
1

Cache Performance Optimization of QoC Framework

Asif Ali Laghari
1,*

, Hui He
1,*

, Rashid Ali Laghari
2
, Asiya Khan

3
, Rahul Yadav

1

1
School of Computer Science & Technology, Harbin Institute of Technology, Harbin, China

2
School of Mechatronics, Harbin Institute of Technology, Harbin, China

3
School of Engineering, University of Plymouth, Plymouth PL4 8AA, U.K.

Abstract

The main aim of this paper is based on the cache performance test of the QoC: quality of experience framework for cloud

computing on the server. QoC framework is based on the server-side design and implementation of the use of hierarchical

architecture. Reverse proxy technology is used to build a server cluster, which is composed of front-end access layer to

achieve the server for load balancing, improve the performance of the system and the use of built-in distributed cache

server. The cluster consists of the cache acceleration layer, which reduces the load of the backend database. The second

database server cluster, which is constructed by the database master and slave synchronization technology, forms the data

storage layer, which realizes the database read and writes separation and data redundancy. The server-side hierarchical

architecture improves the performance and stability of the entire system, and has a high degree of scalability, laying a solid

foundation for future expansion of system business logic and increases user volume. This paper presents new cache

replacement algorithm for inconsistent video file size and then analyzes the specific needs for the multi-terminal type of

QoC framework, and gives the client and server-side outline design; it describes the implementation details of the client

and the server-side and finally the whole system of detailed functional and performance testing.

Keywords: Load balancing, Cache management, QoE, QoC, Video platform, Cache replacement algorithms.

Received on 05 October 2018, accepted on 01 February 2019, published on 19 February 2019

Copyright © 2019 Asif Ali Laghari et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.156594

1. Introduction

Hypertext transfer protocol is used for communication of

server-side and client applications JSON-type data used for

encapsulation of data communication [1, 2]. Server-side side

interface is designed for the convenience of the

administrator to perform the operation of management and

the client side site made for user operations. Through the

entire server, the architecture can be dividing into front-end

operation server and database server. The main work and

operation of front end of the server is work for the client and

the information exchange when the client sends an

information request. The front-end operation of the client

requests information contained in the client to resolve to

understand the command to get the corresponding limits of

the command and send a command with limits to the back-

end database server for the query. When the database server

returns the processing result, the front-end server

encapsulates the returned data again into a JSON string and

returns the message to the client via the HTTP protocol [3].

On this basis, a content server is build, the user uploaded by

the client all the video content for storage and processing.

The proposed QoC framework does the function of

monitoring the internal cloud environment, the client device

and middle network environment from cloud to end user’s

device [4]. The quality of experience/service (QoE/S) data

submitted by end users and objective QoE/QoS data

collected by the system will be analysed for service delivery

according to SLA. The proposed QoC framework

distinguishes the negative and positive QoE by comparison

of current service delivery parameters. The QoC framework

will upgrade policy for the time being if the user does not

get QoS according to SLA and extend package limitation for

users to complete current task. The proposed Quality of

Experience framework for cloud computing (QoC) designs

and implements a multi-type terminal for the video service

platform. The client can run on multiple types of smart

EAI Endorsed Transactions
on Scalable Information Systems Research Article

__
*Corresponding author. Email: Asifalilaghari@gmail.com

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

http://creativecommons.org/licenses/by/3.0/

2

Figure 1 Simple architecture for multi-terminal type video service platform

terminals, such as the Android app and PC platform to

offer user login and register, the personal information

management, recommended the video, video search, view

and play video, video reviews, video uploading and

downloading The customer's end set up and other eight

functional modules, allowing users to anytime, anywhere

through a variety of intelligent mobile terminal to use the

video service platform services. Simple architecture for

multi-terminal type QoC video service platform is given

in Figure 1.

The motivation of this work is to address the major issue

of QoC framework in terms of cache management on the

server-side to handle more requests and provides fast

response to users on their requests. Therefore, there is a

need to analyze the performance of QoC video framework

on a server in single and cluster mode. Beijing Sixiang

Time Technology Co. Ltd provides a technological

solution and provides free servers for a test of websites

and performance analysis so we use their server to test our

QoC video framework [34]. In this paper, we test the

performance of the QoC framework on the server and

gradually improve the system's ability to resist the

limitations and solve the system defects to meet

the real needs of the video service platform after

optimization. Finally, give the server the most reasonable

and optimized basic design.

The rest of this paper is organized as follows: Section 2

describes related studies, section 3 provides details of

design of server and cloud video server and section 4 is

based on the front-end access layer implementation.

Sections 5 and 6 presents the implementation of cache and

data storage respectively. Section 7 describes realization

of business logic and section 8 is based on the system

performance testing. Finally in section 9 we conclude our

work.

2. Related Work

QoE is used to collect reviews about product or services

[36, 37]. QoE based video cache management scheme for

cellular communication has been proposed by Wang et al.

[9]. In the proposed scheme three parameters under

consideration were a base station, client and RAN cache

server for provision of quality of service of the video

under limited cache capacity and statistics of video

popularities. During the experiments, the author

developed relationship and recording between the QoE

value and three parameters such as the response from the

cache server, request rate from client and bandwidth air

interface. The first step of experiment cache assigned to

different video clips according to their reputations and

Asif Ali Laghari et al.

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

3

second step based on the optimization of cache space

allocation for different video clips based on the QoE value

relationship, bandwidth and request rate based on the

different models. The results show that video cache

management scheme provides better QoE performance

under constraints of total cache capacity, specific

distributions of the request rate and the bandwidth.

Hierarchical video cache scheme for the wireless cloud

was proposed by Ahlehagh and Dey [10]. The purpose of

a hierarchical video cache scheme is to fetch videos

from CDNs, which decrease the backhaul traffic, increase

the network capability to provision more concurrent video

request with better video QoE. The hierarchical model of

cache management increases the network capability by

allowing many cell sites to share the hierarchical levels of

the cache without increasing the total cache size, thus

improving the cache hit ratio. The hierarchical cache

scheme provides better mobility when the user moves

from one cell to another cell with a video session; it is

likely that video downloaded is already in the cache with

the radio access network (RAN) or CDN associated with

the new cell. The results show that using hierarchical

video cache scheme hit ratio improved by 24% and

network capability up to 45% compared to caching only

in the RAN.

In [11], Hoang et al. proposed a mechanism named as

Movie Atom Caching (MAC) which increases the user

experience by reusing previously downloaded metadata

atoms and cache metadata of mp4 movies at video players

before users play the video. The user behaviour model

avoids long startup delay and increases the QoE of users

who leaving or abandons their video streaming before the

video start to play. The results showed that MAC

improves startup delay significantly in MP4 file streaming

applications and have reasonable startup delay with

modern fragmented streaming schemes with very little

difficulty and overhead.

3. Cloud Video Server

The server side consists of three roles: the server, the

database server and the content server.

3.1 Web server

Web server is mainly responsible for receiving and

sending HTTP messages [5]. After receiving the HTTP

request sent by the client, the server will analyze the

JSON data, get the result from the query database,

encapsulate the result as JSON data, and return it to the

client as the response of the HTTP message. In the special

request, such as upload video, download video and play

video, interaction with the content server is required.

3.2 Database server

The database server is responsible for storing the entire

system in addition to all the information outside the video

file [6]. After the Web server receives the HTTP request

from the client, it will return the result to the client by

querying the database.

3.3 Content server

Content server stores all uploaded files of users after

transcoding, multiple copies of video may exist with the

different resolution of the transcoding. When users play

video, through HTTP progressive download way and

direct access to the content server specifies the resolution

of the video file.

The basic structure of the content server is the

number of users, small flow, low degree of concurrent and

low load applications can basically meet the needs of

users. But when the number of users increases on the

system then traffic is also increasing, the system stability

requirements increase, and there will be the following

defects [7].

(1) Server and content server stand-alone hot: all requests

from the client are handled by the server, all upload, and

download from the client and play video requests are

handled by a content server. When the number of user

requests increases, the traffic continues to increase, it will

reach a single server of the calculation and storage

resources limit, a single server response speed and

concurrency will be greatly reduced.

(2) A single point of dependence on the three types of

servers: Web server, database server and content server,

once a server rock situation, the entire system services

will be affected and cannot work properly.

(3) System security is poor: the front of the Web server

and content server, if attacked, will make a lot of

consumption of computing resources that impose an

impact on the entire system services [8].

(4) The lack of cache server: front-end server to receive

each message, basically need to interact with the database,

including add or delete data, which data query operation,

high repeatability, many queries may obtain the same

data, which will produce extra expenses. On the other

hand, when the number of users increases, the user will

upload and play the request each time, will visit the same

content server, and will inevitably cause the user to block,

so the need for the content server also increases the

corresponding content cache server.

3.4. Hierarchical Design of the server

The hierarchical design of the server, making the system

architecture is very clear and easy to carry out

independent design and development work at all levels,

but also reduces the maintenance and upgrading of the

pressure [12]. At the same time, in the hierarchical design

of the server-side scalability is also greatly enhanced [13].

The server architecture is divided into three layers from

top to bottom:

Cache Performance Optimization of QoC Framework

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

4

3.4.1 Front-end access layer

A Nginx reverse proxy server and many Apache Tomcat

server components [14]. Nginx server used for traffic

distribution and load balancing; Apache Tomcat server

used for business logic to give the operating environment.

3.4.2 Cache layer
Cache layer composed of two parts, one composed of

multiple Memcached distributed cache server composed

of cache acceleration layer and back-end database query

structure cache which reduces the load on the database.

The other part is the multi-content cache, the server

composed of the contents of the cache layer and the

content server in the video file cache, the content server

load to more than one server to meet the purpose of load

balancing [15, 16].

3.4.3 Data storage layer
Mainly composed of two parts master and slave MySQL

database server cluster and file server. The master-slave

data cluster uses the master-slave replication mechanism

of the database so that read and write operations to the

database can do separately, reducing the load on each

database server in the entire database server cluster and

improving the performance of the entire database server

cluster. The File server is mainly used to store all users

after uploading the video file after transcoding them.

4. Front-end access layer
implementation

4.1 Reverse proxy load balancing

Load balancing refers to the load (work tasks) to balance,

spread to multiple operating units to do, to work together

to complete the task Load balancing has two meanings:

First, many of concurrent access or data traffic sharing to

multiple nodes on the device separately to reduce the user

to wait for the response time; second, a single heavy load

operation to share multiple nodes on the device to do

parallel processing, each node device processing is

complete. The results will summarize, returned to the

user, the system processing capacity has been greatly

improved. There are many ways to solve server-side load

balancing, where the reverse proxy is one of the most

important ways. The reverse proxy refers to the proxy

server to accept external network connection request, and

then send the request to the internal network of a server,

and the results of the server after processing to return to

the external request to connect the user, then the entire

server the cluster represented as a server for external

users.

The system uses Nginx server to achieve reverse proxy.

Nginx is the same as the engine X, a high-performance

HTTP and the reverse proxy server developed by Russian

programmers for the Rambler search engine. At present,

China's Nginx server users use Sina, Netease, Tencent and

other large network sites. Its features are less memory

consumption, concurrency, support rewrite rules, built-in

health check function, and high stability. Many operating

systems are supported, including FreeBSD, Linux,

Solaris, MacOS X, and compiled versions support a series

of operating systems. The QoC framework uses the Linux

operating system.

4.2 Nginx installation

Nginx is an installation configuration file and is very

simple, but also supports Perl syntax. Firstly the Nginx

installation package downloaded, the current version is

1.0.2 version, and the installation of the source code has

ngix-1.0.2.tar.gz. By default, Nginx will install in / usr /

local / ngix, by setting the compiler option, the installation

directory can modify. The installation process is as

follows:

#tar zxvf nginx-1.0.2.tar.gz

#cd nginx-1.0.2

#. / configure -prefix = / home / nginx -user = asif

#make

#sudo make install

Nginx's installation is over

5.3.3 Nginx configuration

Nginx configuration files are mainly composed of events

module, HTTP module, and server module configuration

[17, 18]. The configuration of the events module

configures Nginx's working mode and the maximum

number of connections allowed. The following modes

work: select (standard mode), poll (standard mode),

kqueue (efficient mode), epoll (efficient mode), / dev /

poll (efficient mode). In this system, select the epoll mode

of operation. As shown below:

events {

use epoll;

worker_connections 50000;

}

The configuration of the HTTP module mainly refers to

the configuration of Nginx as a server, including upload

file size restrictions, gzip compression, server name hash

table size, default file type and so on as shown below.

upstream backend {

server 192.168.1.100: 8000 weight = 1 max_fails = 3

fail_timeout = 30s;

server 192.168.1.100: 8000 weight = 1 max_fails = 3

fail_timeout = 30s;

server 192.168.1.100: 8000 weight = 1 max_fails = 3

fail_timeout = 30s;

server 192.168.1.100: 8000 weight = 1 max_fails = 3

fail_timeout = 30s;

}

Through the upstream field of the reverse proxy server is

responsible for the set [19], backend Nginx is responsible

for the server cluster, the cluster has four Apache Tomcat

server, IP was 192.168.1.91 ~ 192.168.1.94, work at 8000

Asif Ali Laghari et al.

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

5

ports. The weight parameter indicates the weight assigned

by the server, where all Apache Tomcat servers have the

same weight, and each machine can access with the same

probability. The parameters max_fails and fail_timeout-

cooperate to control how Nginx determines that a server

in the upstream is invalid. When the fail_timeout time, a

server connection failed max_fails times, the server will

be considered a failure. At the same time will no longer

be distributed to the failure of the server, to ensure the

reliability of the entire server cluster.

http module configuration refers to the configuration of

the Nginx virtual host, the corresponding configuration is

as follows:

server {

listen to 50000;

server_name localhost;

root / home / nginxroot;

location / vsReq {

proxy_pass http: // backend;

proxy_set_header Host $ host;

proxy_set_header X-Forwarder-For $ remote_addr;

}

Error_page 500 502 503 504 / 50x.html

Location = /50x.html {

Root html

}

}

The above configuration indicates that the listening port

of the reverse proxy server is 50000 and the server named

as local host and will send to the backend server cluster

for processing.

5. Implementation of the cache layer

5.1 Cache Acceleration Layer

5.1.1Memcached Introduction
Memcached is a high-performance distributed memory

object cache server for dynamic web applications to

reduce the load on the database [20]. It reduces the

number of reading databases by caching data and objects

in memory, providing dynamic, database-driven websites.

Memcached based on a hashmap that stores key-value

pairs. All operations, including insert, update, and delete,

are done via the key. Its characteristics are as follows:

(1) The agreement is simple. Memcached server-side and

client-side communication uses text-based protocols

instead of complex XML formats. You can also access

Memcached via Telnet to insert, update, and delete data.

(2) Based on the libevent event handling. libevent is an

event triggered by the network library, that can support

select, epoll, kqueue and other system call management

time mechanism for Windows, Linux, BSD and other

platforms.

(3) Built-in memory storage. In order to improve the

speed of access, Memcached will cache objects stored in

memory. The advantage is that access is very fast and the

disadvantage is to restart the software or system and the

cache data will be lost. When the memory space allocated

by Memcached is exhausted, the program removes the

most frequently used cache objects according to the LRU

(Least Recently Used) algorithm [21].

(4) Memcached server-side is independent of other

Memcached and will not communicate with each other to

share the cache information. Therefore, the distribution of

the entire cache cluster depends on the implementation of

the client.

Since Memcached data is based on a hashmap that stores

key-value pairs, it has a very strong scalability [22]. If the

cache capacity of the distributed cache server cluster of

the current system is exhausted or too complicated, it is

very convenient to extend the cache capacity of the entire

distributed cache server cluster by adding an appropriate

number of Memcached servers.

5.1.2 Memcached distributed algorithm
Memcached server does not communicate with each

other, the server cannot share the cache information, so

the entire cache cluster distributed algorithm depends on

the realization of the Memcached client [23, 24].

The following describes the principle of its distributed

algorithm; the implementation of each client is basically

the same. Assuming that there are three Memcached

servers, node1 ~ node3, the application needs to save the

data named "Tokyo", "China", "Canada", "American".

The first application adds "Tokyo" to "Tokyo" to the

client, and the algorithm implemented by the client will

select the server that saved the data. After selecting the

server, the server is ordered to save "Tokyo" and its value.

Similarly, "China", "Canada", "American" is the first

choice of the corresponding server, and then save. Get the

data, the first need to get the key "Tokyo" passed to the

client, the client according to the same algorithm to

calculate the server to save the data. And then send a

command to the server to obtain the appropriate data. As

long as the algorithm used to save and get the same, select

the server is also consistent. Unless the data is deleted for

some other reason, the corresponding saved data can get.

The Memcached client has many ways to do this, there

are two commonly used distributed algorithms [25, 26]:

(1) Algorithm based on remainder

According to the remainder method of dispersion is very

simple, refers to the number of servers according to the

remainder of the dispersion. Use the hash function (such

as CRC) to find the key value of the hash, and then

divided by the number of servers, according to the

remainder to select the target server.

The remainder of the calculation method is simple, the

data has also been very good dispersion, but also has its

shortcomings. That is when the server cluster in the server

because of the failure to remove or adds a new server, the

cost of cache reorganization is very large. Because the

addition or removal of the server, the number of servers

from N to N-1 or N + 1, the hash value in the spare time,

the change will be very large, so you cannot get the same

server with the save, will cause a lot of cache loss.

Cache Performance Optimization of QoC Framework

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

6

(2) Consistent Hashing algorithm

The Consistent Hashing algorithm finds the hash value of

the Memcached server information (such as IP: port) and

configured on a ring of 0 ~ 232. And then use the same

way to find the need to store the data hash value, but also

mapped to a location on the ring from this position to start

the clockwise search, the data saved to find the first

server. If more than 232, no server has been found, the

data will be saved on the first server.

After adding a server, according to the remainder of the

algorithm because of preservation of the key server will

all change and affect the cache hit rate. However, in the

Consistent Hashing algorithm, only the corresponding key

values on the first server in the counter clockwise

direction of the server's location is affected. The

Consistent Hashing algorithm can greatly limit

redistribution of key values in the case of a change in the

number of servers, which has little effect on the hit rate of

the cache [27, 28].

5.1.3 Memcached deployment
Four servers used to build Memcached server cluster, IP

address was 192.168.1.110 ~ 192.168.1.113. The

following describes the installation process.

First install the dependent libevent library, the process is

as follows:

#tar vxf libevent-2.0.21-stable.tar.gz

#cd libevent-2.0.21

#. / configure -prefix = / usr / local / libevent

#ake && make install

Then install Memcached, the process is as follows:

#tar vxf memcached-1.4.10.tar.gz

#cd memcached-1.4.10

#. / configure -prefix = / home / memcached -with-

libevent = / usr / local / libevent

#make $$ make install

Finally start Memcached server, allocate 2GB of memory,

listening port for 12000, the maximum number of

concurrent connections to 256.

#. / memcached -d -m 2048 -p 12000 -c 256

5.2 Caching Substitution Algorithm for
Content Caching Layer

The content cache layer refers to the contents of the cache

video file server [29]. Its architecture is similar to the

content distribution network and each content cache

server to the different video users to the server, the

content cache server content may also repeat. When the

user sends a video playback request, the server will return

a video playback HTTP address pointing to a content

cache server, the client to the server to initiate a play

connection [30]. If the file does not exist in this cache

server, the file copied from the content server. When the

cache server storage space is full then there is a need for

cache replacement algorithm to select the existing cache

file to delete.

Common cache replacement algorithms based on a

premise that the size of each file is consistent [31, 35]. In

the system each cache file, that is the size of the video file

is inconsistent. Common cache replacement algorithms

may not well adapted to the current system. In order to

solve the problem of cache algorithm failure caused by

file size, this system has developed a set of file-size cache

replacement algorithm which adapts to the system

environment. The following describes the specific

implementation of this algorithm.

SLRU cache is divided into two segments, a probationary

segment and a protected segment. Lines in each segment

are ordered from the most to the least recently accessed

[32]. Data from misses add to the cache at the most

recently accessed end of the probationary segment, to sort

the information of all the video files on the cache server in

the order of the most recent access time [33], and then the

file size to select the files that need to replace. To achieve

this, all caches are divided into two areas. S-LRU

algorithm 1 is given below.

Algorithm 1. Cache Page Replacement

Input: video file, size of file,

Output: Cache Page Replacement for new video

1 Initialized request

2 q = vide file

3 s = size of file

4 If (q in cache)

5 {

6 Goto : LRU stack

7 }

8 Else

9 if (s > remaining storage space)

10 {

11 Download video from content server to

Cache server

12 }

13 Else

14 {

15 Get beg s from LRU stack

16 Delete q

17 }

18 LRU Stack

19 End

Asif Ali Laghari et al.

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

7

When the storage space is not enough time, the algorithm

first selects the sorted stack in the old file size of the

largest video file to remove. When the first file removed,

the remaining storage space is still not enough to

accommodate the new video file, continue to follow the

above way to select the file removed until the remaining

space is enough to accommodate the new video file.

When the storage capacity of the cache server is different

from the total content of the content server, the selection

of the parameters is different.

6. Implementation of Data Storage Layer

The system uses the database master-slave mode to

achieve the server-side metadata storage. In the master

and slave database server cluster, there are three MySQL

database servers, one for the Master database

(192.168.1.120) and the other two as the Slave database

(192.168.1.121 and 192.168.1.122). Writing to the

database (insert, delete, and update) occurs only on the

master database, and the read operation (query) occurs

only on the slave database. Read and write operations are

from the smart terminal client request.

Mysql's replication mechanism can synchronize data on

the master database and the data on the slave database.

The specific implementation is when the master database

is on the write operation, the write operation will be

recorded in the binary log file, through the

synchronization thread on the server to synchronize the

binary log to the slave server, modify the data on the slave

server to achieve data consistency between master and

slave databases.

Compared with the stand-alone mode, the master-slave

mode of the database has the characteristics of load

balancing, reading and writing analysis and high data

security, and is suitable for the environment of the system.

7. The Realization of Business Logic

The server receives the HTTP message sent by the system

client, Restful Web Services determines the type of the

request according to the URL address, and calls the

corresponding module to deal with, including the string

parsing, database query, JSON string encapsulation and

other operations to complete The entire business logic, the

package will be a good string as the corresponding

BODY, back to the client. The following describes the

module processing flow.

The client sends the HTTP request to the client, and the

client divided into eight modules: registration module,

user information management module, video upload and

download module, video information module, video

comment module, recommended video module, video

search module, set the module. The eight modules in

addition to set the module will interact with the server

side.

Most of the modules of the process are the client to the

server to start data requests, the server from the database

query to get the right data and the data packaged in a

format, through the response to the client. The client

performs further processing and presentation based on the

data obtained. The following two sections (sections 8 &

9) describe the detailed flow description of the registered

registration module in which the interaction process is

more complex.

The registration login module divided into three parts:

send verification code part, registration part and login

part. The process of sending the verification code is given

in algorithm 2.

Algorithm 2. Server Verification Code

Input: Login ID,

Output: Verification Code

1 Get facility from JSON

2 For(facility in database)

3 {

4 If (Facility = Register)

5 {

6 Send Identification code

7 Status =0;

8 }

9 Else

10 Status = 1;

11 }

12 Set Status in JSON

13 Return to client

14 End

8. System Performance Testing

8.1 Front End Access Layer
Performance Test

This section uses Apache's own performance testing tool

AB to perform performance testing on the front-end

access layer. The test is divided into two parts, a single

server for stand-alone mode test and load balancing under

the cluster mode test. By simulating large-scale requests,

the average response time in standalone mode and cluster

mode is obtained in the case of different concurrency

numbers. The test results are shown in Figure 2, where the

horizontal axis represents the number of concurrent and

Cache Performance Optimization of QoC Framework

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

8

the vertical axis represents the average response time in

milliseconds.

Figure 2. Performance test of front end access layer
(x-axis = number concurrent and y axis = response

time)

As can be seen from Figure 2, the average response time

of stand-alone mode and cluster mode is not much

different in the case of low concurrency. From the data

analysis, the performance of stand-alone mode is slightly

higher than cluster mode. In the cluster mode, the reverse

proxy server is responsible for traffic distribution. With

the increase in the number of concurrent, single-mode

performance greatly reduced, but the performance of

cluster mode can be maintained in a relatively stable state.

8.2 Cache layer performance test

This section uses libmemcached and the memaslap

performance test tool provided by the source library to

perform a performance test on the cache acceleration

layer. The test object is Memcached distributed cache

cluster, composed of four servers, working in 12000 ports,

the memory space used by 2GB. The test is divided into

multiple groups, each group of cache size is different, and

the length of the key is fixed 16 bytes. For the set cache

operation (set) and get the cache operation (get) were

tested.

When the number of concurrent times is 100, the system

throughput will have a different program of decline,

encountered a bottleneck. Because the memory has

reached the upper limit, and the server's network card

traffic is close to the limit. Also from Figure 2, the

server's cache data is smaller, the greater the throughput

of the system. The cache acceleration layer, which

consists of the server, exhibits good performance and is

able to maintain good performance in high concurrent

situations.

8.3 Data layer performance testing

The tests in this section are divided into two parts: testing

a single server in stand-alone mode on a database server;

testing the server cluster in cluster mode on the two

database servers. Through the preparation of database

testing procedures, simulation database read operation,

the use of multi-threaded technology to simulate

concurrent operations.

The results of the test are shown in Figure 3. The abscissa

indicates the number of concurrent threads. The ordinate

indicates the response time of the database read operation

in Figure 3.

Asif Ali Laghari et al.

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

Cache Performance Optimization of QoC Framework

9

Figure 3. Data layer performance test results

As can be seen from Figure 3, in the stand-alone mode,

with the increase in concurrency intensity, a single

response time increases rapidly, and when the number of

concurrent increases, the single response will reach the

limit and cannot respond. In cluster mode, as the

concurrency intensity increases, the response time

increases slowly, but the performance is better than the

stand-alone mode.

8.4 Cache replacement algorithm test.

For the test of the cache replacement algorithm, it divided

into two parts. The first part is the comparison with other

classical cache replacement algorithms. The second part is

the performance change of the cache replacement

algorithm under different parameter selection.

Use the program to simulate the test, assuming that the

number of video files on the content server is 1 million,

the average size of the video file is 100MB, and then the

size of all the files on the content server is about 100TB.

The access rules for video files conform to the normal

distribution.

The first part of the test simulation algorithms is S-LRU,

RAND, FBR, LRU, and LFU. Among them, the S-LRU

algorithm set the parameter Fold = 60. FBR algorithm

Fnew = 25, Fold = 60. In different cache size, the hit rate

test, the test results are given in Figure.

As shown in Figure 4 the cache capacity is from the time,

the hit rate than many other algorithms are much higher.

In other words, when the cache capacity is not large than

RAND is a better choice. When the cache capacity

gradually increases, the hit rate is not the highest one

algorithm, but compared with several other algorithms,

the difference is not great. In the real cache system, the

parameter Fold can be dynamically changed to achieve

better performance by dynamically scaling the cache

capacity and content capacity.

9. Conclusion

This paper presents the test of QoC video framework on

the server system, through the text analysis and function

screenshots in the form of a complete test of the project

involved in the three modules of the specific functions.

Through the performance test of the server side different

cache algorithms were used, each layer of the hierarchical

structure can run normally according to the design and

can run normally in the case of high concurrent volume

and the processing ability can meet the current business

needs, and the ability to expand the business needs. After

testing, the system can be in normal operation, the three

modules can be a normal collaboration between the

completions of the established demand targets of users.

Through the test section, we can also more clearly

understand the various functional modules of the project.

Figure 4. Replace the algorithm hit rate test chart x-axis is time and y-axis is file size

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

10

Declaration

Availability of data and material: No

Acknowledgments

Professor Hui He is corresponding author of this paper.

Funding

This work is supported by the National Key R&D

Program of China under Grant no. 2017YFB0801801 and

the National Natural Science Foundation of China

(NSFC) under Grant no. 61472108 and Grant 61672186.

Author Contributions: First author has conducted the

research and written the paper, the third author has set the

template and formatted of paper. Rest of the authors

reviewed the paper to set context and contributed as

experts in the field.

Competing Interest: Declare conflicts of interest or

state “The authors declare no conflict of interest."

References

[1] Mills, R. L., & Newman, D. M. (2013). U.S. Patent No.

8,595,613. Washington, DC: U.S. Patent and Trademark

Office.

[2] Carlson, M., Martin C., Alex H., Scott H., Duncan J.-W.,

Anish K., Tobias K. (2012). "Cloud application

management for platforms." OASIS, http://cloudspecs.

org/camp/CAMP-v1. 0. pdf, Tech. Rep.

[3] Zhang, J., Liu, W., Zhao, W., Ma, X., Xu, H., Gong, X., ...

& Yu, H. (2018). A Webpage Offloading Framework for

Smart Devices. Mobile Networks and Applications, 1-14.

[4] Laghari, A. A., He, H., Khan, A., Kumar, N., & Kharel, R.

(2018). Quality of experience framework for cloud

computing (QoC). IEEE Access, 6, 64876-64890.

[5] Wang, P., & Chen, X. (2017, November). Co_Hijacking

Monitor: Collaborative Detecting and Locating Mechanism

for HTTP Spectral Hijacking. In Dependable, Autonomic

and Secure Computing, 15th Intl Conf on Pervasive

Intelligence & Computing, 3rd Intl Conf on Big Data

Intelligence and Computing and Cyber Science and

Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th

Intl(pp. 61-67). IEEE. Congress

(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th

Intl, pp. 61-67. IEEE, 2017.

[6] Cantelon, M., Harter, M., Holowaychuk, T. J., & Rajlich,

N. (2014). Node. js in Action (pp. 17-20). Greenwich:

Manning.

[7] Wu Yuesheng , L. X. (2010). Eclipse 3.0 application

development technology explains [M]. Tsinghua

University Press, 128131.

[8] Ullman . (2009)Database system based tutorial. [M] YUE

Li-hua translated. Machinery Industry Press, 251254.

[9] Wang, Y., Zhou, X., Sun, M., Zhang, L., & Wu, X. (2017).

A new QoE-driven video cache management scheme with

wireless cloud computing in cellular networks. Mobile

Networks and Applications, 22(1), 72-82.

[10] Ahlehagh, H., & Dey, S. (2012, June). Hierarchical video

caching in wireless cloud: Approaches and algorithms.

In Communications (ICC), 2012 IEEE International

Conference on(pp. 7082-7087). IEEE.

[11] Hoang, X. T., & Nguyen, T. T. (2016). Reducing Startup

Time in MP4 On-demand Video Streaming Services with

Movie Atom Caching. VNU Journal of Science: Computer

Science and Communication Engineering, 32(1).

[12] Che, H., Tung, Y., & Wang, Z. (2002). Hierarchical web

caching systems: Modeling, design and experimental

results. IEEE Journal on Selected Areas in

Communications, 20(7), 1305-1314.

[13] Oliver R,.D, and Aubrey.J. U. (2003). Connecting with

Java Web Services. InfoWorld., (l25): 48

[14] Bates, A., Hassan, W. U., Butler, K., Dobra, A., Reaves,

B., Cable, P., ... & Schear, N. (2017, April). Transparent

web service auditing via network provenance functions.

In Proceedings of the 26th International Conference on

World Wide Web (pp. 887-895). International World Wide

Web Conferences Steering Committee.

[15] Xiang, L., Ng, D. W. K., Islam, T., Schober, R., Wong, V.

W., & Wang, J. (2017). Cross-layer optimization of fast

video delivery in cache-and buffer-enabled relaying

networks. IEEE Transactions on Vehicular

Technology, 66(12), 11366-11382.

[16] Li, R., Zhang, J., & Shen, W. (2018). Replicas Strategy

and Cache Optimization of Video Surveillance Systems

Based on Cloud Storage. Future Internet, 10(4), 34.

[17] Nedelcu, C. (2015). Nginx HTTP Server. Packet

Publishing Ltd.

[18] Soni, R. (2016). Introduction to Nginx Web Server.

In Nginx (pp. 1-15). Apress, Berkeley, CA.

[19] Guangji, B . (2007). Java programming tutorial examples.

Beijing: Metallurgical Industry Press.

Asif Ali Laghari et al.

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

11

[20] Li H. (2003). Management information system

development and application. Beijing: Electronic

Industry Press.

[21] Mokhtarian, K., & Jacobsen, H. A. (2017). Flexible

caching algorithms for video content distribution

networks. IEEE/ACM Transactions on Networking

(TON), 25(2), 1062-1075.

[22] Sa, S., X., and Shan W,. (2000) "Introduction to database

system."

[23] Li, Z. (2010). Application of MVC pattern in data

middleware. Computer Engineering, 36(9), 70-72.

[24] Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J.,

Wasi-ur-Rahman, M., Islam, N.S., Ouyang, X., Wang, H.,

Sur, S. and Panda, D.K., 2011, September. Memcached

design on high performance rdma capable interconnects.

In 2011 International Conference on Parallel

Processing (pp. 743-752). IEEE.

[25] McGhan, H., & O'Connor, M. (1998). Picojava: A direct

execution engine for java bytecode. Computer, 31(10), 22-

30.

[26] Fitzpatrick, Brad. "Distributed caching with

memcached." Linux journal 2004, no. 124 (2004): 5.

[27] Stevens, W. R., Fenner, B., & Rudoff, A. M. (2004). UNIX

Network Programming: The Sockets Networking API (Vol.

1). Addison-Wesley Professional.

[28] Bremler-Barr, A., Hay, D., Moyal, I., & Schiff, L. (2017,

June). Load balancing memcached traffic using software

defined networking. In IFIP Networking Conference (IFIP

Networking) and Workshops, 2017 (pp. 1-9). IEEE.

[29] Su, Z., Xu, Q., Hou, F., Yang, Q., & Qi, Q. (2017). Edge

caching for layered video contents in mobile social

networks. IEEE Transactions on Multimedia, 19(10),

2210-2221.

[30] Song L., (2007). Thread pool based WEB server

implementation and monitoring [MS Thesis].: Jilin

University Library.

[31] Li P., Zhu Q., (2004) . Linux design and implementation of

the support of resuming multi-threaded download tools.

Computer Engineering and Applications 1: 121123

[32] Markatos, E. P. (2001). On caching search engine query

results. Computer Communications, 24(2), 137-143.

[33] Boating. (2002). HTTP and multi-threaded download (on)

Programmer Technology (2): 9294

[34] https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6

%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A

7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC

%E5%8F%B8/623449?fr=aladdin

[35] Benhamida, N., Bouallouche-Medjkoune, L., & Aïssani,

D. (2018). Simulation evaluation of a relative frequency

metric for web cache replacement policies. Evolving

Systems, 9(3), 245-254.

[36] Laghari, A. A., He, H., & Channa, M. I. (2018). Measuring

effect of packet reordering on quality of experience (QoE)

in video streaming. 3D Research, 9(3), 30.

[37] Laghari, A. A., He, H., Khan, A., & Karim, S. (2018).

Impact of Video File Format on Quality of Experience

(QoE) of Multimedia Content. 3D Research, 9(3), 39.

Cache Performance Optimization of QoC Framework

EAI Endorsed Transactions on
Scalable Information Systems

12 2018 - 03 2019 | Volume 6 | Issue 20 | e7

https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8/623449?fr=aladdin
https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8/623449?fr=aladdin
https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8/623449?fr=aladdin
https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8/623449?fr=aladdin

