 being the threshold value. As stated 
before we defined three classes as follows: 
Class 0: Class with no bugs. 
Class 1: Class with bugs greater than 0 and less than 5. 
Class 2: Class with bugs greater than and equal to 5. 
Cross validation method is also performed to evaluate the 
training accuracy of the model. 

4.3 Modeling 

The modeling includes a description on model fitting and its 
evaluation. 

4.3.1 Model Fitting: 
Gradient Boosting and Random forest are used for 
multinomial classification. Hyperparameter tuning of the 
classifiers are done. Hyperparameter tuning is the settings 
done to the classifiers to optimize its performance. These are 
not directly learned from the data and needs to be predefined. 
In the case of a random forest, Hyperparameter includes the 
number of decision trees used in the forest, the number of 
features considered when splitting a node by each tree, the 
maximum depth of a tree, the minimum number of samples 
required at leaf node. We used Grid Search to set the range for 
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each parameter. The range of values for each parameter in 
Random Forest in the experiment is: 
'n_estimators': [10,15,20] 
'max_depth': [5,10,12] 
min_samples_leaf': [2,3] 
min_samples_split': [2,3] 
In the case of Gradient Boosting, hyperparameters include n-
estimators and the learning rate. The range of values for each 
parameter in Gradient Boosting in the experiment is: 
'n_estimators': [30,40,50] 
'learning_rate': [0.2, 0.1] 

4.3.2 Model Evaluation: 
For evaluation of the models we have used three performance 
measures i.e. F-Measure, AUC-ROC and Mean Average 
Precision (MAP). F-Measure is the harmonic mean of 
precision and recall and is widely used in evaluation of 
classification models. Confusion Matrix is used to evaluate 
recall, precision and f-measures is calculated. 
The AUC-ROC values facilitate the comparison of the models. 
An AUC value of 1 represents a perfect classifier whereas for 
random classifiers a value of 0.5 is expected. The MAP is used 
to evaluate the performance of the classifiers. MAP value can 
be calculated by computing the average precision of each class 

and then the average over the class. Higher the value of MAP 
better it is. Algorithm 1 presents the pseudo code of the 
experiment conducted. Figure2 gives defect prediction process 
of multinomial classification. In this, data is collected and 
preprocessed. As discussed in section 1 of the paper, the 
dataset is then divided into three classes of 0, 1 and 2. After 
the selection of CK metrics the training dataset is provided to 
the model for classification. The ensemble classifiers are used 
for prediction of defects under the category of three defined 
classes. 

 
  

 

 

 

Figure 2. Defect Prediction Process Of Multinomial Classification 
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ALGORITHM 1. PSEUDO CODE OF THE EXPERIMENT 

 

 

 
 

 
 

5. Results & Discussion
In this section we present results of the experiment conducted. 
Table 4,5,6 ,7 and 8  tabulates the results.  

Table 4 gives the value of precision,recall & f-measure for 
CPDP using random forest & gradient boosting. Table 5 
tabulates the values of precision,recall & f-measure for wpdp 
using random forest & gradient boosting. Table 6 gives the 
average value of f-score, precision & recall using random 
forest & gradient boosting for CPDP & WPDP whereas the 
Table 7 presents the Auc-Roc values using random forest and 
gradient boodting  for CPDP and WPDP. The  accuracy of the 
predictive performance of the model is specified in Table 8. 

The performance evaluation measures used are f1-score, 
AUC-ROC value , precision and recall. We have compared the 

results of multinomial classifiation for CPDP with WPDP. The 
observations are as below: 

RQ: Whether multinomial classification of CPDP is 
feasible  and comparable to WPDP? 

From table 7 the average value of AUC-ROC for Cross 
Project Defect Prediction using Gradient Boosting and 
Random Forest are 0.610        and 0.605 respectively. These 
values are comparable to the AUC-ROC values for WPDP as 
0.630 and 0.621 using Random Forest and Gradient Boosting 
respectively. This value is only 3.17% and 2.57% higher than 
the values observed for CPDP. Since AUC-ROC value depicts 
the performance of the classifier and facilitates the comparison 
of the models therefore from the above observations we can 
infer that multinomial classification for CPDP is also feasible 
and comparable to WPDP with respect to AUC-ROC values. 

Data= Different data from different domains 
CP_data = {Ant 1.5 ,Ant 1.6,Ant 1.7, Camel 1.2, Camel 1.4, Camel 1.6, Ivy1.1, Ivy1.4, Jedit 4.2, 
Prop1,Jedit 4.0,  Ivy2.0, , Jedit 4.1, Prop2, Prop3 } 
#Preprocessing data 
CP_data= Unique(CP_data) 
defining the target variable as 10-class multi-classification 
for categorical_features in input_features do 
{perform label encoding} 
end for 
#Perform k-fold cross validation. 
#Selecting homogneous CK Metrics from all the datasets 
for data in training_data do 

 for each_project in data 
 {input_features = select ck metrics from each_project} 

end for 
# Defining the training and the testing data for Cross Project Defect Prediction 
for project belongs to CP_test 
CP_train =  CP_data – data 
CP_test= data 
# Defining the training and the testing data for Within Project Defect Prediction 
for project belongs to WP_test 
splitting training and testing data with 60:40 ratio 
train = {selecting 60% of data us } 
test = training_data – train 
#Modeling 
applying machine learning algorithms 
model1 = random_forest_model_training(train) 
model2 = gradient_boosting_model_training(train) 
Applying Grid Search technique to tune the hyper-parameters for both models 
Predicting the results on test data 
Conversion of 10-class to 3-class and re-train the models again with above steps 
Evaluating the models using metrics 
{auc,precision,recall, f1score} 
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Similarly from table 8 the average value of accuracy for Cross 
Project Defect Prediction using Gradient  

Boosting and Random Forest are 0.73  and 0.72 respectively. 
These values are comparable to the accuracy  values for 
WPDP as 0.79 and 0.81 using Random Forest and Gradient 
Boosting respectively. Since accuracy is also one of the 
performance measure of the classifier therefore from the 
above observations we can infer that multinomial 
classification for CPDP is also feasible and comparable to 
WPDP. 

From table 6 we observe that when using Random Forest as 
classification model the average values of F-Score in CPDP 
for class 0, class 1 and class 2 are 0.9, 0.268 and 0.302 
respectively, whereas when we look at the values for WPDP 
they are 0.838, 0.274 and 0.291 for class 0, class 1 and class 2 
respectively. In the case of CPDP, this value was higher by 

6.88% for class 0, 2.18% lower class 1 and 3.64% higher for 
class 2 when compared with WPDP. 
 On using Gradient Boosting as the ensemble model for 
classification the average values of F-Score in CPDP for class 
0, class 1 and class 2 are 0.92, 0.247 and 0.334 respectively, 
whereas when we look at the values for WPDP they are 0.846, 
0.258 and 0.322 for class 0, class 1 and class 2 respectively. In 
the case of CPDP, this value was higher by 8.043% for class 0, 
4.26% lower class 1 and 3.59% higher for class 2 when 
compared with WPDP. 
From the above observations we can infer that multinomial 
classification for CPDP is also feasible and comparable to 
WPDP with respect to F-measure. 

Table 4. Values Of Precision,Recall & F-Measure For Cpdp Using Random Forest & Gradient Boosting 

CLASSIFIER RANDOM FOREST GRADIENT BOOSTING 

Testing 
Data 

Class Precision Recall .F1 score Precision Recall F1 score 

Ant 1.5 

0 0.85 0.9 0.87 0.87 0.88 0.87 

1 0.21 0.17 0.19 0.24 0.27 0.25 

2 0.5 0.06 0.11 0.42 0.09 0.14 

Ant 1.6 

0 0.96 0.85 0.9 0.89 0.78 0.83 

1 0.14 0.31 0.2 0.27 0.01 0.02 

2 0.21 0.05 0.12 0.22 0.51 0.3 

Ant 1.7 

0 0.87 0.82 0.85 0.85 0.82 0.83 

1 0.44 0.47 0.46 0.43 0.46 0.44 

2 0.38 0.73 0.5 0.35 0.73 0.47 

Camel 1.2 
0 0.89 0.78 0.94 0.9 0.81 0.85 

1 0.27 0.01 0.02 0.26 0.05 0.08 

2 0.22 0.51 0.3 0.22 0.52 0.3 

0 0.86 0.8 0.83 0.86 0.86 0.86 

The multinomial classification of CPDP is feasible and 
can be compared  to WPDP. 
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Camel 1.4 1 0.40 0.46 0.43 0.24 0.26 0.25 

2 0.27 0.5 0.35 0.25 0.06 0.1 

Camel 1.6 

0 0.93 0.9 0.91 0.93 0.92 0.9 

1 0.66 0.69 0.68 0.66 0.68 0.67 

2 0.36 0.75 0.49 0.36 0.73 0.48 

Ivy 1.1 

0 0.77 0.99 0.87 0.82 0.93 0.87 

1 0.2 0.03 0.05 0.51 0.29 0.37 

2 1 0.09 0.17 0.01 0.04 0.02 

Ivy 1.4 

0 0.96 0.95 0.95 0.94 0.97 0.95 

1 0.19 0.21 0.2 0.17 0.06 0.09 

2 0.04 0.06 0.05 0.23 0.07 0.12 

Ivy 2.0 

0 0.84 0.91 0.87 0.83 0.94 0.89 

1 0.49 0.36 0.42 0.55 0.26 0.35 

2 0.01 0.04 0.05 0.38 0.5 0.43 

Jedit 4.0 

0 0.82 0.93 0.87 0.83 0.93 0.87 

1 0.51 0.29 0.37 0.52 0.29 0.37 

2 0.01 0.04 0.02 0.01 0.05 0.03 

Jedit4.1 

0 0.95 0.98 0.97 0.79 0.99 0.88 

1 0.27 0.11 0.15 0.6 0.09 0.15 

2 0.07 0.25 0.11 0.6 0.55 0.57 

Jedit4.2 

0 0.79 0.99 0.88 0.79 0.97 0.87 

1 0.6 0.09 0.15 0.62 0.09 0.15 

2 0.6 0.55 0.57 0.61 0.58 0.58 

Prop1 

0 0.89 1 0.94 0.76 1 0.87 

1 0.27 0.01 0.02 1 0.02 0.03 

2 0.22 0.51 0.6 1 0.18 0.31 

0 0.89 1 0.94 0.86 0.96 0.9 
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Prop2 
1 0.42 0.01 0.01 0.66 0.39 0.49 

2 0.2 0.5 0.61 0.83 0.42 0.56 

Prop3 

0 0.93 0.9 0.91 0.89 1 0.94 

1 0.66 0.69 0.68 0.42 0.01 0.01 

2 0.36 0.75 0.49 0.2 0.5 0.61 

Table 5. Values Of Precision,Recall & F-Measure For Wpdp Using Random Forest & Gradient Boosting 

CLASSIFIER RANDOM FOREST GRADIENT BOOSTING 

Testing 
Data 

Class Precision Recall F1 score Precision Recall F1 score 

Ant 1.6 

0 0.85 0.86 0.85 0.85 0.86 0.86 

1 0.15 0.34 0.22 0.29 0.01 0.03 

2 0.20 0.06 0.14 0.23 0.54 0.32 

Camel 1.4 

0 0.84 0.82 0.76 0.86 0.86 0.77 

1 0.41 0.36 0.38 0.67 0.70 0.68 

2 0.19 0.20 0.2 0.38 0.78 0.51 

Ivy2.0 

0 0.84 0.91 0.87 0.82 0.93 0.87 

1 0.49 0.36 0.42 0.51 0.29 0.37 

2 0.01 0.04 0.05 0.01 0.04 0.02 

Jedit 4.0 

0  0.74 0.82 0.76 0.77 0.79 0.76 

1 0.29 0.12 0.17 0.8 0.09 0.16 

2 0.60 0.58 0.59 0.62 0.60 0.61 

Prop2 

0 0.96 0.95 0.95 0.95 0.98 0.97 

1 0.67 0.69 0.68 0.42 0.03 0.05 

.2 0.19 0.21 0.2 0.27 0.11 0.15 
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Table 6. Average Value Of F-Score, Precision & Recall Using Random Forest & Gradient Boosting For Cpdp & Wpdp 

Precision Recall F-
Score Precision Recall F-

Score 

CPDP Random 
Forest 

Class 0 0.88 0.847 0.9 

WPDP Random 
Forest 

Class 
0 0.846 0.872 0.838 

Class 1 0.381 0.26 0.268 Class 
1 0.456 0.442 0.274 

Class 2 0.296 0.359 0.302 Class 
2 0.168 0.278 0.206 

CPDP Gradient 
Boosting 

Class 0 0.854 0.917 0.92 

WPDP Gradient 
Boosting 

Class 
0 0.85 0.884 0.846 

Class 1 0.476 0.215 0.247 Class 
1 0.538 0.224 0.258 

Class 2 0.379 0.368 0.334 Class 
2 0.302 0.414 0.322 

Table 7. Auc-Roc Values Using Random Forest And Gradient Boodting  For Cpdp & Wpdp 

CPDP WPDP 

Project Random Forest Gradient Boosting Random Forest Gradient Boosting 

Ant 1.5  0.612547 0.687451  0.698745 0.712456 

Ant 1.6 0.63109 0.661218 0.651242 0.671112 

Ant 1.7 0.741302 0.744314 0.73312 0.742314 

Camel 1.2 0.684474 0.678049 0.694464 0.678149 

Camel 1.4 0.551103 0.593971 0.591143 0.601271 

Camel 1.6 0.573669 0.577769 0.601259 0.612549 

Ivy1.1 0.51805 0.550849 0.52805 0.549849 

Ivy1.4 0.529259 0.518523 0.535259 0.525423 

Ivy2.0 0.702244 0.56859 0.713244 0.587859 

Jedit 4.0 0.636752 0.626342 0.66752 0.626342 

Jedit 4.1 0.676672 0.655756 0.698632 0.689556 

Jedit 4.2 0.664231 0.655756 0.694231 0.667756 

Prop1 0.506667 0.509004 0.523667 0.515004 

Prop2 0.625195 0.626286 0.671545 0.665246 

Prop3 0.504031 0.504056 0.524331 0.574166 

AVERAGE 0.610339 0.6050345 0.6305505 0.621899714 
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Table 8. Acuracy Values Using Random Forest And Gradient Boodting  For Cpdp & Wpdp 

CPDP WPDP 

Project Random Forest Gradient Boosting Random Forest Gradient Boosting 

Ant 1.5 0.63 0.65 0.78 0.82 

Ant 1.6 0.68 0.71 0.82 0.81 

Ant 1.7 0.71 0.7 0.86 0.85 

Camel 1.2 0.62 0.63 .0.81 0.83 

Camel 1.4 0.75 0.78 0.76 0.74 

Camel 1.6 0.73 0.75 0.76 0.78 

Ivy1.1 0.78 0.82 0.82 0.82 

Ivy1.4 0.71 0.71 0.76 0.79 

Ivy2.0 0.69 0.67 0.73 0.75 

Jedit 4.0 0.78 0.76 0.78 0.78 

Jedit 4.1 0.77 0.77 0.82 0.85 

Jedit 4.2 0.81 0.82 0.83 0.84 

Prop1 0.81 0.83 0.86 0.89 

Ant 1.5 0.63 0.65 0.78 0.82 

Ant 1.6 0.68 0.71 0.82 0.81 

AVERAGE 0.72 0.73 0.79 0.81 
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6. Threats To Validity
Threats to internal validity states the errors in the experiments. 
We have checked our datasets and experiments but still there 
can be errors that we did not notice. An issue that can affect 
the internal validity is the use of classifier for modeling. There 
are many classification algorithms available. Any research 
work includes only a small subset of classification algorithm. 
In our work, we have focused on only on two algorithms of 
Ensemble approach (Random Forest and Gradient 
Boosting).Besides this, all the datasets used in our experiments 
are of Jureczko, there can be some quality issues among the 
datasets. 

Threats to external validity are related to the generalization of 
the results. All the datasets used in our experiment are from 
single source and are open source projects. This threat can be 
reduced by considering more datasets from different sources 
for the experiment. 

Threats to reliability validity states the possibility of 
replicating this work. All the datasets used in our experiment 
are publicly available and the pseudocode is available in this 
paper. This work can easily be replicated. 

The threat to conclusion validity is that we have compared our 
outcomes of the experiment on the basis of F-score and AUC 
of within project defect prediction. Since not much of work on 
multinomial classification for CPDP is present in state of art 
therefore results obtained are compared with WPDP to prove 
the feasibility of multinomial classification for CPDP. 

7. Conclusion & Future Scope
The software reliability is directly proportional to probability 
of error free software. In this paper we analyzed the 
performance in multinomial classification of cross and within 
project defect prediction. The datasets were collected Jureczko. 
Cross validation was done to estimate the predictive 
performance of the models.  CK based object oriented metrics 
was effective for CPDP. We first labeled our class information 
in three different levels depending on the number of defects in 
each class. The experiment was conducted by training the 
model on different  cross project defect prediction. Ensemble 
learning approaches were used for classification. The values of 
F-score, MAP and AUC were used for empirical analysis of
the model.

The results indicate that multinomial classification on 
CPDP is feasible and comparable to WPDP. There are many 
verticals on which the work can be extended. Multinomial 
classification of Heterogeneous CPDP can be focused. Proper 
training dataset selection and class imbalance to optimize the 
performance of defect prediction are still open issues in CPDP. 
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