
Research Article

1

Selective lookup and intercommunication in grid (SLIG)

adapting the distributed spanning tree to grid computing

J. Amudhavel 1,*, V.Agalya2 , T. Dhivya2, V.Vijayakumar2, S. Keerthana2, A. Dhamayanthi2 and

B.Bhuvaneswari3

1Department of CSE, KL University, Andhra Pradesh, India
2Department of Computer Science and Engineering, SMVEC, Pondicherry, India
3Department of Computer Science, Pondicherry University, Pondicherry,India.

Abstract

Computing consists of a network of heterogeneous computers, from which a virtual super computer is essentially formed.

It displays immense potential as the various resources across large networks can be pooled to service many and be utilized

by many, using the Internet from around the world. The potential for parallel CPU processing is one of the most attractive

features of a grid. A perfectly scalable application will finish five times faster if it uses five times the number of

processors. Application software as required by the users of the grid. Thus, the structure can be represented in layers, as

implied by the grouping of grid components. Hardware, the bottom layer, would then contain a large number of

heterogeneous resources and would be accessed by a limited number of users to ensure data privacy. The next layer would

then consist of application software and tools that are useful for the users and which are domain-specific. In this research

we analyzed the distributed and high-performance system in grid computing to provide the efficient resource discovery

and message broadcasting. The Distributed Spanning Tree (DST’s) implementation is altered and adapted to achieve

better server load and message load distribution by a selective search and look-up mechanism in this proposal. In addition,

a fault tolerance mechanism is also expressed in this contribution, as part of the DST’s adaptation, such that if the system

which is providing the service fails or leaves the grid environment, then the backup site will immediately take up the

execution and recover the task.

Keywords: Grid computing systems, Distributed spanning tree, Resource selection.

Received on 06 February 2018, accepted on 17 May 2018, published on 19 June 2018

Copyright © 2018 J. Amudhavel et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.19-6-2018.154826

*Corresponding author. Email: info.amudhavel@gmail.com

1. Introduction

The Computing capability has advanced exponentially in

the last few years and has become a widespread demand

in various disciplines, from the natural sciences to the

humanities, with no end in sight. Networks play a critical

role in latest technologies as well, with the rise of

distributed computers and remote networked computing

technologies, for serving high-performance applications

and more. Thus grid computing was born, to take

computing to the next level.
Grid Computing Systems: The main goal of a grid

computing system is to create the illusion of a simple yet

large and powerful self-managing virtual computer

through a network of heterogeneous systems sharing

resources. The potential for parallel CPU processing is

one of the most attractive features of a grid. A perfectly

scalable application will finish five times faster if it uses

five times the number of processors. Other important grid

computing characteristics include collaboration and

resource pooling among a wider audience. Users of the

EAI Endorsed Transactions
on Scalable Information Systems

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

http://creativecommons.org/licenses/by/3.0/

J. Amudhavel 1, V.Agalya2 , T. Dhivya2, V.Vijayakumar2, S. Keerthana2, A. Dhamayanthi2 and B.Bhuvaneswari3

2

grid can be arranged dynamically into a number of virtual

organizations, each with different requirements.

Additionally, sharing in the grid environment is not

limited to only files but also includes other resources such

as equipment, software, services and more. Thus, grid

computing has convinced many governments to engage in

significant investments with the view to develop pervasive

grid computing infrastructures. Grids can theoretically be

of any size and be scalable. Larger grids may have a

hierarchical or some other type of topology. That is,

computers locally connected together using a LAN may

form a cluster of machines, which in turn form a

hierarchy.

Furthermore, large-scale grids may span several

different administration domains. Some of the initiatives

with regards to grid computing include the D-Grid

initiative in Germany, Grid'5000 in France, DAS in the

Netherlands, PL-Grid in Poland, NAREGI in Japan, Open

Science Grid and TeraGrid in the USA [1]. Despite the

initiatives mentioned above, a successful grid computing

environment is still yet to be developed with a full

plethora of users actively participating within the system.

This is due to issues such as job scheduling, resource

selection and management, fault tolerance and more,

which pose a problem still today, inhibiting grid systems

from full-fledged implementation. The intent of this paper

is to propose a new mechanism that improves upon some

of these areas. To enhance the performance of grid

computing systems, we propose a selective search and

discovery method, namely, Selective Lookup &

Intercommunication in Grid (SLIG). This mechanism uses

the Distributed Spanning Tree (DST) as its key

foundation. It aims to implement an adaptation of the DST

to a grid computing environment by introducing selective

discovery based on resource availability, along with fault-

tolerance and request recovery to the resource lookup.

More details of this approach are provided in later

sections of the paper. The following sections present how

various researchers around the world have attempted to

solve these issues and describe our own proposed model.

The paper is organized as follows: After the initial

general description of a grid computing system and

elaborates on the architecture of grid computing systems,

followed by an exploration of the applications of a grid in

Section. Section 2 deals with literature survey of some of

the research presented by various academics worldwide,

while Section 3 describes the existing system and its

structure. Section 4 expounds on the proposed model

along with its system design and architecture, after which

Section 5 examines the system requirements. Finally, we

conclude the paper in Section 6.

2. Related works

Distributed Spanning Tree Structures: One of the most

significant breakthroughs is delivered by Sylvain Dahan et

al [2] in their new, innovative topology, namely the

Distributed Spanning Tree (DST). This structure can be

applied to overlay networks, reducing message load and

traffic, as well as eliminating bottlenecks, which are

frequently seen in tree-based and hierarchical topologies.

DST does this by combining the advantages of a tree

topology with that of a graph topology, such that every

computer acts as a leaf and every computer can act as the

root of its own spanning tree. The DST structure is made

up of nodes, which are each a complete graph of its

children. By applying this new topology to any type of

distributed network, including grid systems, the need for a

master node is eliminated. Furthermore, message load is

distributed across the network, with decreased chances of

bottlenecks occurring. The distributed spanning tree takes

advantage of the local-area inexpensive communications

available to lower levels and makes use of long distance

intercommunication judiciously. This structure can be

easily realized due to its straightforward implementation,

with a routing table being the only data structure needed.

This structure has a few limitations, namely there’s no

recovery method in case of fault-occurrence when

servicing a request, nor are resources grouped together

semantically to achieve higher success rates with lower

number of queries during a resource look-up.

Furthermore, there is no defined method or mechanism to

assess neither the server availability nor the processor

availability of each computer.

Saeed Ebadi and Leyli Mohammad Khanli [3]

proposed a new distributed and hierarchical mechanism

for service discovery in a grid environment, which makes

use of a layered architecture loosely based on the

Distributed Spanning Tree. It contains the layers: client

and service layer, institution layer, organization layer,

domain layer, and the newly suggested root layer. The

root layer is introduced to facilitate communication and

transfer requests between domains, which had initially

been a weakness of the layered architecture prior to their

proposal. This mechanism, furthermore, ensures fault-

tolerance through continuous service discovery such that

several instances of the requested service are found, and

pointers to these instances are made available in the

institution layer. Along with fault-tolerance and recovery,

another advantage offered by this distributed and

hierarchical mechanism is its semantic grouping of

resources, which reduces the number of queries required

for a specific resource search. However, this approach

poses speed issues as the lists of resources maintained at

each layer increase broadly at every layer, resulting in

very slow service and resource look-ups. Furthermore,

there is a restriction placed upon the number of clients

maintained by each institution, along with the number of

institutions maintained by each organization, and so on,

with a limit also on the number of domains that can be

possibly present in the architecture.

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

Selective lookup and intercommunication in grid (SLIG) adapting the distributed spanning tree to grid computing

3

A hybrid policy for fault tolerant load balancing in

grid computing environments is presented by

Balasangameshwara and Raju [4] in which the numerous

unpredictable factors of a grid - namely the heterogeneity,

varying network bandwidths, communication delay,

resource availability, and unequal processor capabilities -

are taken into account. This policy consists of an

architecture of components that each takes care of a

specific task, producing seamless execution and resource

management within the grid environment. For example, a

grid scheduler manages the jobs placed in the job queue

and handles load balancing and site selection, collecting

information from the sites about CPU utilization, CPU

capability, and remaining memory. The load balancing

decision maker processes the list of candidate sites and

decides whether the job should be executed on a local or

remote site. The fault detector and fault manager monitor

the state of sites and use the proposed distributed fault

tolerance policy to manage any failures via passive job

replication and rescheduling. Thus, this hybrid policy

offers optimal resource management and provides better

fault tolerance but does not consider security in its

proceedings.

Another resource management approach is introduced

by B.T. Benjamin Khoo et al [5] called Multiple Resource

Scheduling (MRS) algorithm. It employs a dimensions

concept, presenting a computation and data perspective to

the approach. It efficiently administers the resources in the

grid into a minimal execution schedule by means of a

Virtual Map, finding the best-fit resources for a job

request while considering the different requirements of the

job. Along with the Virtual Map concept, the concept of

Resource Potential is used to determine the execution

overheads and costs of communication between resource

sites. Merits of this approach include improvement of

performances up to 50% and excellent resource

management and resource selection by using job

fragmentation. Areas of improvement include introducing

more dimensions to the approach, such as Quality of

Service and economic considerations, and expanding the

algorithm to take into account latency information. María

Botón-Fernández et al [6] state an Efficient Resources

Selection (ERS) model, achieving self-adaptivity in grid

computing environment applications. This model works

based on evolutionary computation algorithms. ERS

produces improved application execution times and better

throughput of the grid by avoiding resources that may be

overloaded and/or inefficient during resource selection.

All these works utilize tree or graph topologies.

However, as mentioned in the work by Sylvain Dahan et

al, the innovative topology of the DST overcomes the

drawbacks of traffic congestion, message overload and

bottlenecks present in tree topologies. Therefore, although

DST has only been applied to overlay networks so far, it

would be immensely beneficial to apply it to grid

computing systems and accelerate the

intercommunications between the various computers and

processing systems participating on the grid network.

Nevertheless, DST also has its own disadvantages, namely

no mechanism for fault-recovery nor for selective

resource look-up based on semantic resource groupings.

Thus, our proposed model involves re-designing the

DST’s routing table to include and indicate processor

availability such that smart resource selection can be

achieved, maximizing the load distribution and effective

processor utilization within the grid. Furthermore, a

recovery mechanism such as the job replica approach is

looked to be implemented so that the selective look-up

discovers a set of appropriate sites and uses one as the

primary site for the job execution and another as a backup

site, ensuring fault-tolerance.

3. Preliminaries

Distributed Spanning Tree (DST) optimizes flooding and

search algorithms to get better performances. The idea

behind this approach originates from the difference

between tree and graph arrangements. In tree topologies,

merely 2n number of messages for querying is needed for

n nodes or computers. However, one of the biggest

weaknesses behind tree structures is that they have high

chances of experiencing bottlenecks due to the single

access point nature of the nodes as each message can only

reach the child node through the corresponding parent

node. That is, congestion occurs in trees. Conversely,

though graph topologies do not experience bottlenecks,

they require more messages to be sent between the nodes.

Therefore, both tree and graph topologies suffer

drawbacks.

Furthermore, in the tree topology, intermediate nodes

receive and forward messages to their children, while leaf

computers simply wait to receive the messages, resulting

in an imbalance of functions carried out by the various

nodes. It is possible to overcome these disadvantages by

creating a distributed spanning tree in which every

computer acts as a root, as a leaf, and as intermediate

nodes. The root node would then be distributed inherently

among all the computers. Thus, “each computer is a leaf,

and each non-leaf node is distributed through its children,

and each computer is the root of its own spanning tree.”

Structure of DST: DST is considered to have three

different levels, namely: the Logical Level,

Interconnection Level, and the Topological level. Logical

Level: Every leaf is a computer, and each parent node is

the complete graph of its children. This is the DST’s

fundamental concept. The formation of these particular

parent nodes constitutes the different stages of the DST

(Figure 1) Thus, the root is distributed among the entirety

of the child nodes.

Interconnection Level: In stage 1 of the DST, the

corresponding logical level links are realized on the

interconnection level by connecting leaf computers of a

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

J. Amudhavel 1, V.Agalya2 , T. Dhivya2, V.Vijayakumar2, S. Keerthana2, A. Dhamayanthi2 and B.Bhuvaneswari3

4

parent node together such that they produce a complete

graph. Then, in the higher levels, if there is a logical level

link between two non-leaf nodes A and B, then “every

computer that is a descendant of A opens a TCP/IP link

with one random computer that is a descendant of B and

vice versa.”[2] Therefore, every child computer of node A

can directly communicate with node B, and the same is

true in the reverse. These TCP/IP links at each of the

stages can be seen in Figure. 2. The DST’s performance

can be improved by considering how the computer pairs

are established at each of the stages of the DST.

Figure 1. DST with nodes and names

Figure 2. DST with nodes, names and IP

Topological Level: LANs are grouped to form sites such

as university campuses or MANs and they make up the

lower levels of the network hierarchy. These sites may be

aggregated to form autonomous systems, which are then,

in turn, linked together to produce the worldwide Internet.

Message transfers become more expensive and less

efficient the further up in the hierarchy of networks, from

LANs to all the way up to autonomous systems and the

Internet. DST groups together computers belonging to the

same LAN into lower level nodes, thus efficiently

utilizing local-area communications and reducing long-

distance communications.

Implementation of this structure occurs on the

interconnection level where all the TCP/IP links are made.

A routing table is present in every computer, which

manages these TCP/IP links. Two naming notations are

first defined: Every leaf in the DST is a computer, having

a unique IP address. IP addresses are represented by

alphabets. For example, a, b, and c. At each stage of the

DST, each computer that is a descendant of a node knows

a representative computer for each of the brothers of that

particular node. The routing table presents in each

computer stores this knowledge and thus represents the

local view of that computer in the DST.

An example of computer e’srouting table is shown in

Table 1.Each row of the routing table contains data

corresponding to different stages in the DST. The

particular stage of the DST represented by each row is

indicated by the first column of the table. Then, for the

corresponding stage, the index of the child containing the

current computer e is given in the second column. Note

that the name of the leaf, i.e. the name of the current

computer e, can be obtained by reading the second column

top-down. The next few following columns specify which

computer is used as the representative for each child at

that stage so that when the computer e wants to contact a

brother, it sends a message to the representative

mentioned in its routing table

Figure 3. Logical level of DST

Similarly, computer m’s routing table is displayed in

Table 2.Hence, the only data structure needed to put the

DST in place is the routing table at each computer.

Merits of DST: DST offers many advantages over the

conventional network topology. The first being that no

master node is needed, thus eliminating single points of

access, which in turn reduces bottlenecks and congestion

within the network. With the number of multiple paths

present between each node in the DST, message load is

also distributed across the various communication links

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

5

within the network. Furthermore, DST uses local area,

inexpensive communications at lower levels, saving cost

and time. And one of the major benefits is that the DST is

easy to implement, requiring only a routing table to be

present at each leaf node.

COMPUTER E’S ROUTING TABLE

Position Representatives

Stage Index 1 2 3

3 1 e m -

2 2 c e i

1 2 d e f

COMPUTER M’S ROUTING TABLE

Position Representatives

Stage Index 1 2 3

3 2 c m -

2 1 m o -

1 2 j m l

Drawbacks of DST: One of the disadvantages faced with

the DST structure is that resources are not grouped

together semantically. This may lead to more queries than

is needed for a resource look-up. Another drawback is that

there is no defined method to assess the server or

processor availability of a computer in order to effectively

utilize the nodes within a grid environment and thus

maximize processor utilization. Furthermore, no recovery

methods are indicated in case of any failures of servicing

leaf nodes.

4. Proposed work

Formulationn of SLIG: Though grid computing is

thought to have immense potential and powerful enough

to create a virtual super computer, the implementation and

the mechanics of such a system are still not clearly

defined. One of the performance disadvantages is that the

various heterogeneous processors and computers,

including local storage areas, do not have high-speed

network connections. In many cases, the issue of trust also

arises as the participating nodes on the grid may abuse the

access being granted by interfering with other operations

within the system, as well as disturbing stored data,

breaching secure, private and confidential information.

Furthermore, during each resource request, factors

such as application availability, server load, location of

processed data, and others must be considered to find the

best-suited server. Thus, the connections between the

nodes in a grid system are costly. In current middleware

systems, tree based architecture is used to achieve

communication within a grid system. A filter may be

implemented in the tree structure to achieve the best-

suited server look-up, where each server delivers its

parent node an inventory of its applications. This way,

each parent forwards its descendants’ inventory of

applications to its own parent. Thus, request queries need

not be sent to branches not containing the desired

applications. This tree architecture allows for better

scalability in consideration of request frequency.

However, it also has the disadvantage of being overloaded

by request queries and look-ups, increasing the chances of

a bottleneck occurring at intermediate nodes.

To overcome the above-mentioned disadvantages, a

better suited topology other than a tree structure may be

utilized, namely the DST. After all, the client doesn’t need

to contact the best server on the network; it only needs to

approach a good server. This new topology is suitable for

linking self-organized networks, eliminating bottlenecks,

and splitting the message load across various nodes in the

grid. Another major drawback in the tree structure is that

though the search is initiated by the root node, and the

message is redirected through the transitional nodes to the

leaf nodes,

Figure 4. Architecture of selective lookup and

interconnection of Grid

Since most of the computers are usually terminal

nodes or leaves, an imbalance occurs as the leaves don’t

do anything in terms of message forwarding. However,

the distributed spanning tree easily overcomes this as each

of the nodes in the DST may act as a leaf, root, or as an

intermediate node. Additionally, the root node is dispersed

among all the computers; therefore, each computer may

act as the root of its own spanning tree. To achieve

inexpensive network connections between the nodes of a

grid computing system, DST groups together computers

in same LANs to form nodes at lower stages, encouraging

more message transfers across a LAN than through sites

or autonomous systems. This effectively takes advantage

of the locally available efficient and cheap connections.

To achieve the DST topology, the only data structure

needed is a routing table in each computer’s memory.

Therefore, the distributed spanning tree is a well-suited

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

Selective lookup and intercommunication in grid (SLIG) adapting the distributed spanning tree to grid computing

J. Amudhavel 1, V.Agalya2 , T. Dhivya2, V.Vijayakumar2, S. Keerthana2, A. Dhamayanthi2 and B.Bhuvaneswari3

6

topology that can be used to maximize the efficiency of

communication in a grid computing system.

TABLE I. PROCESSOR AVAILABILITY INDEX

Representative Stage 1 Stage 2 Stage 3

a 50 57.7 55.6

b 47 57.7 55.6

c 76 57.7 55.6

d 43 47.3 55.6

e 76 47.3 55.6

f 23 47.3 55.6

g 76 61.7 55.6

h 86 61.7 55.6

i 23 61.7 55.6

j 76 65.3 62.9

l 86 65.3 62.9

m 34 65.3 62.9

n 87 60.5 62.9

o 34 60.5 62.9

However, DST itself has several weaknesses like no

fault-recovery nor selective resource lookup mechanisms

are present. With a selective resource search, the number

of nodes queried for the needed resource can be reduced.

Selective resource lookup can be implemented by

grouping together resources semantically. However, to

adapt the implementation to the grid environment, let’s

consider the characteristics of a grid which make it

successful. One such characteristic is processor utilization

or load distribution.

Uneven arrival patterns of resource requests and

unequal computing capacities result in some nodes being

overloaded while others get under-utilized. Thus, it can be

said that a grid is successful if it evaluates well based on

its processor utilization, where the load is equally spread

among all the nodes on the grid, optimizing the utilization,

throughput, and response of the grid as a whole. To

achieve this fair distribution of load, where the difference

between the heaviest-loaded node and the lightest-loaded

node is minimized, we propose a selective resource

discovery mechanism, namely SLIG. The architecture of

this mechanism is shown below in Fig. 4. SLIG expounds

on the DST, using a modified data structure that indicates

processor availability to allow for smart and selective

resource location. This reduces the message load while

achieving fairer load distribution by assigning the arriving

resource requests to those nodes which are under-utilized.

A fault recovery mechanism is broached in SLIG to

overcome another one of the limitations in the original

DST. It involves using a job replica approach such that the

selective look-up discovers a set of appropriate sites

within the grid and uses one as the primary site for the job

execution, with another as the backup site. Thus, in case

of a failure or an incapacitating issue with regards to the

primary site, the client node can still be able to redirect the

resource request to the backup site for successful

execution. These variations on the original DST which

comprise our new model, SLIG, are further seen in depth

in the following section. Structure of SLIG: Expanding on

the DST, SLIG uses one other data structure called a

processor availability index. It is a global table which

consists of and maintains values indicating the processor

availability of each of the nodes, at each stage of the

DST7. At stage one, the index values are calculated for

each of the leaf computers based on their local resource

usage as well as their resource utilization in service to

remote requests. At higher stages of the DST, the index

value of each logical node is determined by taking into

account the index values of all the children of that node.

That is, to make the SLIG mechanism’s implementation

simpler, the average of all the processor availability

values of the children of a particular non-leaf node is

found, and this resulting average is then assigned as the

processor availability index for that particular non-leaf

node. This process of finding the average index value for

each non-leaf node is continued in the same way,

regardless of however many number of stages there are

within a DST.

The processor availability index varies in size

depending upon the number of stages present in the DST.

The first column within the table lists all the

representatives or leaf computers present within the grid

system. The other columns within the table each contain

the index values representing the processor availability for

each of the nodes at each stage. The number of columns

present within the table that indicate the processor

availability at each stage is directly proportional to the

number of stages the DST contains.

An example of this processor availability index is

displayed in Table 3. This table contains the processor

availability values for each stage of the DST for the

computers a through o. Since we are working with this

sample set of computers, and the resulting DST contains

three logical stages, the corresponding processor

availability index also contains three columns, one for

each of these stages. As shown in Table 3, at stage 1, the

availability values for each of the individual leaf

computers, a through o, is listed, where each of these

values is calculated according to the respective individual

systems based on their local resource utilization and

resource employment to service remote requests. Then at

stage 2, based on how the nodes are logically separated,

the average processor availability value is found for each

of the non-leaf nodes. Similarly, the same is done for the

third stage.

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

7

Thus, at stage 2, since child nodes a, b, and c form

the logical node labelled 11, the average for the processor

availability values of a, b, and c in stage 1 is found and

assigned as the index value for all three child nodes, a, b,

and c in stage 2. Likewise, the same process is done for

the other nodes in stage 2, namely the nodes labelled 12,

13, 21, and 22. Then at stage 3, for instance, the average

of the stage 2 index values of the children in the nodes 11,

12, and 13 is determined and allocated as the index value

for the node labelled as 1 in stage 3. The same method is

performed correspondingly for node 2 in stage 3. This

index table needs to be maintained throughout the

functional lifetime of the grid environment such that the

values within the table are updated accordingly in each of

the stages of the DST as both the local and remote

resource requests are serviced in a dynamic fashion.

Working of SLIG: The mechanism behind SLIG

works off of both the DST routing table and the global

processor availability index. This selective resource

discovery method is initiated when a resource request is

received by any one of the leaf nodes within the grid. Due

to the DST structure of the grid, this specific leaf node

acts as the root of its own spanning tree. Let this particular

leaf node be referred to as R from here on. The process of

finding the best, suitable sites to service the request begins

with R consulting its own DST routing table. The node R

determines who its representatives are in its sibling nodes,

starting at the highest stage n, initially. Once its

representatives are found, R checks the processor

availability index to ascertain which of these

representatives have the higher index value, reflecting that

computer’s idleness or resource availability. This

representative, let it be denoted as P, is then chosen to

receive a copy of the request, forwarded from node R.

Figure 5. Stages of SLIG

Then, the next logical stage or level of the DST, n-1,

is considered and node P refers its own routing table to

determine its representatives at this level, finding the best

representative by comparing the processor availability

index of each and forwarding the copy of the request to

the selected representative node. Thus, each of the

successive lower stages of the DST is considered, and the

process is repeated in the same manner for each of the

subsequently selected nodes until the lowest stage of the

DST, stage 1, is reached. At this level, the best suitable

receiving sites are selected in the same way, yet at this

point, a set of minimum two sites are chosen to ensure

fault-recovery, where the first best site is assigned as

primary and the other(s) may be delegated as secondary or

backup sites. Hence, if the primary node fails, R can

always redirect the resource request to the lastly

discovered secondary site.

Figure 6. SLIG stages

Figure. 5 to Figure. 6 illustrates the working of SLIG,

as explained just prior. As shown in Fig. 5, the leaf

computer e receives a resource request and initiates SLIG

by referring its routing table (see Table 1) to find its

representatives at the highest level, i.e. at stage 3. Once its

representatives are determined, namely itself and m, it

checks the processor availability index (refer Table 3) to

determine which of the representatives have the higher

resource availability. Here, m has the larger index value at

stage 3. Therefore, a copy of the resource request is

forwarded from e to m, as shown in Fig. 6. Once

forwarded, the SLIG mechanism considers the next stage,

stage 2, of the DST. At stage 2, m refers its own routing

table (see Table 2) to find its representatives at this stage,

namely itself and o, before matching them with the

processor availability index to find the best receiver,

which is m itself. Thus, m forwards the copy of the request

to itself, which can be seen in Figure. 6, and prompts

SLIG to consider the next stage of the DST.

In the next level, stage 1 of the DST, m’s

representatives are found to be j, l, and m itself. After

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

Selective lookup and intercommunication in grid (SLIG) adapting the distributed spanning tree to grid computing

J. Amudhavel 1, V.Agalya2 , T. Dhivya2, V.Vijayakumar2, S. Keerthana2, A. Dhamayanthi2 and B.Bhuvaneswari3

8

checking the processor availability index, it can be found

that computer l has the highest resource availability, with

computer j coming in second largest. Therefore, l is

chosen as the primary site to service the resource request

originally from computer e, while j is selected as a

secondary backup site. This is shown in Figure. 6. Thus,

SLIG ensures fault-recovery, in case of any failures with

the servicing leaf nodes, along with selective resource

discovery based on resource availability, to maximize

performance of the grid computing system.

5. Experimental Evaluation and Analysis

A real-time grid computing system involves a network of

computers and hardware devices like any other

conventional interconnecting network. Thus, some of the

basic hardware requirements, as would be seen typically

are: To create a network, many computers are required.

However, in the grid environment, these computers may

be of heterogeneous quality and different in their

processing capabilities and power. In SLIG, each

computer acts as a leaf node on the grid. During operation,

each node may form its own distributed spanning tree,

redirecting resource requests to other leaf computers,

along with servicing any received resource requests.

Every single computer must have a Network Interface

Card (NIC) embedded within as part of the hardware.

NIC is required to connect devices to each other

within a network. Some of the other standard devices

used to interconnect nodes within a network include

switches, bridges, and routers. Thus, some of the hardware

components required to build a real-world grid

environment were seen. However, our contribution of a

selective resource lookup mechanism, that is, adapting the

DST to a grid environment, involves implementing the

mechanism by means of a simulation. Therefore, some of

the software requirements for constructing the simulation

are expressed below. OMNeT++ is an open-source,

portable, and an object-oriented network simulation

framework available for academic and non-profit use. It

allows for recreation of discrete events in a network. It

contains a generic architecture which can be used to

model wired/wireless communication networks, various

network protocols, queuing networks, multiprocessors,

distributed hardware systems, and other entities that

communicate by message exchanges. It can also be used

to validate architectures, and evaluate performance

aspects of the modelled system. OMNeT++ provides the

infrastructure and tools necessary for writing simulations.

This framework’s architecture permits models to be

constructed from reusable modules and components.

Gates (also called a sports) are used to connect modules

with each other, and these modules may be linked together

to create compound modules with unlimited depth of

nesting. Module behaviours, along with the model

topology, can be customized. Modules at the lowest level

of hierarchy, called simple modules, encapsulate model

behaviour and are programmed using the OMNeT++

simulation library, in C++.

OMNeT++ simulations can be executed in graphical

user interfaces for demonstration purposes, as well as in

command-line user interfaces for batch-execution. Parallel

distributed simulations are supported also.

6. Conclusion

In grid computing systems, a large number of

heterogeneous systems are interconnected with different

network bandwidths and unequal processor capabilities.

Using tree topology in grid environments leads to

bottleneck and message overload issues. On the other

hand, using graph topology leads to sending numerous

messages to all other nodes to find the requested service.

Therefore, to achieve better message load distribution and

reduce bottlenecks in a grid computing environment, an

adaptation of the Distributed Spanning Tree (DST)

structure is proposed. This adaptation of the DST hopes to

overcome fault-tolerance issues and improve resource

management through job replica approach and selective

resource look-up respectively. Thus, once the resource

request is received, the selective lookup mechanism will

find both primary and secondary sites suitable for job

execution, ensuring request recovery in case of node

failure, and effective processor utilization in the grid.

References

[1] Uwe Schwiegelshohn, Rosa M. Badia. (2010) Perspectives

of grid computing. Future Generation Computer Systems.

[2] Sylvain Dahan, Laurent Philippe, and Jean-Marc Nicod.

The distributed spanning tree structure. IEEE Transactions

on Parallel and Distributed Systems. 2009 December.

[3] Saeed Ebadi, Leyli Mohammad Khanli. (2011) A new

distributed and hierarchical mechanism for service

discovery in a grid environment. Future Generation

Computer Systems.

[4] Jasma Balasangameshwara, Nedunchezhian Raju. (2012) A

hybrid policy for fault tolerant load balancing in grid

computing environments. Journal of Network and

Computer Applications.

[5] Benjamin Khoo, B.T. Bharadwaj Veeravalli, Terence

Hung, C.W. Simon See. (2007) A multi-dimensional

scheduling scheme in a grid computing environment.

Journal of Parallel and Distributed Computing.

[6] María Botón-Fernández, Miguel A. Vega-Rodriguez,

Francisco Prieto Castrillo. (2014) Self- adaptivity for grid

applications. An Efficient Resources Selection model

based on evolutionary computation algorithms. Parallel

Computing.

[7] Luis Ferreira. (2003) Introduction to grid computing with

globus. ACM digital library.

EAI Endorsed Transactions on

Scalable Information Systems
05 2018 - 06 2018 | Volume 5 | Issue 18 | e3

