
Cooperative Data Caching for Cloud Data Servers
Mingcong Yang1,∗, Kai Guo1, Yongbing Zhang1

1Graduate School of Systems and Information Engineering, University of Tsukuba, Japan

Abstract

Thanks to the advance of cloud computing technologies, users can access the data stored at cloud data centers
at any time and from any where. However, the data centers are usually sparsely distributed over the Internet
and are far away from end users. In this paper, we consider to construct a cache network by a large number of
cache nodes close to the end users in order to minimize the data access delay. We firstly formulate the problem
of placing the replicas of data items to cache nodes as a mixed integer programming (MIP) problem. Then,
we proposed an efficient heuristic algorithm that allocates at least one replica of each data item in the cache
network and attempt to allocate more data items so as to minimize the total data access cost. The simulation
results show that our proposed algorithm behaves much better than a well-known LRU algorithm and the
computation complexity is limited.
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1. Introduction
In recent years, the rapid development of Internet
technologies has brought many new challenges to
data services across the Internet. Many data-sensitive
applications such as those for online video distribution
and data sharing require increasingly transmission
speed and wide bandwidth. Furthermore, most of or
a large percentage of users located in the same or
nearby areas may require the same kinds of data and
the data request patterns may not change frequently.
In order to reduce the data access latency and save
the scarce network bandwidth, allocating the replicas
of the required data at the locations close to end
users is an efficient approach. However, when using
a single cache node for multiple users like web cache
servers [2, 8], the cache node may be overloaded
and its service becomes unavailable if the cache node
fails. In addition, if a data item required by a user
is not stored at the cache node the user has to
obtain the data item from the data center directly,
resulting in a long access time and extra data traffic
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over the network [12]. Therefore, other researchers
proposed a cooperative caching approach [4] in which
a number of caching nodes are interconnected and
all the caching nodes work together to provide better
data services to users. Compared with the single node
caching, the cooperative caching approach can reduce
the processing time of data requests, improve the
cache hit rates, and provide higher fault tolerance. In
a cooperative caching approach, each node makes its
caching decisions using the information of data access
and data caching in the network, yielding better overall
data access performance [10, 16].

The main disadvantage of previous cooperative
caching approaches is that a node has to know the
network topology and also the data cache information
and therefore when the network size is large the
overhead for exchanging the data cache information
should be significantly high. However, when a node
makes a caching decision it takes into account of only
its surrounding nodes. When a data miss occurs a node
has to obtain the data from a node far away or in
the worst case from the data center. In this paper, we
propose an overall caching approach in which data
caching decisions are made by using the information of
the whole nodes in the network. We formulate the data
allocation problem as a mixed integer programming
(MIP) problem. When the problem size becomes large,
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the problem is NP-hard, and therefore we propose an
efficient heuristic algorithm. In order to evaluate our
proposed heuristic algorithm, we use a well-known
caching approach, called least recently used (LRU), and
a simple caching algorithm in which copies of data
items are randomly allocated to the nodes.

The remainder of this paper is organized as follows.
In Section 2, we summarize the related researches on
caching technologies. In Section 3, we describe the
network model considered in this paper and formulate
the data replica allocation problem as a MIP problem
and show it is NP-hard. In Section 4, we describe our
proposed heuristic algorithm in detail. The results of
our simulation experiments are given in Section 5.
Finally, in Section 6, we conclude the paper briefly.

2. Related Work
Many researchers focused on various cooperative
caching techniques [4, 6, 15, 16, 18, 19]. Chankhunthod
et al. [4] proposed a hierarchical caching mechanism
for web applications in which lower cache servers
can resolve misses through a higher level cache
servers. Researchers also proposed cooperative caching
protocols such as internet cache protocol (ICP) [19],
cache array routing protocol (CARP) [18], and summary
cache [6]. Cooperative caching approaches can be
classified into hierarchical cooperative caching and
distributed cooperative caching[15, 16].

Ramaswamy et al. [14] proposed a cache deployment
scheme based on the expiration age which is defined
as the time difference that an object be replaced out
and be cached depending on the statistical information.
It shows the time difference between a document that
is removed and the document that is accessed since it
has been accessed last time; or the time which is the
time difference between an document is removed and
an document entering a cache divided by the number
of hits. When a node receives a document, it determines
if the document should be cached through exchanging
the expiration age information with other nodes.

Bhattachrjee et al. [3] proposed a cache deployment
scheme for self-organizing wide-area network. The
authors proposed the concept of caching radius, which
is defined by the number of hops between nodes. When
a message called reply message is transferred between
two nodes, the number of hops will gradually increase
when a node receives the reply message. If the number
of hops of the reply message is an integer multiple
of it’s caching radius, the node will store this object.
however, this paper does not consider the impact of
data’s popularity.

Li et al. [10] proposed a local optimization cache
deployment scheme using a modified Dijkstra algo-
rithm to obtain an optimal caching path. Eum.S et al. [5]
and Liu et al. [11] proposed a randomly cache selection

approach and a dynamic linear programming approach
in which the information of nodes such as node status
and the demand patterns are taken into account when
deciding the cache locations on the path from a cache
node to the data source.

Ming et al. [13] proposed a cache deployment scheme
based on the age which is defined as the distance to the
server and its popularity. The further a content is from a
server or the more popular the content is, the longer age
it has. A data item with a longer age is to be kept longer
in the cache. This paper did an overall optimization for
the data distribution of all nodes on the paths from the
requesting node to the data center.

The core idea of those approaches is to replace the
data items according to data requests dynamically in
order to improve the cache hit rate and reduce the data
access delay. However, there are two important factors
that are not taken into account in those approaches. One
is that each node needs to maintain a cached data table,
which contains the location information of the cached
data items in the network, and the cached data table
should be updated frequently. This greatly increases the
computational overhead of nodes[14]. Another is that
the decision of whether to cache a data item at a node
is made using only the information of the transmission
path from the node to the original data source, say,
data center, instead of the neighboring nodes around
the node[5, 10, 11, 13].

Cloud data centers generally store all the data
provided to users but are usually located in locations
far away from end users. On the other hand, the users
residing in the same or nearby areas may access the
same kinds of data frequently and furthermore the data
request patterns may not change frequently. Therefore,
it is a good way to place the replicas of data frequently
accessed by users at locations near to the users in order
to reduce the data access delay and also to reduce
the workload at the data center and save network
bandwidth. Due to the storage limitation of a cache
node, it is beneficial to construct a cache network by
a number of cache nodes so that a user can easily find
the required data at a nearby cache node. This paper
focuses on how to allocate the replicas of data items
that are originally stored at the data centers in order
to minimize the total cost for data access.

3. Model and Problem Formulation
In this section, we first introduce the network model
and describe the assumptions considered in this paper.
Then we formulate the data allocation problem as a
mixed integer programming (MIP) problem.

3.1. NetworkModel
The network model considered in this paper is shown
in Figure 1 where the set of cache nodes and the
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Figure 1. Data cache network.

data center are denoted by N = {n1, n2, . . . , n|N |} and n0,
respectively. We let N ′ = N ∪ n0. The shortest distance
between nodes i and j, which can be determined using
an appropriate shortest path algorithm, is denoted by
dij , and we assume that the data transmission between
nodes i and j passes through the shortest path between
nodes i and j. We assume that the distance from a cache
node to the data center is much longer than the distance
between any two cache nodes, i.e., di0 � dij (i, j ∈ N ).
The set of data items stored at data center n0 is denoted
by M = {d1, d2, . . . , d|M |}. The demand of data item k

arrival at node i is denoted by φki and the set of the total

demands at node i is denoted by Φi = {φ1
i , φ

2
i , . . . , φ

|M |
i }.

The size of data item k is denoted by sk and the cache
capacity of node i is denoted by Ai . We assume that∑
i∈N

Ai ≥
∑
k∈M

sk .The cost for data transmission per unit

data per unit distance is denoted by ξ which is a positive
constant value. We assume that the cost for transferring
a data item from a node to another node depends only
on the size of the data item and the distance between
the two nodes.

We define the cost that node i requests data item sk at
node j as follows.

ckij = skdijφ
k
i ξ, ∀i ∈ N, j ∈ N

′ . (1)

We also define the caching decision variables for nodes
j (j ∈ N ) by Λj such that

Λj = {λ1
j , λ

2
j , . . . , λ

|M |
j }, (2)

where

λkj =
{

1, if node j caches data item k,
0, otherwise.

We assume that a user accesses data item k from one
and only one nearest cache node that keeps the replica
of data time k and a variable rkij is used to show the
decision. If node i accesses data item k stored at node

j, rkij = 1 and rkij = 0 otherwise. For node i, if there are
more than one nearest nodes keeping data item k, node
i can choose any node to obtain data item k. If data item
k is not cached at any node, a node requesting data item
k should obtain data item k from the data center. The
notation used in this paper is shown in Table 1.

Table 1. Notationused in the paper.

N set of cache nodes in the network
N ′ set of nodes including data center in the network
dij shortest distance between nodes i and j
M set of data items
sk size of data item k
φki demand of data item k of node i
Φi total demand of node i
Ai cache capacity of node i
ξ cost for data transmission per unit data per unit

distance
ckij cost for requesting data item k from node i to

node j
λkj caching decision variable,

λkj =
{

1, if node j caches data item k,
0, otherwise

Λj caching decision vector of node j,

i.e., Λj = {λ1
j , λ

2
j , . . . , λ

|M |
j }

rkij accessing decision variable,

rkij =


1, if node i accesses data item k stored

at node j,
0, otherwise

3.2. ProblemFormulation

Our objective in this paper is to allocate the replicas of
data items to cache nodes so as to minimize the total
cost for data access. We formulate the data allocation
problem (DAP) as a mixed integer programming (MIP)
problem as follows. Therefore, in this paper we propose
a heuristic algorithm to solve the problem.
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min
∑
i∈N

∑
j∈N ′

∑
k∈M

ckijλ
k
j r
k
ij

=
∑
i∈N

∑
j∈N ′

∑
k∈M

skdijφ
k
i λ

k
j r
k
ijξ (3)

subject to ∑
j∈N ′

rkij = 1, i ∈ N, k ∈M, (4)

λkj ≥ r
k
ij , i, j ∈ N, k ∈M, (5)∑

k∈M
skλ

k
j ≤ Aj , j ∈ N, (6)

λkj ∈ {0, 1}, j ∈ N, k ∈M, (7)

rkij ∈ {0, 1}, i ∈ N, j ∈ N
′ , k ∈M. (8)

Constraint (4) means that node i retrieves the data
from exactly one location, either a cache node or
the data center. Constraint (5) indicates that the data
request of node i cannot be served by node j unless
the data replica is cached at node j. Constraint (6)
shows that the total size of data replicas cached at
node j can not exceed its cache capacity. Furthermore,
constraints (7) and (8) are the integrality constraints
on the decision variables. It is well-known [7, 9] that
an MIP problem like problem (3) is NP-hard, so when
the number of nodes become large, it will be difficult
to calculate. Therefore, in this paper we propose a
heuristic algorithm to solve the problem.

4. Proposed Heuristic Algorithm
In our proposed algorithm, we initially allocate each
data item k ∈M to the cache nodes without considering
the node capacity constraints. Then, we check whether
there are any nodes exceeding their node capacities
and reallocate the data copies to other nodes. Finally,
we attempt to additionally allocate more data items to
cache nodes that still have available caches.

4.1. Initial data itemallocation

We define the cost of all the nodes accessing data item k
cached at node j as follows.

lkj =
∑
i∈N

ckij , i ∈ N. (9)

Then, we order the nodes according to lkj (j ∈ N ) in the
ascending order. That is, we let

Θk = {jk1 , j
k
2 , . . . , j

k
|N |}, k ∈M,

such that lk
jk1
≤ lk

jk2
≤ . . . ≤ lk

jk|N |
.

Figure 2. Data item allocation without considering node
capacities.

Data item k is allocated to node jk1 that is the head node
on list Θk (k ∈M). We letGj denote the set of data items
allocated to node j and the total size of those data items
may exceed the capacity of node j.

Here, we define Θk[x] to represent the x-th item in Θk

and therefore the copy of each data item k is allocated
to Θk[1]. An example is shown as in Figure 2 where
there are three cache nodes, denoted by 1, 2, and 3, and
nine data items, denoted by 1, 2, . . . , 9. In this example,
G1 = {2, 3, 4, 7, 9}, G2 = {1, 5, 6}, and G3 = {8}. Note that
some nodes may violate the node capacities, e.g., the
total size of data items in G1 exceeds the capacity of
node 1.

4.2. Data itemreallocation

For node j which capacity constraint is violated, we
calculate the cost difference, denoted by Dk , for the
allocations of data item k (k ∈ Gj ) between nodes Θk[1]
and Θk[2] as follows:

Dk = lk
jk1
− lk

jk2
. (10)

We order the data items in Gj by Dk in the descending
order and let Gj_sorted denote the new set keeping the
descending order. Here, we also define Gj_sorted[x] to
represent the x-th data item in Gj_sorted . We will not
move the data items at the head of Gj_sorted at node
j until the node capacity is violated but attempt to
move the data items at the tail to other nodes that
still have available cache spaces. The data reallocation
algorithm is described in detail in Algorithm 1. Since
Algorithm 1 is activated only for the nodes, denoted
by the set Nv , which capacity constraints are violated,
therefore we should have |Nv | � |N |. The computation
complexity of Algorithm 1 is governed by the sorting for
lkj (j ∈ N ) and the data reallocation for nodes violating
capacity constraints, and therefore should be bound by
O(MN logN +M2 logM) in the worst case.

4.3. Additionaldata itemallocation

We attempt to allocate data items as many as possible
in order to minimize the total cost for data access. We
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Algorithm 1 Data item reallocation algorithm.

Input: Gj_sorted and Aj for j ∈ N , Θk and sk for k ∈M
Output: Gj_adjusted (j ∈ N ) which is the set of data

items allocated to nodes
f = 1
while f , 0 do
f = 0
for each j ∈ N do
while

∑
k∈Gj_sorted

sk > Aj do

klast = Gj_sorted[‖Gj_sorted‖]
move data item klast from node j to it’s
suboptimal caching node based on Θklast [2].
delete the first item Θklast [1] in list Θklast .

end while
end for
for each j ∈ N do
if

∑
k∈Gj_sorted

sk > Aj then

f = 1
end if

end for
end while
for each j ∈ N do
Gj_adjusted = Gj_sorted

end for

order
lkj∑

i∈N
φki sk

(k ∈M) in the ascending order; that is,

ηj = {k1
j , k

2
j , . . . , k

|M |
j } such that

l
k1
j

j∑
i∈N

φ
k1
j

i sk1
j

≤
l
k2
j

j∑
i∈N

φ
k2
j

i sk2
j

≤ . . . ≤
l
k|M |j

j∑
i∈N

φ
k|M |j

i s
k|M |j

.

We see that the data item at the head of ηj yields
the least cost for data access and therefore we attempt
to allocate additionally the data items at the head to
node j if the data items are not cached. Here, we use
ηj [x] to denote the x-th data item in ηj . The additional
data item allocation algorithm is shown in Algorithm
2. Since the data allocation at each node is performed
independently, therefore the computation complexity
of Algorithm 2 is O(NM logM). Therefore, the total
computation complexity of the proposed algorithm in
the worst case isO(MN logN +M2 logM +MN logM).

5. Simulation Experiments
In this section, we describe the performance evaluation
of our proposed data allocation algorithm by simulation
experiments. The simulation experiment was done

Algorithm 2 Additional data item allocation algorithm.

Input: Gj_adjusted , Aj and ηj for j ∈ N , sk for k ∈M
Output: Gj_result which is the set of the resulting data

items allocated to nodes j ∈ N
for each j ∈ N do
for each k∗ ∈ ηj do
if

∑
k∈Gj_adjusted

sk < Aj then

if k∗ < Gj_adjusted and
∑

k∈Gi_adjusted

sk + sk∗ ≤ Aj

then
append data item k∗ in list Gj_adjusted

end if
end if

end for
end for
for each j ∈ N do
Gj_result = Gj_adjusted

end for

under the environment as shown in Table 2. We
compare our proposed algorithm with a cooperative
least recently used (LRU) algorithm that is extended
based on the well-known LRU algorithm and a random
algorithm in which data items are randomly allocated
to cache nodes. In the cooperative LRU algorithm,
each node determines its only caching decisions
independently and when a cache miss occurs the node
determine whether to obtain the required data from the
data center or from a neighboring node.

Table 2. Simulationenvironment

Operating system Windows 10
Programming language Python 3.2
Processor Type Intel(R) Core(TM)

i5-4570 CPU
@ 3.20GHz[4]

Memory size 200MB
Percentage distribution of resources 30 percent

In the simulation experiments, we considered a cache
network with 20 nodes and the distance of a node pairs
is chosen randomly between [1, 100] and the distances
the caching nodes to the data center are all set to be
1000. The number of data items is fixed to 200. The
demand for each data item is generated randomly to
[1, 50].For the sake of simplicity, we assumed that all
the data items have the same size in the simulation
experiments.
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Figure 3. E˙ect of nodecapacity.

5.1. E˙ect of nodecapacity
Figure 3 shows the total cost for data allocation of
our proposed algorithm compared with the random
data allocation algorithm and the cooperative LRU
algorithm when changing the capacity of node cache.
We see from this figure that our proposed algorithm
performs much better than random algorithm and the
LRU algorithm especially when the node capacity of
the nodes is small. As we mentioned in Section 1, the
capacity of a cache node is generally much smaller than
that of the data center and therefore it is crucial to
take the cooperation of nearby nodes into consideration
in caching decisions. The LRU algorithm behaves the
worst since the cache hit misses occurs frequently and
to cache a new data item, a old cached data item has
to be removed from the cache. The random algorithm
performs worse than our proposed algorithm since it
determines the data allocation without considering the
demands of users.

5.2. E˙ect of data demand
Figure 4 shows the simulation results when multiplying
the data demand of each node from 1 to 10 times
that in the results shown in Figure 3 while the node
capacity is fixed to be 20, that is, one tenth of the whole
data items. We see from Figure 4 that when the data
demand becomes large, the performance of the LRU
degrades very fast and that our proposed algorithm
behaves better than others. We also see that when the
data demand becomes larger the superiority of our
proposed algorithm over the random algorithm is more
significant.

5.3. E˙ect of networksize
Figure 5 shows the performance comparison of our
proposed algorithm with the LRU and the random

Figure 4. E˙ect of data demand.

Figure 5. The change of numberof nodes and data items.

algorithms. The capacity of each node is fixed to be 10,
while the number of cache nodes was changed from 10
to 100. The number of data items was changed from 50
to 500 corresponding to the number of nodes, that is, on
average two copies of each data item can be cached in
the network. From Figure 5, we can see that when the
network size becomes larger, our algorithm performs
better than other two algorithms. Not surprisingly, the
cooperative LRU algorithm behaves worse than others.
The computation times of our proposed algorithm was
1969 seconds when the number of cache nodes was 100
and the number of data items was 500.

6. Conclusion
In this paper, we considered the problem of how to
allocate the replicas of data items that are originally
stored at the cloud data center to cache nodes that
are deployed nearby end users in order to minimize
the total data access cost. We first formulate the data
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allocation problem as an MIP problem and showed
the problem is NP-hard. Then, we proposed a heuristic
algorithm that first allocates at least one copy of each
data item in the cache network and then attempts
to allocates more data items until the node capacity
constraints are violated. We evaluated our proposed
algorithm in comparison with a previous well-known
LRU algorithm and a simple random allocation
algorithm and showed that our proposed algorithm
performs much better than the other algorithms over a
wide range of system parameters.

Recently, many researchers have been attracted by
a new Internet infrastructure called the information-
centric networks [1, 17, 20] where in edge routers are
equipped with disk storages to store data frequently
accessed by nearby end users. Thus we can construct a
cache network using those edge routers and allocate the
replicas of data using our proposed algorithm in order
to minimize the data access delay. As shown in Section
4.3, the computation complexity of our proposed
algorithm is limited and therefore our approach should
be useful even in a large-scale network.
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