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Abstract

Sequential pattern mining is an important data mining problem widely addressed by the data mining
community, with a very large field of applications. The sequence pattern mining aims at extracting a set
of attributes, shared across time among a large number of objects in a given database. The work presented in
this paper is directed towards the general theoretical foundations of the pattern-growth approach. It helps in-
depth understanding of the pattern-growth approach, current status of provided solutions, and direction of
research in this area. In this paper, this study is carried out on a particular class of pattern-growth algorithms
for which patterns are grown by making grow either the current pattern prefix or the current pattern suffix
from the same position at each growth-step. This study leads to a new algorithm called prefixSuffixSpan. Its
correctness is proven and experimentations are performed.
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1. Introduction
A sequence database consists of sequences of ordered
elements or events, recorded with or without a concrete
notion of time. Sequences are common, occurring in
any metric space that facilitates either partial or total
ordering. Customer transactions, codons or nucleotides
in an amino acid, website traversal, computer networks,
DNA sequences and characters in a text string are
examples of where the existence of sequences may be
significant and where the detection of frequent (totally
or partially ordered) subsequences might be useful.
Sequential pattern mining has arisen as a technology
to discover such subsequences. A subsequence, such
as buying first a PC, then a digital camera, and then
a memory card, if it occurs frequently in a customer
transaction database, is a (frequent) sequential pattern.
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Sequential pattern mining [5, 13, 14, 16] is an
important data mining problem widely addressed by
the data mining community, with a very large field of
applications such as finding network alarm patterns,
mining customer purchase patterns, identifying outer
membraneproteins, automatically detecting erroneous
sentences, discovering block correlations in storage
systems, identifying plan failures, identifying copy-
paste and related bugs in large-scale software code,
API specification mining and API usage mining from
open source repositories, and Web log data mining.
Sequential pattern mining aims at extracting a set of
attributes, shared across time among a large number of
objects in a given database.

The sequential pattern mining problem was first
introduced by Agrawal and Srikant [3] in 1995 based on
their study of customer purchase sequences, as follows:
Given a set of sequences, where each sequence consists of
a list of events (or elements) and each event consists of a
set of items, and given a user-specified minimum support
threshold min_sup, sequential pattern mining finds all
frequent subsequences, that is, the subsequences whose
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occurrence frequency in the set of sequences is no less than
min_sup.

Since the first proposal of this new data mining task
and its associated efficient mining algorithms, there has
been a growing number of researchers in the field and
tremendous progress [16] has been made, evidenced
by hundreds of follow-up research publications, on
various kinds of extensions and applications, ranging
from scalable data mining methodologies, to handling
a wide diversity of data types, various extended mining
tasks, and a variety of new applications.

Improvements in sequential pattern mining algo-
rithms have followed similar trend in the related area of
association rule mining and have been motivated by the
need to process more data at a faster speed with lower
cost. Previous studies have developed two major classes
of sequential pattern mining methods : Apriori-based
approaches [3, 4, 8–10, 17, 21, 23, 25, 26] and pattern
growth algorithms [11, 12, 18–20, 22].

The Apriori-based approach form the vast majority
of algorithms proposed in the literature for sequential
pattern mining. Apriori-like algorithms depend mainly
on the Apriori anti-monotony property, which states
the fact that any super-pattern of an infrequent pattern
cannot be frequent, and are based on a candidate
generation-and-test paradigm proposed in association
rule mining [1, 2]. This candidate generation-and-
test paradigm is carried out by GSP [3], SPADE [26],
and SPAM [4]. Mining algorithms derived from this
approach are based on either vertical or horizontal data
formats. Algorithms based on the vertical data format
involve AprioriAll, AprioriSome and DynamicSome [3],
GSP [3], PSP [17] and SPIRIT [8], while those based on
the horizontal data format involve SPADE [26], cSPADE
[25], SPAM [4], LAPIN-SPAM [23], IBM [21] and
PRISM [9, 10]. The generation-and-test paradigm has
the disadvantage of repeatedly generating an explosive
number of candidate sequences and scanning the
database to maintain the support count information for
these sequences during each iteration of the algorithm,
which makes them computationally expensive. To
increase the performance of these algorithms constraint
driven discovery can be carried out. With constraint
driven approaches systems should concentrate only on
user specific or user interested patterns or user specified
constraints such as minimum support, minimum gap
or time interval etc. With regular expressions these
constraints are studied in SPIRIT [8].

To alleviate these problems, the pattern-growth
approach, represented by FreeSpan [11], PrefixSpan
[18, 19] and their further extensions, namely FS-Miner
[6], LAPIN [12, 24], SLPMiner [22] and WAP-mine
[20], for efficient sequential pattern mining adopts
a divide-and-conquer pattern growth paradigm as
follows. Sequence databases are recursively projected
into a set of smaller projected databases based on the

current sequential patterns, and sequential patterns
are grown in each projected database by exploring
only locally frequent fragments [11, 19]. The frequent
pattern growth paradigm removes the need for the
candidate generation and prune steps that occur in
the Apriori-based algorithms and repeatedly narrows
the search space by dividing a sequence database
into a set of smaller projected databases, which are
mined separately. The major advantage of projection-
based sequential pattern-growth algorithms is that
they avoid the candidate generation and prune steps
that occur in the Apriori-based algorithms. Unlike
Apriori-based algorithms, they grow longer sequential
patterns from the shorter frequent ones. The major cost
of these algorithms is the cost of forming projected
databases recursively. To alleviate this problem, a
pseudo-projection method is exploited to reduce this
cost. Instead of performing physical projection, one can
register the index (or identifier) of the corresponding
sequence and the starting position of the projected
suffix in the sequence. Then, a physical projection of a
sequence is replaced by registering a sequence identifier
and the projected position index point. Pseudo-
projection reduces the cost of projection substantially
when the projected database can fit in main memory.

PrefixSpan [18, 19] and FreeSpan [11] differ at the
criteria of partitionning projected databases and at the
criteria of growing patterns. FreeSpan creates projected
databases based on the current set of frequent patterns
without a particular ordering (i.e., pattern-growth
direction), whereas PrefixSpan projects databases by
growing frequent prefixes. Thus, PrefixSpan follows
the unidirectional growth whereas FreeSpan follows
the bidirectional growth. Another difference between
FreeSpan and PrefixSpan is that the pseudo-projection
works efficiently for PrefixSpan but not so for FreeSpan.
This is because for PrefixSpan, an offset position
clearly identifies the suffix and thus the projected
subsequence. However, for FreeSpan, since the next step
pattern-growth can be in both forward and backward
directions from any position, one needs to register
more information on the possible extension positions
in order to identify the remainder of the projected
subsequences.

The work presented in this paper is directed towards
the general theoretical foundations of the pattern-
growth approach, and does not look into algorithms
specific to closed, maximal or incremental sequences,
neither does it investigate special cases of constrained,
approximate or near-match sequential pattern mining.
It aims at enhancing understanding of the pattern-
growth approach, current status of provided solutions,
and direction of research in this area. To this
end, the important key concepts upon which that
approach relies, namely pattern-growth direction,
pattern-growth ordering, search space pruning and
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search space partitioning, are revisited. In this paper,
this study is carried out on a particular class of pattern-
growth algorithms for which patterns are grown by
making grow either the current pattern prefix or
the current pattern suffix from the same position
at each growth-step. This class contains PrefixSpan
and involves both unidirectional and bidirectional
growth. Thus, it is a generalization of PrefixSpan.
However, it does not contain FreeSpan as it makes
grow patterns from any position. Stemming from this
theoretical study, we design a new algorithm called
prefixSuffixSpan. We prove its correctness and perform
experimentations.

The rest of the paper is organized as follows. Section
2 presents the formal definition of the problem of
sequential pattern mining. Section 3 presents the
contribution of the paper. Concluding remarks are
given in section 4.

2. Problem statement and Notation
The problem of mining sequential patterns, and its
associated notation, can be given as follows:

Let I = {i1, i2, ..., in} be a set of literals, termed items,
which comprise the alphabet. An itemset is a subset
of items. A sequence is an ordered list of itemsets.
A sequence s is denoted by ≺ s1, s2, ...sn �, where
sj is an itemset. sj is also called an element of the
sequence, and denoted as (x1, x2, ..., xm), where xk is
an item. For brevity, the brackets are omitted if an
element has only one item, i.e. element (x) is written
as x. An item can occur at most once in an element of
a sequence, but can occur multiple times in different
elements of a sequence. The number of instances of
items in a sequence is called the length of the sequence.
A sequence with length l is called an l-sequence. The
length of a sequence α is denoted |α|. A sequence α =≺
a1a2...an � is called subsequence of another sequence
β =≺ b1b2...bm � and β a supersequence of α, denoted
as α ⊆ β, if there exist integers 1 ≤ j1 < j2 < ... < jn ≤
jm such that a1 ⊆ bj1, a2 ⊆ bj2, ... , an ⊆ bjn. Symbol ε
denotes the empty sequence.

We are given a database S of input-sequences. A
sequence database is a set of tuples of the form ≺
sid, s � where sid is a sequence_id and s a sequence.
A tuple ≺ sid, s � is said to contain a sequence α, if α
is a subsequence of s. The support of a sequence α in
a sequence database S is the number of tuples in the
database containing α, i.e.

support(S, α) = |{≺ sid, s � | ≺ sid, s �∈ S ∧ α ⊆ s}|.

It can be denoted as support(α) if the sequence database
is clear from the context. Given a user-specified positive
integer denoted min_support, termed the minimum
support or the support threshold, a sequence α is
called a sequential pattern in the sequence database

S if support(S, α) ≥ min_support. A sequential pattern
with length l is called an l-pattern. Given a sequence
database and the min_support threshold, sequential
pattern mining is to find the complete set of sequential
patterns in the database.

3. Proposed Work
3.1. Pattern-Growth Directions and Orderings
Definition 1 (Pattern-growth direction). A pattern-growth
direction is a direction along which patterns could grow.
There are two pattern-growth directions, namely left-
to-right and right-to-left directions. Do grow a pattern
along left-to-right (resp. right-to-left) direction is to add
one ore more item to its right (resp. left) hand side.

Definition 2 (Pattern-growth ordering). A pattern-growth
ordering is a specification of the order in which
patterns should grow. A pattern-growth ordering is said
to be unidirectional iff all the patterns should grow
along a unique direction. Otherwise it is said to be
bidirectional. A pattern-growth ordering is said to be
static (resp. dynamic) iff it is fully specified before
the beginning of the mining process (resp. iff it is
constructed during the mining process).

Definition 3 (Basic-static pattern-growth ordering). A basic-
static pattern-growth ordering, also called basic
pattern-growth ordering for sake of simplicity, is an
ordering which is based on a unique pattern-growth
direction, and grow a pattern at the rate of one item per
growth-step.

There are two basic-static pattern-growth orderings,
namely left-to-right ordering (also called prefix-growth
ordering), which consists in growing a prefix of a pattern
at the rate of one item per growth-step at its right hand
side, and right-to-left ordering (also called suffix-growth
ordering), which consists in growing a suffix of a pattern
at the rate of one item per growth-step at its left hand
side.

Definition 4 (Basic-dynamic pattern-growth ordering). A basic-
dynamic pattern-growth ordering is an ordering which
grow a pattern at the rate of one item per growth-step,
and whose pattern-growth direction is determined at
the beginning of each growth-step during the mining
process. It is denoted ?-growth.

Definition 5 (Basic-bidirectional pattern-growth ordering).
A basic-bidirectional pattern-growth ordering is an
ordering which is based on the two distinct pattern-
growth directions, and grow a pattern in each direction
at the rate of one item per couple of growth-steps.

There are two basic-bidirectional pattern-growth
orderings, namely prefix-suffix-growth ordering (i.e. left-
to-right direction followed by right-to-left direction),
which consists in growing a pattern at the rate of one
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item per growth-step during a couple of steps by first
growing a prefix (i.e adding of one item at the right-
hand side) of that pattern followed by the growing of
the corresponding suffix (i.e. adding of one item at
the left-hand side), and suffix-prefix-growth ordering (i.e
right-to-left direction followed by left-to-right direction),
which consists in growing a pattern at the rate of one
item per growth-step during a couple of steps by first
growing a suffix of that pattern followed by the growing
of the corresponding prefix.

Definition 6 (Linear pattern-growth ordering). A linear
pattern-growth ordering is a series of compositions of ?-
growth, prefix-growth and suffix-growth orderings, and
denoted o0-o1-o2 . . . on−1-growth for some n, where oi ∈
{prefix, suffix, ?} (0 ≤ i ≤ n − 1). It is said to be static
iff oi ∈ {prefix, suffix} for all i ∈ {0, 1, 2, . . . , n − 1}.
Otherwise, it is said to be dynamic.

The o0-o1-o2 . . . on−1-growth linear ordering consists
in growing a pattern at the rate of one item per growth-
step during a series of n growth-steps by growing
at step i (0 ≤ i ≤ n − 1) a prefix (resp. suffix) of that
pattern if oi denotes prefix (resp. suffix). If oi ∈ {?},
a pattern-growth direction is determined and an item
is added to the pattern following that direction. For
instance, stemming from the prefix-suffix-suffix-prefix-
growth static linear ordering, one should grow a pattern
in the following order:

• Growth-step 0: Add an item to the right hand side
of a prefix of that pattern.

• Growth-step 1: Add one item to the left hand side
of the corresponding suffix of the previous prefix.

• Growth-step 2: Repeat step 1.

• Growth-step 3: Repeat step 0.

• Growth-step k (k ≥ 4): Repeat step k mod 4.

The prefix-suffix-?-prefix-growth dynamic linear order-
ing grows patterns as prefix-suffix-suffix-prefix-growth
ordering except for steps k that satisfy (k mod 4) = 3.
During such a particular step, a pattern-growth direc-
tion is determined and an item is added to the pattern
following that direction.

FreeSpan and PrefixSpan differ at the criteria of
growing patterns. FreeSpan creates projected databases
based on the current set of frequent patterns without
a particular ordering (i.e., pattern-growth direction).
Since a length-k pattern may grow at any position,
the search for length-(k+1) patterns will need to check
every possible combination, which is costly. Because
of this, FreeSpan do not follow the linear ordering.
However PrefixSpan follows the prefix-growth static
ordering as it projects databases by growing frequent
prefixes.

Given a database of sequences, an open problem is
to find a linear ordering that leads to the best mining
performances over all possible linear orderings.

3.2. Search Space Pruning and Partitioning
Definition 7 (Prefix of an itemset). Suppose all the items
within an itemset are listed alphabetically. Given
an itemset x = (x1x2 . . . xn), another itemset x′ =
(x′1x′2 . . . x′m) (m ≤ n) is called a prefix of x if and
only if x′i = xi for all i ≤ m. If m < n, the prefix is also
denoted as x = (x1x2 . . . xm_).

Definition 8 (The corresponding suffix of a prefix of an itemset).
Let x = (x1x2 . . . xn) be a itemset. Let x′ = (x1x2 . . . xm)
(m ≤ n) be a prefix of x. Itemset x′′ = (xm+1xm+2 . . . xn)
is called the suffix of xwith regards to prefix x′, denoted
as x′′ = x/x′. We also denote x = x′.x′′. Note, if x = x′,
the suffix of x with regards to x′ is empty. If 1 ≤ m < n,
the suffix is also denoted as (_xm+1xm+2 . . . xn).

For example, for the itemset iset = (abcdef gh),
(_ef gh) is the suffix with regards to the prefix (abcd_),
iset = (abcd_).(_ef gh), (abcdef _) is the prefix with
regards to suffix (_gh) and iset = (abcdef _).(_gh).

The following definition introduce the dot operator.
It permits itemset concatenations and sequence con-
catenations.

Definition 9 ("." operator). Let e and e′ be two itemsets
that do not contain the underscore symbol (_). Assume
that all the items in e′ are alphabetically sorted
after those in e. Let γ =≺ e1 . . . en−1a � and µ =≺
be′2 . . . e′m � be two sequences, where ei and e′i are
itemsets that do not contain the underscore symbol,
a ∈ {e, (_items in e), (items in e_), (_items in e_)} and
b ∈ {e′, (_items in e′), (items in e′_), (_items in e′_)}.
The dot operator is defined as follows.

1. e.e′ = ee′

2. e.(_items in e′) = (items in e ∪ e′)

3. e.(items in e′_) = e(items in e′_)

4. e.(_items in e′_) = (items in e ∪ e′_)

5. (items in e_).e′ = (items in e ∪ e′)

6. (items in e_).(_items in e′) = (items in e ∪ e′)

7. (items in e_).(_items in e′_) = (items in e ∪ e′_)

8. (items in e_).(items in e′_) = (items in e ∪ e′_)

9. (_items in e).e′ = (_items in e)e′

10. (_items in e).(items in e′_) =
(_items in e)(items in e′_)

11. (_items in e).(_items in e′_) = (_items in e ∪ e′_)
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12. (_items in e).(_items in e′) = (_items in e ∪ e′)

13. (_items in e_).e′ = (_items in e ∪ e′)

14. (_items in e_).(_items in e′_) = (_items in e ∪ e′_)

15. (_items in e_).(items in e′_) = (_items in e ∪ e′_)

16. (_items in e_).(_items in e′) = (_items in e ∪ e′)

17. γ.µ =≺ e1 . . . en−1a.be′2 . . . e′m �

For example, s =≺a(abc)(ac)(efgh)� =
≺(a).(a_).(_b_).(_c).(a_).(_c).(e_). (_f_).(_g_).(_h)�
and s =≺ (a) � . ≺ (a_) � . ≺ (_b_) � . ≺ (_c) � . ≺ (a_) �
. ≺ (_c) � . ≺ (e_) � . ≺ (_f _) � . ≺ (_g_) � . ≺ (_h) �.

Definition 10 (Prefix of a sequence). [19] Suppose all
the items within an element are listed alphabetically.
Given a sequence α =≺ e1e2 . . . en �, a sequence β =≺
e′1e′2 . . . e′m � (m ≤ n) is called a prefix of α if and
only if 1) e′i = ei for all i ≤ m − 1; 2) e′m ⊆ em; and 3) all
the frequent items in em − e′m are alphabetically sorted
after those in e′m. If e′m , ∅ and e′m ⊂ em the prefix is
also denoted as ≺ e′1e′2 . . . e′m−1(items in e′m_) �.

Definition 11 (The corresponding suffix of a prefix of a
sequence). [19] Given a sequence α =≺ e1e2 . . . en �.
Let β =≺ e1e2 . . . em−1e′m � (m ≤ n) be a prefix of α.
Sequence γ =≺ e′′mem+1 . . . en � is called the suffix
of α with regards to prefix β, denoted as γ = α/β,
where e′′m = em − e′m. We also denote α = β.γ . Note,
if β = α, the suffix of α with regards to β is empty.
If e′′m is not empty, the suffix is also denoted as ≺
(_items in e′′m)em+1 . . . en �.

For example, for the sequence s =≺
a(abc)(ac)(ef gh) �, ≺ (ac)(ef gh) � is the suffix with
regards to the prefix ≺ a(abc) �, ≺ (_bc)(ac)(ef gh) �
is the suffix with regards to the prefix ≺aa�,
≺ (_c)(ac)(ef gh) � is the suffix with regards to the
prefix ≺ a(ab) �, and ≺ a(abc)(a_) � is the prefix with
regards to the suffix ≺ (_c)(ef gh) �.

Given three sequences, y, α and α′, we denote
spc(y, α) (resp. ssc(y, α′)) the shortest prefix (resp.
suffix) of y containing α (resp. α′). If no prefix
(resp. suffix) of y contains α (resp. α′) spc(y, α)
(resp. ssc(y, α′)) does not exist. If the two sequences
spc(y, α) and ssc(y, α′) exist and do not overlap in
sequence y, there exists a sequence yα,α′ such that y =
spc(y, α).yα,α′ .ssc(y, α′). Hence, we have the following
definition.

Definition 12 (Canonical sequence decomposition). Given
three sequences, y, α and α′ such that spc(y, α) and
ssc(y, α′) exist and do not overlap in y, equation y =
spc(y, α).yα,α′ .ssc(y, α′) is the canonical decomposition
of y following prefix α and suffix α′. The left, middle
and right parts of the decomposition are respectively
spc(y, α), yα,α′ and ssc(y, α′).

For example, consider sequence s =≺
a(abc)(ac)(ef gh) �, we have spc(s,≺ a �) =≺ a �,
spc(s,≺ (ab) �) =≺ a(ab) �, spc(s,≺ (ac) �) =≺ a(abc) �,
ssc(s,≺ (c)(e) �) =≺ (c)(ef gh) �, ssc(s,≺ a �) =≺
(ac)(ef gh) �, ssc(s,≺ (bc) �) =≺ (_bc)(ac)(ef gh) �,
s = spc(s,≺ (ab) �). ≺ (_c)(a_) � .ssc(s,≺ (c)(e) �) and
s = spc(s,≺ (ac) �).ε.ssc(s,≺ a �). The two sequences
spc(s,≺ (ab) �) and spc(s,≺ (ab) � overlap in sequence s
as two sets of the index positions of their items in s are
not disjoint.

Stemming from the canonical decompositions of
sequences following prefix α and suffix α′, we define
two sets of the sequence database S as follows. We
denote Sα,α′ the set of subsequences of S prefixed
with α and suffixed with α′ which are obtained
by replacing the left and right parts of canonical
decompositions respectively with α and α′. We have
Sα,α′ = {≺ sid, α.yα,α′ .α′ � | ≺ sid, y � ∈ S and y =
spc(y, α).yα,α′ .ssc(y, α′)}. We denote Sα,α′ the set of
subsequences which are obtained by removing the
left and right parts of canonical decompositions. We
have Sα,α′ = {≺ sid, yα,α′ � | ≺ sid, y � ∈ S and y =
spc(y, α).yα,α′ .ssc(y, α′)}. We also have S = Sε,ε and S =
Sε,ε as ε denotes the empty sequence.

Definition 13 (Extension of the "." operator ). Let S be a
sequence database and let α be a sequence that may
contain the underscore symbol (_). The dot operator is
extended as follows. α.S = {≺ sid, α.s � | ≺ sid, s �∈ S}
and S.α = {≺ sid, s.α � | ≺ sid, s �∈ S}.

Corollary 1 (Associativity of the "." operator). The dot operator
is associative, i.e. given a sequence database S and three
sequences α, α′ and α′′ that may contain the underscore
symbol (_), we have.

1. (α.α′).α′′ = α.(α′.α′′)

2. α.(α′.S) = (α.α′).S

3. (S.α).α′ = S.(α.α′)

4. (α.S).α′ = α.(S.α′)

Proof. It is straightforward from the dot operation
definition.

We have the following lemmas.

Lemma 1 (The support of z in Sα,α′ is that of its counterpart in S).
[15] Given a sequence database S and two sequences α
and α′, for any sequence y prefixed with α and suffixed
with α′, i.e. y = α.z.α′ for some sequence z, we have
support(S, y)=support(Sα,α′ , z).

Proof. Consider the function f from dataset Sα,α′ to
dataset Sα,α′ which assigns tuple ≺ sid, yα,α′ �∈ Sα,α′
to tuple ≺ sid, spc(y, α).yα,α′ .ssc(y, α′) �∈ Sα,α′ , where
tuple ≺ sid, y �∈ S and sequence y admits a canonical
decomposition following prefix α and suffix α′.
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Let’s prove that function f is injective. Consider two
tuples of S ≺ sid, y � and ≺ sid′, y′ �, each having a
canonical decomposition following prefix α and suffix
α′. Assume that f (≺ sid, spc(y, α).yα,α′ .ssc(y, α′) �
) = f (≺ sid′, spc(y′, α).y′α,α′ .ssc(y′, α′) �). This
implies that ≺ sid, yα,α′ �=≺ sid′, y′α,α′ �, which
in turn implies that sid = sid′. This implies that
tuple ≺ sid, y � is equal to ≺ sid′, y′ � as the
identifier of any tuple is unique. It comes that
y = y′. Thus ≺ sid, spc(y, α).yα,α′ .ssc(y, α′) �=≺
sid′, spc(y′, α).y′α,α′ .ssc(y′, α′) �. Therefore function f
is injective.

Let’s prove that function f is surjective. Consider
≺ sid, zα,α′ �∈ Sα,α′ , where ≺ sid, z � belongs to S and
admits a canonical decomposition following prefix
α ans suffix α′. From the definition of function f ,
f (≺ sid, spc(z, α).zα,α′ .ssc(z, α′) �) =≺ sid, zα,α′ � . This
means that ≺ sid, zα,α′ �∈ Sα,α′ admits a pre-image in
Sα,α′ . Thus function f is surjective.

Function f is bijective because it is injective and
surjective. Let consider a sequence y prefixed with α
and suffixed with α′, i.e. y = α.z.α′ for some sequence
z. Denote S(y) = {≺ sid, s � | ≺ sid, s �∈ S ∧ y ⊆ s}.
Recall that support(S, y) = |S(y)|. The definition of S(y)
means that it is the set of sequences of S having a
canonical decomposition following prefix α and suffix
α′ and containing sequence z in their middle part.
It comes that S(y) = {≺ sid, s � | ≺ sid, s �∈ Sα,α′ ∧ z ⊆
sα,α′}. This implies that f (S(y)) = {≺ sid, sα,α′ � | ≺
sid, s �∈ Sα,α′ ∧ z ⊆ sα,α′}. We have |S(y)| = |f (S(y))|,
as function f is bijective. Therefore support(S, y) =
|S(y)| = |f (S(y))| = |support(Sα,α′ , z)|. Hence the lemma.

Lemma 2 (What does set α.patterns(Sα,α′).α′ denote for
patterns(S) ?). The complete set of sequential patterns of
S which are prefixed with α and suffixed with α′ is
equal to α.patterns(Sα,α′).α′, where function patterns
denotes the complete set of sequential patterns of its
unique argument.

Proof. A similar proof is provided in [15]. Let x be
a sequence. Assume that x ∈ α.patterns(Sα,α′).α′. This
means that x = α.z.α′ for some z ∈ patterns(Sα,α′). From
lemma 1, we have support(Sα,α′ , z) = support(S, α.z.α′).
It comes that, x is also a sequential pattern in S as z is a
sequential pattern in Sα,α′ . Thus, α.patterns(Sα,α′).α′ is
included in the set of sequential patterns of S which are
prefixed with α and suffixed with α′.

Now, assume that x is a sequential pattern of S which
is prefixed with α and suffixed with α′. We have x =
α.z.α′ for some sequence z. From lemma 1, we have
support(Sα,α′ , z) = support(S, α.z.α′). It comes that, z is
also a sequential pattern in Sα,α′ as x is a sequential
pattern in S. This means that z ∈ patterns(Sα,α′). Thus,
the complete set of sequential patterns of S which are

prefixed with α and suffixed with α′ is included in
α.patterns(Sα,α′).α′. Hence the lemma.

Lemma 3 (Sequence decomposition lemma). Let β =≺
e′1e′2 . . . e′m � be a sequence such that β = γ.µ for
some non-empty prefix γ and some non-empty suffix µ.
Either γ =≺ e′1 . . . e′k � and µ =≺ e′k+1 . . . e′m �
for some integer k or γ =≺ e′1 . . . e′k−1γk_ �,
µ =≺ _µke′k+1 . . . e′m �, e′k = γk_ ∪ _µk , all the items
in γk_ are alphabetically before those in _µk (this
implies that γk_ ∩ _µk = ∅), γk_ , ∅ and µk_ , ∅ for
some integer k such that 1 ≤ k ≤ m.

Proof. Let β =≺ e′1e′2 . . . e′m �= γ.µ where γ , ε and
µ , ε. According to definitions 10 and 11, γ =≺
e′1 . . . e′k−1γk_ �, µ =≺ _µke′k+1 . . . e′m �, e′k = γk_ ∪
_µk and all the items in γk_ are alphabetically before
those in _µk for some integer k (1 ≤ k ≤ m). We have the
following cases:

• Case 1: k = 1. This means that γ =≺ γ1_ � and
µ =≺ _µ1e′2 . . . e′m �. We have γ1_ , ∅ as γ , ε.
We also have _µ1 , e′1 as the contrary, i.e. _µ1 =
e′1, implies that γ = ε. If _µ1 = ∅, γ1_ = e′1 and
it comes that γ =≺ e′1 � and µ =≺ e′2 . . . e′m �,
which corresponds to the first half of the claim of
the lemma. Otherwise, we have γ1_ , ∅ and µ1_ ,
∅, which leads to the second half of the claim of
the lemma

• Case 2: k = m. This means that γ =≺
e′1 . . . e′m−1γm_ � and µ =≺ _µm �. We have
_µm , ∅ as µ , ε. We also have γm_ , e′m
as the contrary, i.e. γm_ = e′m, implies that
µ = ε. If γm_ = ∅, _µm = e′m and it comes that
γ =≺ e′1 . . . e′m−1 � and µ =≺ e′m �, which
corresponds to the first half of the claim of the
lemma. Otherwise, we have γm_ , ∅ and _µm , ∅,
which leads to the second half of the claim of the
lemma

• Case 3: k , 1, k , m and γk_ = ∅. This implies that
µk_ = e′k . It comes that γ =≺ e′1 . . . e′k−1 � and
µ =≺ e′k . . . e′m �, which corresponds to the first
half of the claim of the lemma.

• Case 4: k , 1, k , m and _µk = ∅. This case is
similar to case 3. We have γk_ = e′k . This implies
that γ =≺ e′1 . . . e′k � and µ =≺ e′k+1 . . . e′m �,
which corresponds to the first half of the claim of
the lemma.

• Case 5: k , 1, k , m, γk_ , ∅ and _µk , ∅. This
leads to the second half of the claim of the lemma.

6
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specified before the beginning of the mining process.
It is said to be dynamic iff it is constructed during the
mining process.

Lemma 4 (Search-space partitioning based on prefix and/or
suffix). We have the following.

1. Let {x1, x2, . . . , xn} be the complete set of length-
1 sequential patterns in a sequence database S.
The complete set of sequential patterns in S can
be divided into n disjoint subsets in two different
ways:

(a) Prefix-item-based search-space partitioning
[19]: The i-th subset (1 ≤ i ≤ n) is the set of
sequential patterns with prefix xi .

(b) Suffix-item-based search-space partitioning
[19]: The i-th subset (1 ≤ i ≤ n) is the set of
sequential patterns with suffix xi .

2. Let α be a length-l sequential pattern and
{β1, β2, . . . , βp} be the set of all length-(l+1)
sequential patterns with prefix α. Let α′ be a
length-l′ sequential pattern and {γ1, γ2, . . . , γq}
be the set of all length-(l′ + 1) sequential patterns
with suffix α′. We have:

(a) Prefix-based search-space partitioning [19]:
The complete set of sequential patterns with
prefix α, except for α itself, can be divided
into p disjoint subsets. The i-th subset
(1 ≤ i ≤ p) is the set of sequential patterns
prefixed with βi .

(b) Suffix-based search-space partitioning [19]:
The complete set of sequential patterns with
suffix α′, except for α′ itself, can be divided
into q disjoint subsets. The j-th subset
(1 ≤ j ≤ q) is the set of sequential patterns
suffixed with γj .

(c) Prefix-suffix-based search-space partitioning
[15]: The complete set of sequential patterns
with prefix α and suffix α′, and of length
greater or equal to l + l′ + 1, can be divided
into p or q disjoint subsets. In the first
partition, the i-th subset (1 ≤ i ≤ p) is the set
of sequential patterns prefixed with βi and
suffixed with α′. In the second partition, the
j-th subset (1 ≤ j ≤ q) is the set of sequential
patterns prefixed with α and suffixed with
γj .

Proof. Parts (1.a) and (2.a) of the lemma are proven in
[19]. The proof of parts (1.b) and (2.b) of the lemma is
similar to the proof of parts (1.a) and (2.a). Thus, we
only show the correctness of part (2.c).

Let µ be a sequential pattern of length greater or
equal to l + l′ + 1, with prefix α and with suffix α′,

where α is of length l and α′ is of length l′. The length-
(l+1) prefix of µ is a sequential pattern according to
an Apriori principle which states that a subsequence
of a sequential pattern is also a sequential pattern.
Furthermore, α is a prefix of the length-(l+1) prefix of
µ, according to the definition of prefix. This implies that
there exists some i (1 ≤ i ≤ p) such that βi is the length-
(l+1) prefix of µ. Thus µ is in the i-th subset of the first
partition. On the other hand, since the length-k prefix
of a sequence is unique, the subsets are disjoint and this
implies that µ belongs to only one determined subset.
Thus, we have (2.c) for the first partition. The proof of
(2.c) for the second partition is similar. Therefore we
have the lemma.

Corollary 2 (Partitioning S with sets xi .patterns(Sxi ,ε)
and patterns(Sε,xi ).xi ). [15] Let {x1, x2, . . . , xn} be
the complete set of length-1 sequential patterns in a
sequence database S. The complete set of sequential
patterns in S can be divided into n disjoint subsets in
two different ways:

1. Prefix-item-based search-space partitioning : The i-
th subset (1 ≤ i ≤ n) is xi .patterns(Sxi ,ε), where
function patterns denotes the set of sequential
patterns of its unique argument.

2. Suffix-item-based search-space partitioning : The i-
th subset (1 ≤ i ≤ n) is patterns(Sε,xi ).xi .

Proof. According to part 1.(a) of lemma 4, the i-
th subset is the set of sequential patterns which
are prefixed with xi . From lemma 2, this subset is
xi .patterns(Sxi ,ε). Similarly, according to part 1.(b) of
lemma 4, the i-th subset is the set of sequential
patterns suffixed with xi . From lemma 2, this subset is
patterns(Sε,xi ).xi .

Lemma 5 (A linear ordering induces a recursive pruning and
partitioning). [15] A linear ordering induces a recursive
pruning and partitioning of the search space. The
recursive partitioning is static if the linear ordering is
static and dynamic otherwise.

Proof. Let us consider the initial sequence database S,
two integer numbers l and l′, a length-l sequential
pattern α, a length-l′ sequential pattern α′, and a
linear ordering L0 = o0-o1-o2 . . . on−1-growth. Note that
ε.Sε,ε.ε = S is the starting database of the recursive
pruning and partitioning of the search space. In the
following, we show how L0 induces a recursive pruning
and partitioning of α.Sα,α′ .α′.

• Case 1: o0 ∈ {prefix}. Let {β1.α′, β2.α′, . . . , βp.α′}
be the set of all length-(l + l′ + 1) sequential
patterns with respect to database α.Sα,α′ .α′,
prefixed with α and suffixed with α′. From
lemma 3, either βi = α. ≺ (xi) � or βi = α. ≺
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(_xi) �, where xi is an item and 1 ≤ i ≤ p. This
implies that X = {≺ x1 �, ≺ x2 �, . . . , ≺ xp �} is
the complete set of length-1 sequential patterns
with respect to database Sα,α′ . It comes that any
item that does not belong to X is not frequent
with respect to Sα,α′ . Thus, any sequence that
contains an item that does not belong to X
is not frequent with respect to Sα,α′ according
to an Apriori principle which states that any
supersequence of an infrequent sequence is also
infrequent. Because of this, all the infrequent
items with respect to Sα,α′ are removed from
the z part (also called the middle part) of all
sequence α.z.α′ ∈ α.Sα,α′ .α′. This pruning step
leads to a new sequence database α.S′α,α′ .α′
whose middle parts of sequences do not contain
infrequent items with respect to Sα,α′ . Then,
α.S′α,α′ .α′ is partitioned according to part (2.c)
of lemma 4. The i-th sub-database (1 ≤ i ≤ p) of
α.S′α,α′ .α′ , denoted α.xi .S′α.xi ,α′ .α′, is the set of
subsequences of α.S′α,α′ .α′ with prefix βi = α.xi
and with suffix α′. Each sub-database is in turn
recursively pruned and partitioned according to
L1 = o1-o2 . . . on−1-growth linear ordering.

• Case 2: o0 ∈ {suffix}. Let {α.γ1, α.γ2, . . . , α.γp} be
the set of all length-(l + l′ + 1) sequential patterns
with respect to database α.Sα,α′ .α′, prefixed
with α and suffixed with α′. From lemma 3,
either γi =≺ (xi) � .α′ or γi =≺ (xi_) � .α′ (1 ≤
i ≤ p). As in case 1, α.S′α,α′ .α′ is partitioned
according to part (2.c) of lemma 4. The i-th
sub-database (1 ≤ i ≤ p) of α.S′α,α′ .α′ , denoted
α.S′α,xi .α′ .xi .α′, is the set of subsequences of
α.S′α,α′ .α′ with prefix α and with suffix γi =
xi .α′. As in case 1, each sub-database is in turn
recursively pruned and partitioned according to
L1 = o1-o2 . . . on−1-growth linear ordering.

• Case 3: o0 ∈ {?}. A pattern-growth direction is
determined during the mining process. Then,
α.Sα,α′ .α′ is recursively pruned and partitioned as
in case 1 if the determined direction is left-to-right
and as in case 2 otherwise.

From definitions 6 and 14 it is easy to see that the
recursive partitioning is static if the linear ordering is
static and dynamic otherwise.

3.3. A Pattern-growth algorithm based on linear
orderings
In this section, we translate the study made in sections
3.1 and 3.2 into a function called prefixSuffixSpan.
It is presented in algorithm 1. The initial call of
prefixSuffixSpan (1) takes as arguments the initial
database S, the empty sequence ε as the current

prefix and suffix values, a linear ordering o =
o0-o1-o2 ... on−1-growth, the index of the pattern-growth
direction o0 in o, i.e. 0, and the support threshold, (2)
searches for the complete list X = {x1, x2, . . . , xp} of all
the length-1 sequential patterns of S, (4) saves α.xi .α′
as a new sequential pattern for each pattern xi found,
assuming that the current prefix and suffix values
are respectively α and α′. (5) constructs, following
corollary 2, a new database Sxi ,ε (resp. Sε,xi ) for
each length-1 pattern xi found if o0 = pref ix (resp.
o0 = suf f ix), and (6) makes a recursive call per new
constructed database with arguments (6.1) α.xi as the
new current prefix value if o0 = pref ix and α otherwise,
(6.2) xi .α′ as the new current suffix value if o0 =
suf f ix and α′ otherwise, (6.3) o as the pattern-growth
ordering, (6.4) the index of the pattern-growth direction
o1 in o, i.e. 1, and (6.5) the support threshold.

Function prefixSuffixSpan recursively generates sub-
databases from a partition of the current database
following corollary 2. We consider that database S
is of depth 0. A generated database is of depth d
if it has been constructed using d length-1 patterns.
Such a database is denoted S(x1, x2, ..., xd), where
x1, x2, ... , xd are the length-1 patterns used to
construct that database step by step in this order. In
the behaviour of prefixSuffixSpan, S(x1) is generated
from the initial database S, S(x1, x2) is generated
from S(x1), more generally S(x1, x2, ..., xi) is
generated from S(x1, x2, ..., xi−1) where i < d and
S(x1, x2, ..., xd) is generated from S(x1, x2, ..., xd−1).
Thus S(x1, x2, ..., xd) is consructed in d steps,
where step 1 corresponds to the construction of S(x1)
from S and step i corresponds to the construction of
S(x1, x2, ..., xi) from S(x1, x2, ..., xi−1). In terms
of prefixSuffixSpan calls, step 1 corresponds to the
initial function call prefixSuffixSpan(S, ε, ε, o, 0,
min_support) and step i corresponds to the function
call prefixSuffixSpan(S(x1, x2, ..., xi−1), α, α′, o, i −
1, min_support). We consider that this last function
call is of depth i − 1. Similarly, we consider that the
initial call is of depth 0. For sake of simplicity, we
assume that if d = 0, S(x1, x2, ..., xd) denotes the initial
sequence database S, i.e. S(x1, x2, ..., xd) = S. We have
the following lemmas and corollaries.

Lemma 6 (Veracity of algorithm 2). Given a depth d
call prefixSuffixSpan(S(x1, x2, ..., xd), α, α′, o, d,
min_support), where o = o0-o1-o2 ... od+1 ... on−1-growth
and o−1 denotes either "prefix" or "suffix", the function
call prefixSuffixArguments(α, α′, od−1,X) of algorithm
2, where X = {x1, x2, ..., xd}, provides the values of
prefix α and suffix α′.

Proof. We prove the result by induction on the value
of depth. If depth d = 0, we have S(x1, x2, ..., xd) =
S and the result is true as the first prefixSuffixSpan
call takes the empty sequence ε as the current
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Algorithm 1 (prefixSuffixSpan) PrefixSuffix-growth
sequential pattern mining. The initial call is
prefixSuffixSpan(S, ε, ε, o, 0, min_support)

1: function prefixSuffixSpan(Dataset S, Prefix α, Suf-

fix α′, Ordering o, int position, float min_support)

2: direction← getTheGrowthDirection(o,

position)

3: if (direction ==’*’) then

4: direction← getTheGrowthDirection()

5: end if

6: X ← findAllLengthOnePattern(S, direction,

min_support)

7: Comment: X = {x1, x2, . . . , xp} is obtained

by scanning all the sequences of S following

the pattern-growth direction direction. Length-1

pattern xi is either of the form ≺ _item � or ≺

item_ � or ≺ _item_ � or ≺ item �, where item

denotes an item.

8: Comment: The following loop Append succes-

sively xi and α′ to α to form a sequential pattern.

9: for all xi ∈ X do

10: SaveSequentialPattern(α.xi .α′)

11: end for

12: nextP os← getTheNextPosition(o, position).

13: if (direction == ”pref ix”) then

14: for all xi ∈ X do

15: prefixSuffixSpan(Sxi ,ε, α.xi , α′, o,

nextP os, min_support)

16: end for

17: else . direction == ”suf f ix”

18: for all xi ∈ X do

19: prefixSuffixSpan(Sε,xi , α, xi .α′, o,

nextP os, min_support)

20: end for

21: end if

22: end function

Algorithm 2 Computation of the current prefix and
suffix values of a prefixSuffixSpan call of depth d with
S(x1, x2, ..., xd) as the database (of depth d).

1: function prefixSuffixArguments(Prefix α, Suffix

α′, Direction oi , ListOfLengthOnePatterns X)

2: α ← ε

3: α′ ← ε

4: for all i ∈ {integer k such that 1 ≤ k ≤ d} do .

This set is empty if d = 0.

5: if oi−1 == ”pref ix” then

6: α ← α.xi

7: else . oi−1 == ”suf f ix”

8: α′ ← xi .α′

9: end if

10: end for

11: end function

prefix and suffix values. Assume that the result is
true up to depth d. Stemming from this, we prove
in the following that the result is also true for
depth (d + 1). To this end, we consider a dataset of
depth (d + 1) denotes S(x1, x2, ..., xd , xd+1). It is
constructed either by statement 15 or 19 of algorithm
1 during the execution of the prefixSuffixSpan call
having S(x1, x2, ..., xd) as the dataset argument.
Denote α and α′ the values of prefix and suffix
arguments related to that prefixSuffixSpan call. From
statement 15 of algorithm 1, the current prefix value for
depth (d + 1) is α.xi if od = ”pref ix” and α otherwise.
Similarly, from statement 19 of algorithm 1, the
current prefix value for depth (d + 1) is xi .α′ if od =
”suf f ix” and α′ otherwise. Futhermore, the function
call prefixSuffixArguments(α, α′, od−1,X) of algorithm
2 provides the values of α and α′ as concatenations of
length-1 sequences belonging to X = {x1, x2, . . . , xd} as
we have assumed that the lemma is true for depth d.
Therefore the values of prefix and suffix arguments for
the prefixSuffixSpan call having S(x1, x2, ..., xd , xd+1)
as the database argument are also provided by the
function call prefixSuffixArguments(α, α′, od , X ∪
{xd+1}) of algorithm 2 as concatenations of length-
1 sequences belonging to X ∪ {xd+1}. Hence the
lemma.

Corollary 3 (The sizes of the prefix and suffix of
a prefixSuffixSpan call ). Given a depth d call
prefixSuffixSpan(S(x1, x2, ..., xd), α, α′, o, d,
min_support), with o = o0-o1-o2 ... od+1 ... on−1-growth,
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the lengths of prefix α and suffix α′ are
respectively |α| = |{oi |oi = ”pref ix” ∧ i ≤ d − 1}| and
|α′| = |{oi |oi = ”suf f ix” ∧ i ≤ d − 1}|.

Proof. Consider a depth d call
prefixSuffixSpan(S(x1, x2, ..., xd), α, α′, o, d,
min_support), with o = o0-o1-o2 ... od+1 ... on−1-growth.
According to lemma 6, the values of prefix α
and suffix α′ are provided by the function call
prefixSuffixArguments(α, α′, od−1, X) of algorithm 2,
where X = {x1, x2, ..., xd}. From statements 6 (resp.
8) of algorithm 2, the length of α (resp. α′) is equal
to the number of pattern-growth directions belonging
to {o1, o2, ..., od−1} which are equal to "prefix" (resp.
"suffix"). Hence the corollary.

Lemma 7 (The support of z in a depth-d set is that of its
S’counterpart). Given a depth d database S(x1, x2, ..., xd)
obtained from the initial database S and a linear
ordering o = o0-o1-o2 ... od+1 ... on−1-growth, we have
support(S(x1, x2, ..., xd), z) = support(S, α.z.α′) for any
sequence z, where prefix α and suffix α′ are provided by
the function call prefixSuffixArguments(α, α′, od−1, X)
and X = {x1, x2, ..., xd}.

Proof. We prove the result by induction on the depth
value. Let z denotes a sequence. If depth d = 0, we have
S(x1, x2, ..., xd) = S, α = ε and α′ = ε. It comes that,
support(S(x1, x2, ..., xd), z) = support(S, α.z.α′) and the
result is true for this case. Now, assume that the result is
true up to depth d. Stemming from this, we prove in the
following that the result is also true for depth (d + 1).
To this end, we consider a dataset of depth (d + 1)
denotes D′ = S(x1, x2, ..., xd , xd+1). It is constructed
either by statement 15 or 19 of algorithm 1 during
the execution of the prefixSuffixSpan call having D =
S(x1, x2, ..., xd) as the dataset argument. Denote α and
α′ the prefix and suffix values related to D following
algorithm 2. Similarly denote α1 and α′1 the prefix and
suffix values related to D′ following algorithm 2. We
have α1 = α.xd+1 if od = ”pref ix” and α1 = α otherwise.
Similarly, α′1 = xd+1.α′ if od = ”suf f ix” and α′1 = α′
otherwise. From statements 15 and 19, D′ = Dxd+1,ε if
od = ”pref ix” and D′ = Dε,xd+1 if od = ”suf f ix”.

Assume that od = ”pref ix”. This implies that
support(D′, z) = support(D, xd+1.z) according
to lemma 1. Futhermore, support(D, xd+1.z) =
support(S, α.xd+1.z.α′) from the induction assumption.
It comes support(D′, z) = support(S, α.xd+1.z.α′) =
support(S, α1.z.α′1). Thus the lemma holds in this case.

Similarly, assume that od = ”suf f ix”. This implies
that support(D′, z) = support(D, z.xd+1) according
to lemma 1. Futhermore, support(D, z.xd+1) =
support(S, α.z.xd+1.α′) from the induction assumption.
It comes support(D′, z) = support(S, α.z.xd+1.α′) =
support(S, α1.z.α′1). Thus the lemma also holds in this
second case. Therefore the lemma holds.

Corollary 4 (prefixSuffixSpan tells the truth). If prefixSuffixS-
pan says that a sequence s is a pattern, then s is really a
sequential pattern of the initial sequence database S.

Proof. Consider a depth d call
prefixSuffixSpan(S(y1, y2, ..., yd), α, α′, o, d,
min_support), with o = o0-o1-o2 ... od+1 ... on−1-growth.
According to lemma 6, the values of prefix α and
suffix α′ are provided by algorithm 2. Denote
D = S(y1, y2, ..., yd). Statement 10 of algorithm 1 saves
α.xi .α′ as a pattern, where xi is a length-1 sequential
pattern of D, i.e. support(D, xi) ≥ min_support.
From lemma 7, support(D, xi) = support(S, α.xi .α′).
This implies that support(S, α.xi .α′) ≥ min_support.
Therefore α.xi .α′ is a sequential pattern in S. Hence the
Corollary.

Lemma 8 (Any pattern of size d induces a depth-d database).
Given an ordering o = o0-o1-o2 ... od+1 ... on−1-growth
and a sequential pattern x = x1.x2 ... xd of the initial
database S which is decomposed in terms of a product
of length-1 sequential patterns, there exists a depth d
database D = S(xi1, xi2, ..., xid), where the xij ’s, 1 ≤ j ≤
d, are distinct length-1 sequential patterns belonging
to X = {x1, x2, ... xd} and the values of prefix α and
suffix α′ related to the prefixSuffixSpan call having D as
the database are α = x1.x2 ... xp and α′ = xp+1.xp+2 ... xd
respectively, with p = |{oi |oi = ”pref ix” ∧ i ≤ d − 1}|.

Proof. Consider an ordering o =
o0-o1-o2 ... od+1 ... on−1-growth and a sequential
pattern x of the initial database S. We prove the result
by induction on the length of x denoted d. Assume
that |x| = 1, i.e. d = 1. Consider the execution of the
initial function call prefixSuffixSpan(S, ε, ε, o, 0,
min_support). During that execution, statement 6 of
algorithm 1 generates x as a length-1 sequential pattern
as it finds all the length-1 sequential patterns of the
initial database S. Futhermore, from statement 15 of
algorithm 1, we have S(x) = Sx,ε, α = x and α′ = ε if
o0 = ”pref ix”. Similarly, from statement 19, we have
S(x) = Sε,x, α = ε and α′ = x if o0 = ”suf f ix”. Thus, the
lemma is true if |x| = 1.

Now, assume that the result is true up to rank d,
i.e. for any sequential pattern belonging to S whose
length is lower or equal to d. Consider a length-(d+1)
sequential pattern x′ of the initial database S. The
following equation x′ = x′1.x′2 ... x′p.x′p+1.x′p+2 ... x′d+1,
with p = |{oi |oi = ”pref ix” ∧ i ≤ d − 1}|, decomposes x′
in terms of a product of length-1 sequential patterns
which can be divided into three parts. The left part
is x′1.x′2 ... x′p, the middle part is x′p+1 and the right
part is x′p+2 ... x′d+1. Consider the subsequence of x′,
denoted x, obtained by applying the dot operator with
the left and right parts of x′ as operands. We have
x = x′1.x′2 ... x′p.x′p+2 ... x′d+1.
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Sequence x is a sequential pattern according to
an Apriori principle which states that a subsequence
of a sequential pattern is also a sequential pattern.
From the induction assumption, the lemma is true
for subsequence x of x′ as |x| = d. Thus, there exists
a prefixSuffixSpan call having D = S(xi1, xi2, ..., xid)
as the database argument, α = x′1.x′2 ... x′p as the
prefix value and α′ = x′p+2.x′p+3 ... x′d+1 as the suffix
value, where p = |{oi |oi = ”pref ix” ∧ 0 ≤ i ≤ d − 1}| and
xij ’s, 1 ≤ j ≤ d, are distinct length-1 sequential patterns
belonging to X = {x′1, x′2, ... x′p, x′p+2, ... x′d+1}. Note
that prefix α and suffix α′ correspond respectively to
the left and right parts of sequence x′, and it comes
that x′ = α.x′p+1.α′. Note also that the function call
corresponds to prefixSuffixSpan(S(xi1, xi2, ..., xid), α,
α′, o, d, min_support).

Futhermore, according to lemma 7, we
have support(S(xi1, xi2, ..., xid), x′p+1) =
support(S, α.x′p+1.α′). It comes that
support(S(xi1, xi2, ..., xid), x′p+1) = support(S, x′)
as x′ = α.x′p+1.α′, and this implies that x′p+1 is a
length-1 sequential pattern of D = S(xi1, xi2, ..., xid)
as x′ is a sequential pattern of S. This implies
that during the execution of the function call
prefixSuffixSpan(S(xi1, xi2, ..., xid), α, α′, o, d,
min_support), statement 6 of algorithm 1 generates
x′p+1 as a length-1 sequential pattern as it finds
all the length-1 sequential patterns of D. Thus,
during the execution, statement 15 of algorithm
1 makes a prefixSuffixSpan recursive call with
D′ = S(xi1, xi2, ..., xid , xp+1) = Dx′p+1,ε as the database
argument, α1 = α.x′p+1 = x′1.x′2 ... x′p+1 as the
prefix value and α′1 = α′ = x′p+2.x′p+3 ... x′d+1 as
the suffix value if od = ”pref ix”. In this first case,
we have |{oi |oi = ”pref ix” ∧ 0 ≤ i ≤ d}| = (p + 1),
and the lemma holds. Similarly, statement 19 of
algorithm 1 makes a prefixSuffixSpan recursive call
with D′ = S(xi1, xi2, ..., xid , xp+1) = Dε,x′p+1 as the
database argument, α1 = α = x′1.x′2 ... x′p as the prefix
value and α′1 = x′p+1.α′ = x′p+1.x′p+2 ... x′d+1 as the
suffix value if od = ”suf f ix”. In this second case, we
have |{oi |oi = ”pref ix” ∧ 0 ≤ i ≤ d}| = p, and the lemma
holds. Therefore we have the lemma.

Corollary 5 (prefixSuffixSpan discovers all the patterns).
Algorithm prefixSuffixSpan declares all sequence which
is a sequential pattern as so.

Proof. Consider a length-d sequential pattern x =
x1.x2 ... xd of the initial database S and a linear ordering
o = o0-o1-o2 ... od+1 ... on−1-growth. From lemma 8,
there exists a depth d database D = S(xi1, xi2, ..., xid),
where the xij ’s, 1 ≤ j ≤ d, are distinct length-1 sequen-
tial patterns belonging to X = {x1, x2, ... xd} and
the values of prefix α and suffix α′ related to the
prefixSuffixSpan call having D as the database are

α = x1.x2 ... xp and α′ = xp+1.xp+2 ... xd respectively,
with p = |{oi |oi = ”pref ix” ∧ i ≤ d − 1}|. This function
call is prefixSuffixSpan(S(xi1, xi2, ..., xid), α, α′,
o, d, min_support). It is launched either by state-
ment 15 of algorithm 1 if od−1 = ”pref ix” or by
statement 19 otherwise, i.e. if od−1 = ”suf f ix”, dur-
ing the execution of the previous function call, i.e.
prefixSuffixSpan(S(xi1, xi2, ..., xi(d−1)), α2, α′2, o, d −
1, min_support). The prefix value α and the suffix
value α′ are calculated during the execution of that
previous function call as follows. From statement 15 of
algorithm 1, we have α = α2.xp and α′ = α′2 if od−1 =
”pref ix”. Similarly, from statement 19 of algorithm 1,
we have α = α2 and α′ = xp+1.α′2 if od−1 = ”suf f ix”.
Futhermore, during the execution of that previous func-
tion call, statement 6 of algorithm 1 saves α2.xp.α′2 as
a sequential pattern. Therefore x = α.α′ = α2.xp.α′2 is
save as a sequential pattern. Hence the corollary.

We have the following theorem.

Theorem 1 (Veracity of prefixSuffixSpan ). A sequence is a
pattern is and only if prefixSuffixSpan says so.

Proof. It is straightforward from corollaries 4 and 5.

3.4. Experimental results
The data set used here is collected from the
webpage of SPMF software [7]. This webpage
(http://www.philippe-fournier-viger.com/spmf/index.
php) provides large data sets in SPMF format that are
often used in the data mining litterature for evaluating
and comparing algorithm performance.

Experiments were performed on the real-life. The
first data set is LEVIATHAN. It contains 5834 sequences
and 9025 distinct items. The second data set is Kosarak.
It is a very large data set containing 990000 sequences
of click-stream data from an hungarian news portal.
The third data set is BIBLE. It is a conversion of
the Bible into a sequence database (each word is an
item). It contains 36 369 sequences and 13905 distinct
items. The fourth data set is BMSWebView2 (Gazelle).
It is called here BMS2. It contains 59601 sequences of
clickstream data from e-commerce and 3340 distinct
items.

These dataset in its original format can be found
at http://fimi.ua.ac.be/data/. A SPMF format
is provided at http://www.philippe-fournier-
viger.com/spmf/index.php.

All experiments are done on a 4-cores of 2.16GHz
Intel(R) Pentium(R) CPU N3530 with 4 gigabytes main
memory, running Ubuntu 14.04 LTS. The algorithms
are implemented in Java and grounded on SPMF
software [7].

The experiments consisted of running the pattern-
growth algorithms related to the left-to-right and
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Figure 1. Performances of left-to-right and right-to-left pattern-
growth orderings on the real-life data set LEVIATHAN. The left-
to-right pattern-growth ordering is 1.27 − 1.4 times faster, and
requires less memory if the support threshold is less than 0.05
and a little more memory otherwise.

the right-to-left orderings. on each data set while
decreasing the support threshold until algorithms
became too long to execute or ran out of memory. The
performances are presented in figures 1, 2, 3 and 4.
These figures show that the order in which patterns
grow has a significant influence on the performances.

4. Conclusion

Sequential pattern mining is an important data mining
problem with broad applications. However, it is also a
challenging problem since the mining may have to gen-
erate or examine a combinatorially explosive number of
intermediate subsequences. It has been a focused theme
in data mining research for over a decade. Abundant lit-
erature has been dedicated to this research and tremen-
dous progress has been made, ranging from efficient
and scalable algorithms for frequent itemset mining to
numerous research frontiers, such as sequential pattern
mining, structured pattern mining, correlation mining,
associative classification, and frequent pattern-based
clustering, as well as their broad applications.
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Figure 2. Performances of left-to-right and right-to-left pattern-
growth orderings on the real-life data set kosarak_converted.
The right-to-left pattern-growth ordering is 2.6 − 5.6 times
faster and requires almost 1.2 times less memory than the other
direction.

In this article, an overview is provided on the current
status of pattern growth-based sequential pattern
mining algorithms. The important key concepts of
the pattern-growth approach are revisited, formally
defined and extended. A new class of pattern-growth
algorithms inspired from a new class of pattern-
growth orderings, called linear ordering, is introduced.
Issues of this new class of pattern-growth algorithms
related to search space pruning and partitioning are
investigated. Stemming from this theoretical study, a
new algorithm called prefixSuffixSpan is designed. Its
correctness is proven and related experimental results
are presented.
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