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ABSTRACT
Many clouds and network testbeds use disk images to initialize local
storage on their compute devices. Large facilities must manage
thousands or more images, requiring significant amounts of storage.
At the same time, to provide a good user experience, they must be
able to deploy those images quickly. Driven by our experience in
operating the Emulab site at the University of Utah—a long-lived
and heavily-used testbed—we have created a new service for effi-
ciently storing and deploying disk images. This service exploits
the redundant data found in similar images, using deduplication to
greatly reduce the amount of physical storage required. In addition
to space savings, our system is also designed for highly efficient
image deployment—it integrates with an existing highly-optimized
disk image deployment system, Frisbee, without significantly in-
creasing the time required to distribute and install images. In this
paper, we explain the design of our system and discuss the trade-offs
we made to strike a balance between efficient storage and fast disk
image deployment. We also propose a new chunking algorithm,
called AFC, which enables fixed-size chunking for deduplicating
allocated disk sectors. Experimental results show that our system
reduces storage requirements by up to 3× while imposing only a
negligible runtime overhead on the end-to-end disk-deployment
process.

Categories and Subject Descriptors H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—performance eval-
uation; C.2.2 [Computer-Communication Networks]: Network
Protocols—applications

General Terms Design, Measurement, Performance

Keywords deduplication; image deployment

1. INTRODUCTION
Disk images are widely used by modern, large-scale facilities to
initialize the contents of local disk, when bringing up compute in-
stances. A disk image captures, at a block level, the contents of a
disk; this typically consists of an operating system and other soft-
ware or data. Each disk image ranges from several GBs to hundreds
of GBs and maintaining a large catalog of images requires a large
amount of storage space. On the other hand, for physical and virtual
machines that will be booted from local disk, this image must be
transferred over the network from an image server and installed on
the local disk before booting can begin. Because it is on the critical
path for provisioning and booting nodes, the performance of image
distribution and installation is critical. In this paper, we consider
two interrelated needs of a large-scale disk image deployment sys-
tem: keeping the storage needs modest, by using deduplication, and
retaining high performance in image deployment, through careful

integration into an existing high-performance image deployment
system.

IaaS facilities generally make a large collection of disk images
available to their users; these images may contain a variety of op-
erating systems and sets of standard software. In addition, most
allow users to create disk images of their own. The Amazon EC2
Web site [1], for example, lists more than 37,000 public Amazon
Machine Images. The Utah Emulab testbed (which we operate) man-
ages more than 1,000 images—public and private—for its users [2],
and the DETER testbed manages more than 400 [26]. These catalogs
represent large amounts of data (21 TB for Emulab), and moreover,
they grow steadily over time [2]. A facility’s operators and users
continually create new images, while old images need to be retained
to support existing users or the reproducibility of previous results.
It becomes important to store these large numbers of disk images
efficiently.

Data deduplication has been shown to be an efficient way to
save disk space for storing disk images. In a deduplicating storage
system, large pieces of data—e.g., disk images—are divided into
units, and every unique unit is stored exactly once. If two images
have a unit in common, they share the single copy of that unit.
Because disk images are typically derived from other images by
making small changes, there is significant duplication between an
image and its “children.” Previous work has shown that dedupli-
cation can greatly reduce the storage requirements of disk-image
catalogs across virtual machines [8, 9, 27] and across machines in a
commercial environment [13].

To support efficient and scalable image deployment, systems like
Emulab have designed sophisticated mechanisms. Frisbee [7], used
in Emulab, includes the following features. First, image data is com-
pressed before it is stored, and it is transferred in compressed format
during image deployment. Second, Frisbee utilizes filesystem infor-
mation to skip unallocated disk sectors. This reduces the amount
of data to store during image creation. More importantly, less data
needs to be transferred across the network and fewer disk writes
are needed during image installation. Third, the image file created
by Frisbee is composed of independently installable chunks. Each
chunk can be requested and installed independently. Last, Frisbee
uses pipelining so that chunks at different stages in the pipeline can
be processed in parallel. To get the highest possible performance,
the pipeline is designed so that the last stage (writing image data
to disk) is the bottleneck. This ensures that Frisbee can install the
image at the full speed of the disk. To be scalable, it implements its
own application-level multicast protocol.

This paper presents Venti-Frisbee (VF), our new image-deployment
system that utilizes a deduplicating storage system to reduce the
amount of physical storage while maintaining Frisbee’s high perfor-
mance in image deployment. We use Venti [20] as our deduplicating
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storage system, but any similar system should work.
Several challenges need to be addressed in order to use Venti to

store disk images for Frisbee. Specifically, the integration should
not break any of the features of Frisbee that make it efficient for
image deployment. We deal with the following challenges:

• Compression plays an important role in Frisbee, so we have to
decide when to do compression for the new system. Compressing
images before storing them into Venti leads to poor deduplication,
while storing raw image data into Venti requires Frisbee to com-
press it before distribution. To resolve this tension, we compress
deduplication blocks before storing them into Venti. In this way,
we get good deduplication and avoid compression during image
deployment.

• Frisbee skips unallocated sectors and concatenates allocated sec-
tors. This implies that, in the face of sector allocation and deal-
location, the positions of sectors in the output image data will
not remain the same. Fixed-size chunking may thus become less
effective. We propose a new chunking algorithm, called Aligned
Fixed-size Chunking (AFC). It utilizes disk offsets to pad the start
and the end of each contiguous allocated sector range to ensure
full blocks from each allocated range.

• To ensure that block retrieval from Venti does not become the
new bottleneck in the pipeline, we select the block size for dedu-
plication carefully. We use a larger block size (32 KB) in VF than
those commonly used for backup and archival storage.

• The new system also needs to support Frisbee’s ability to deploy
an image in independently installable chunks. To support this
feature, we precompute the chunk header metadata.

With all these design elements working together, VF gets similar im-
age deployment performance to unmodified Frisbee, while achieving
significant space savings.

To summarize, this paper makes three contributions. First, it
presents the design of VF which uses a deduplicating storage system
for an efficient image deployment system, with goals to achieve
efficient storage and image deployment simultaneously. Although
VF builds upon Frisbee, we believe that the principles of its de-
sign are broadly applicable to IaaS image-deployment systems that
need to combine efficient catalog storage with fast and scalable
image deployment. Second, it presents a new chunking algorithm,
called AFC. AFC enables us to retain the performance of fixed-size
chunking for allocated disk sectors while achieving much better
deduplication. Third, this paper evaluates VF using data from the
Utah Emulab testbed. Experimental results show that VF achieves
significant storage savings while also achieving run-time perfor-
mance nearly identical to that of Frisbee. For a fixed space budget,
a site of any size could store 3× more images for its users.

2. FOUNDATION: FRISBEE AND VENTI
VF is built on top of two existing systems: Frisbee [7], a scalable,
high-performance disk deployment system, and Venti [20], a dedu-
plicating storage system. In its original design, Frisbee stores disk
images as files in a regular filesystem on the Frisbee server; VF
replaces this back-end storage with Venti. While this change is con-
ceptually simple, Frisbee’s design for efficient image deployment
have four implications for VF. We discuss each in turn.

2.1 Frisbee
Frisbee is a disk-deployment system that was designed for clusters,
datacenters, clouds, and other environments in which identical disk

images must be deployed to a large number of servers in a short
amount of time. It captures block-level snapshots of disks, contain-
ing the operating system and other installed software, and stores
those images on a server. The disk images can be distributed on
demand to target machines, where they fully replace the contents of
the target disks.

Frisbee’s design principles are directly relevant to our new design
with Venti, and so we describe them here. While our discussion
focuses on Frisbee, similar principles can be found in other scalable
high-performance disk imaging systems. The overriding goal of
these design decisions is to install the disk image at full disk speed:
the disk’s write speed represents a bound on how quickly the image
deployment can complete. As long as the system can supply data
fast enough to keep the target disk busy, disk deployment proceeds
at the maximum speed possible. VF aims to preserve this property.

Utilize filesystem information. For maximum generality and ro-
bustness, Frisbee works at the block level rather than the filesystem
level. Utilizing information from the filesystem, however, helps
Frisbee to distinguish allocated disk sectors from unallocated ones.
Since filesystems typically have a large amount of unallocated space
(only about 10% is allocated for images in Emulab), this brings
several benefits to Frisbee. First, by storing only allocated sectors
when creating a disk image, the storage requirements for each disk
image are reduced. Second, it reduces the network bandwidth re-
quired to distribute the image to clients. Third, it reduces disk writes
during image installation, as unallocated sectors can be skipped.
However, it does mean that the sequence of disk sectors that goes
into a Frisbee image is different from that of another image that has
only a single additional sector allocated.

3 Implication 1: VF must take block layout into account when
deciding block boundaries for deduplication. If blocks are not
aligned consistently between different images, this could result in
poor deduplication.

Compress image data. The data read from allocated disk sectors
is compressed as it is added to the image file. As with filesystem-
awareness, data compression reduces storage requirements and net-
work bandwidth during image distribution. The additional decom-
pression step added during image installation does not introduce a
significant overhead: decompressing image data can be done twice
as fast as writing decompressed image data to disk and the two tasks
can be pipelined. On the other hand, doing compression for image
data is significantly slower than any stage in the image deployment
pipeline.

3 Implication 2: Image data should be compressed, but that
compression must not be done at image-deployment time.

Independently installable image chunks. As illustrated in Fig-
ure 1, Frisbee identifies ranges of contiguous allocated sectors,
then compresses and concatenates them to form fixed-size (1 MB)
“chunks.” Chunks are stored in the “on the wire” format so that
the Frisbee server can send them without any processing overhead.
Chunks are also self-describing: all information needed to install the
chunk (such as where the data goes on the target disk) is kept in the
chunk’s header. This allows chunks to be installed independently
and in any order. When a new client joins an image-deployment
session, it can begin processing the chunks it receives immediately;
it does not have to process the image sequentially starting from the
beginning. To scale to a large number of clients, Frisbee uses IP
multicast. Clients can join an in-progress distribution session at any
time and the network protocol is client-driven. Each client asks for
chunks it does not yet have, and the Frisbee server multicasts these
chunks to all clients. This also enables clients with different process-
ing power and disk throughputs to participate at different speeds.
Retransmission for lost packets is handled at 1 KB granularity.
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Figure 1: Frisbee identifies allocated disk sectors, compresses them,
and concatenates them into 1 MB chunks.
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Figure 2: Frisbee’s two-level pipelining design and the design of VF.
In the new design of VF, the first stage (Read from FS) is replaced
with chunk construction from Venti.

3 Implication 3: To retain Frisbee’s existing optimizations, VF
must be able to construct chunks independently and in any order.

Pipelining. The design of independently installable image chunks
also enables pipelining: the installation of a chunk can be pipelined
with the transmission and decompression of other chunks. In Frisbee,
there are two levels of pipelining, shown in Figure 2. The image-
deployment pipeline has three stages: image data is read from the
Frisbee server’s disks, transmitted on the network, and installed on
the target disk. Image installation at the client machine is further
decomposed into three pipeline stages: receiving chunks from the
network, decompressing the data in those chunks, and writing the
decompressed data to the target disk. These stages are handled by
separate threads so that they can proceed in parallel. The pipeline is
designed such that the last stage (writing to disk) is the bottleneck
of the pipeline overall. This results in a highly efficient disk-
deployment system that succeeds in writing at the full speed at the
target disk during image installation.

VF replaces the image read stage in this pipeline with a process
that constructs image chunks from data stored in Venti. To meet its
performance goals, VF must not allow this construction process to
become longer than the other stages in the pipeline and thus become
the new bottleneck.

3 Implication 4: To get performance comparable to the original
Frisbee, the chunk-construction stage in VF must be faster than the
slowest stage (writing to disk) in the image-deployment pipeline.

2.2 Venti
Our second building block is Venti, a deduplicating storage system
by Quinlan and Dorward [20], with enhancements from the Foun-
dation [23] system. It has been used for daily archival snapshots of
filesystems in Plan 9 operating system. We use the Venti archival
storage server, which provides a large data repository and exposes

a simple object interface for clients to read and write variable-size
blocks. A block can be any size from 512 B–56 KB. When a block
is written to Venti, it returns a handle to retrieve that block. The
handle includes the fingerprint (the SHA–1 hash of its content) for
that block and it uniquely identifies a data block within the stor-
age system. Venti skips writes of duplicate blocks and stores only
unique ones. When compression is turned on, each unique block is
compressed and then written to disk.

Venti is publicly available and it served our purposes in develop-
ing the VF prototype. As long as it is “fast enough” to not be a new
bottleneck, VF should get similar high performance as the original
Frisbee. The lessons we learned in this paper are independent of
the particular deduplicating system used. Other deduplicating sys-
tems, including commercial ones such as the EMC Data Domain
Deduplication Storage System [31], could be used in place of Venti.

3. DESIGN AND IMPLEMENTATION
In this section, we lay out the design and implementation of VF,
describing our design decisions relating to compression, chunking
and selection of block sizes, and image reconstruction.

3.1 Compression
Traditional data compression plays an important role in Frisbee,
reducing the data transfer across the network during image deploy-
ment; without it, network transfer would become the bottleneck in
the image deployment. In terms of disk savings, compression results
in a 3× reduction for the 430 Linux images we used in this study:
it compresses 651 GB of allocated data to just 216 GB. In com-
parison, we found that deduplication gives us a 3–5× reduction in
space. Together, these facts mean that we must use both techniques
together to see an further improvement in storage—a deduplication
scheme that is designed without compression will not likely lead to
a significant decrease in storage requirements. However, the role of
compression in the overall system must be carefully designed so that
it will not affect deduplication or image deployment performance
significantly. We consider three alternatives, shown in Figure 3.

Figure 3a presents the most straightforward approach to integrat-
ing Frisbee and Venti: storing compressed Frisbee images directly
into Venti, by first partitioning them into blocks and then storing
those blocks in Venti. This approach has the advantage that, at
image-deployment time, chunk construction requires only concate-
nating the data retrieved from Venti to reform chunks. However, it
requires that deduplication be done on compressed data. This yields
a low deduplication ratio since compressors have already identified
and replaced repeated strings with more compact encodings and
the resulting compressed data has very little duplication. More-
over, even small changes to a disk (e.g., the allocation of a single
sector) can produce a dramatically different compressed image com-
pared to the original, leading to poor deduplication across multiple
disk images. Overall, this approach has high image-deployment
performance but little savings from deduplication.

Figure 3b shows another option, which improves deduplication. It
uses the Frisbee image-creation tool to identify allocated ranges on
the disk, breaks uncompressed data from these ranges into blocks,
and stores them in Venti. Venti fingerprints the blocks and then
compresses and stores them, one copy of each unique block. This
approach achieves efficient deduplication, but it incurs major over-
head on the image-deployment path: data must now be compressed
after retrieval and before sending it on the wire. This scheme meets
our storage-saving goals, but falls short on high-performance image
deployment.

A third approach, shown in Figure 3c, performs compression
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Figure 3: Three possible compression schemes.

immediately after partitioning image data into blocks and stores
compressed blocks in Venti. During image deployment, compressed
blocks are retrieved from Venti and concatenated to build chunks,
ready for Frisbee to deploy. No compression is needed during image
deployment. This retains the full benefit of deduplication based
on uncompressed data, since compressing two identical blocks re-
sults in identical compressed blocks. This slightly decreases the
effectiveness of the compression itself (as compressors tend to op-
erate better on larger blocks), but we found that this effect is very
small. Since this approach gives us both good deduplication and
high image-deployment performance, we adopted this approach in
VF.

3.2 Chunking
When deciding how to deduplicate image data, we found two major
design decisions to consider.

The first is the type of chunking algorithm to use. There are two
types of chunking algorithms: fixed-size [20] or variable-size [4,
14, 31].1 Fixed-size chunking determines block boundaries based
on data offsets while variable-size chunking is based on data con-
tent and is more resistant to content shifts from data insertions and
deletions. Fixed-size chunking is straightforward and requires low
computational overhead while variable-size chunking has consider-
ably higher computational overhead.

Second, we had to consider whether data being deduplicated
preserves the position of existing data when it is modified by an
allocation or deallocation or whether these changes results in content
shifts. “Stream-style” data, such as a file, does not preserve positions:
adding or removing data in a file shifts all data that follows the
change. Variable-size chunking was designed specifically for stream-
style data as it is driven by content and not position. “Disk-style”
data does preserve position: allocating or deallocating a sector
does not cause other sectors to shift. However, disk-style data is
usually larger because it does not distinguish between allocated
and unallocated sectors. Thus, larger amount of data needs to be
processed and this increases processing time.

As described earlier, Frisbee uses filesystem information to iden-
tify allocated sectors and generates a data stream consisting of only
these sectors when creating a disk image. Because of this, a Frisbee
image itself resembles “stream-style” data, and the most obvious

1We use “chunks” for Frisbee chunks and “blocks” for deduplication
units. The term “chunking” is borrowed from the deduplication lit-
erature, to denote the process of partitioning data into deduplication
units.
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Figure 4: Comparison between baseline fixed-size chunking and
aligned fixed-size chunking (AFC).

choice would seem to be variable-size chunking. However, we found
that we can get good performance and deduplication using a new
approach called Aligned Fixed-size Chunking (AFC) that allows us
to do fixed-size chunking for allocated sectors. The key idea is to
combine disk offsets with padding: breaking up contiguous ranges
of allocated sectors in aligned units of the target blocksize using
disk offsets, padding the first and last as necessary to ensure full
blocks from each allocated range. Block boundaries for unmodified
allocated ranges are unaffected by changes to other ranges. The
result is nearly identical to performing fixed-size chunking on the
disk itself after first zeroing unused sectors.

Figure 4 shows a comparison between using conventional (“base-
line”) fixed-size chunking on a Frisbee stream and AFC. Image A is
the base image and we create a new image A’ by freeing the first two
sectors (1 and 2) and allocating the next three (“a”, “b”, and “c”).
Assume we are partitioning this image into fixed-size blocks of four
sectors each. Frisbee will concatenate the second allocated range
starting from the ninth sector with the first allocated range. Thus,
in the baseline fixed-size chunking, for Image A, the first block
will contain [1,2,3,4] and the second block will contain [5,6,7,8].
However, for image A’, the first block will contain [a,b,c,3] and the
second block will contain [4,5,6,7]. Sector allocations and deallo-
cations cause block boundary shifts resulting in no deduplication
between the images.

In AFC, we zero-pad (“z”) at the start and the end of each range
to ensure full blocks for each range. Thus, for Image A, we will gen-
erate the following blocks: [1,2,z,z], [z,3,4,5], and [6,7,8,z]. When
applying this technique to the second image, we will get exactly
the same block boundaries for deduplication, yielding: [z,z,a,b],
[c,z,z,z], [z,3,4,5], and [6,7,8,z]. Here the allocations and dealloca-
tion only affect the first two blocks, leaving the last two and other
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deduplication and runtime.

following blocks identical.
We performed an experiment measuring the deduplication ra-

tio (defined as original_size
deduplicated_size ) and runtime for these five chunk-

ing options, over the 430 Linux images used in our study. We
used fs-hasher [5], a chunking and hash tool developed by Stony
Brook University, with hash calculations disabled when measuring
the chunking time. The result is presented in Figure 5. Here we
can see that the variable-size chunking options (Variable-disk and
Variable-stream) yield the best deduplication but perform poorly,
with chunking times about 10× longer than their corresponding
fixed-size alternatives (Fixed-disk and Fixed-stream). We also ob-
serve that chunking at the disk level (Variable-disk and Fixed-disk)
increases chunking time by more than 2× compared with chunking
at the stream level (Variable-stream and Fixed-stream). Finally we
note that AFC has performance similar to fixed-size chunking at
the stream level while achieving the same level of deduplication as
fixed-size chunking at the disk level.

3.3 Block Size
Having decided the chunking algorithm to use, we must now decide
on a particular block size. Block size directly affects the efficiency
of deduplication. Smaller sizes present more opportunities to find
duplication, but at the cost of a higher ratio of metadata to data.
(Smaller blocks mean that Venti must store more fingerprints.) Block
size also affects the image-construction performance: more accesses
to the Venti store are needed with smaller block sizes to fetch the
same amount of data. This in turn can affect the performance of
image deployment. Thus we must strike a balance between the
deduplication ratio and the image-construction performance when
choosing the block size.

The possible block sizes for Venti (and therefore VF) range from
512 B to 56 KB. Because we are dealing primarily with filesystem
data in our images, we consider the lower bound to be 4 KB, which
is the minimum block size used in many OS filesystem implementa-
tions. In Section 4.3, we compare five candidate block sizes from
the range 4 KB–48 KB, and find 32 KB to work best in practice.

3.4 Frisbee Chunk Construction
The previous sections have discussed the design space with respect
to storing images in Venti. We now turn to retrieving them, or
“constructing” Frisbee images from the deduplicated data. We focus
on the construction of independently installable chunks.

When a block is stored in Venti, Venti returns a “fingerprint” (a

hash of the block’s content) that can be used to retrieve it. Together,
the list of fingerprints resulting from storing the entire image consti-
tutes a “recipe file” for the image. At the time the image is created
and stored, we precompute the mapping of Frisbee chunks to fin-
gerprints. This is done by running the same process that Frisbee
runs to create a disk image. The difference is, instead of storing
compressed data blocks after the chunk header, we store fingerprint
indexes for data blocks in the recipe file for this chunk.

Chunkmaker is responsible for constructing a Frisbee chunk.
When it receives a request for a chunk, it reads the correspond-
ing chunk header and fingerprint indexes and then uses indexes
to get fingerprints from the recipe file. After that, it retrieves the
corresponding blocks from Venti and concatenates them with the
pre-computed chunk header to produce a complete Frisbee chunk.
No complicated processing is required at chunk construction time.
Repeated requests for the same chunk are optimized by caching
recently constructed chunks

3.5 Design Summary
The new image-deployment pipeline of the VF system is shown in
the bottom half of Figure 2. Though similar to the original pipeline,
the whole system incorporates four main considerations to make the
new system as efficient as the original one for image deployment
while improves storage efficiency significantly. The considerations
include the informed choice of the deduplication block size, careful
alignment of block boundaries, precompression of data blocks, and
precomputation of chunk header metadata.

4. EVALUATION
We start our evaluation by providing data about the performance of
the unmodified Frisbee pipeline. These results support our claim
that disk writes are the bottleneck and provide a lower bound for the
performance of image construction.

Following that, our evaluation of VF is presented in three parts.
The first presents an empirical analysis of the three alternatives for
performing compression and validates our choice for VF. The sec-
ond describes the experiments we performed to measure storage
savings and the image-construction time as a function of dedupli-
cation block size (mentioned in Section 3.3). The third compares
our VF system against the standard Emulab Frisbee implementation
(hereafter referred to as “baseline Frisbee”), measuring both their
storage demands and their image-deployment performance.

All experiments were performed on the Utah Emulab testbed [28].
The infrastructure for our evaluation consists of one server machine,
acting as both a Venti archival storage system and a Frisbee image
server, and 20 client machines all connected via dedicated 1 Gbps
switched Ethernet. All machines are Dell PowerEdge R710s: each
machine has a single quad-core 2.4 GHz 64-bit Xeon processor,
12 GB RAM, and two 250 GB, 7200 RPM Seagate SATA disks each
capable of sustained sequential read and write throughput of up to
110 MB/s. The server has one additional 1.5 TB, 7200 RPM Western
Digital Caviar Black SATA disk hosting the Venti repository. This
disk can perform sequential reads and writes at rates up to 150 MB/s.
All machines run a 64-bit version of the Ubuntu 10.04 operating
system.

For disk images, we used a collection of 430 Linux images from
the Utah Emulab facility. Of these, 76 are “standard” images pro-
vided by the Emulab facility and 354 are custom images created by
users. The chosen images were created between 2002 and 2011 and
include images based on RedHat, Fedora, CentOS, and Ubuntu
distributions. Individual images range in size from 146 MB to
1,836 MB, with a total disk size of 217 GB.



Stage Throughput (MB/s) Time (sec)
image compress 30.29 53.97
network transfer 54.27 (165.27) 9.54
image decompress 160.87 9.96
disk write 71.07 22.03

Table 1: Average throughput rate and execution time of each stage
in the baseline Frisbee pipeline. Throughput values are measured
relative to the uncompressed data, except for network transfer, which
reflects compressed data (with uncompressed rate in parentheses).

For all end-to-end image deployments, both the baseline Frisbee
server and VF are configured to distribute data at a bandwidth of
500 Mbps. Factoring out network and Frisbee protocol overheads,
this translates to a maximum image data rate of 57.5 MB/s.

4.1 Frisbee Pipeline Measurements
One thesis of our work is that extracting an image from Venti and
constructing a Frisbee image needs to be fast, but ultimately just
“fast enough” to not be the bottleneck for image deployment. To sup-
port this, we empirically measured the stages of the Frisbee pipeline.
The results are shown in Table 1.2 The last three lines show the
stages of the image-deployment pipeline. (The first, compression,
is performed at image-creation time.) The network transfer rate of
54 MB/s appears to be the bottleneck, but this is a compressed data
rate. The effective (uncompressed) data rate delivered to subsequent
stages is actually 165 MB/s.

These results confirm that the client disk (71 MB/s) is in fact
the bottleneck during image deployment. This is true even when
the client is zeroing, rather than skipping (seeking over), unused
disk space—measured at 89 MB/s. Finally, the results provide a
lower bound for image-construction time (22 seconds). The result
for image compression further shows the expense of compression
relative even to disk writes, highlighting the necessity of keeping
compression off of the image-deployment path.

4.2 The Impact of Compression
In Section 3.1 we presented three alternatives for where to do com-
pression in VF (see Figure 3) and argued that the third alternative
(c) was best. Here we present the empirical data to support our
conclusion.

The expected drawback to the first alternative, storing compressed
Frisbee chunks in Venti (a), is poor deduplication. To measure this,
we loaded the compressed chunks of 430 Frisbee images into a Venti
store in 32 KB blocks. We observed a deduplication ratio of only
1.11× compared to 3.26× for VF, confirming our expectation.

The second alternative of storing uncompressed image data and
letting Venti compress it (b) introduces image compression in the
deployment path. As we see in Table 1, image-data compression is
much slower than disk write and would make image construction
the new bottleneck. This would seriously impact the end-to-end
performance of image deployment. We want to emphasize that
this conclusion holds, independently of what deduplication storage
systems are used.

One concern with the approach we ultimately took for VF (c)
is that we are compressing data in smaller units (individual dedu-
plication blocks) which results in a lower compression ratio and
hence larger Frisbee images. Larger images in turn mean that more
data must be sent across the network. To investigate this issue, we

2We did not include image read time in our measurements as the
disk where Frisbee images are stored can provide up to 150 MB/s
read bandwidth and is unlikely to be a bottleneck.

Venti block Image Image data Dedup.
size (KB) data (GB) in Venti (GB) ratio (×)
4 263.795 50.310 5.24
8 253.305 60.025 4.22
16 245.665 67.943 3.62
32 239.892 73.617 3.26
48 237.313 76.173 3.12

Table 2: The effect of different Venti block sizes for deduplicating
disk data. These storage figures are for disk data only, and do not
account for image metadata.

Repository Total Metadata Savings
format (GB) (GB) vs. ndz (%)
ndz 233.391 0.912 –
Venti 4 KB 55.456 5.146 76.24
Venti 8 KB 63.085 3.060 72.97
Venti 16 KB 69.534 2.010 70.21
Venti 32 KB 75.103 1.485 67.82
Venti 48 KB 77.486 1.314 66.80

Table 3: Total storage space required for storing images in different
repository formats, including metadata. ndz is for baseline Frisbee
images stored in a filesystem.

measured the total size (number of chunks) for 430 Linux image
compressed both in baseline Frisbee and in VF. The result was that
images were indeed larger, but only by 6% (547.6 chunks per image
versus 515.5).

4.3 The Space/Time Trade-off
As mentioned in Section 3.3, the choice of a block size for Venti
storage can impact not only the storage savings but also the time
required to retrieve and construct an image from Venti. To explore
this trade-off, we populated five Venti repositories with all Linux
images using 4 KB, 8 KB, 16 KB, 32 KB, and 48 KB block sizes
and measured the effect on deduplication and image construction
performance. Table 2 summarizes the data deduplication achieved
at the various block sizes. Overall, we achieve a 3–5× deduplication
ratio. The results also show that the deduplication ratio increases as
we decrease the block size. This is not a surprising result, because
intuitively, smaller block sizes tend to increase opportunities for
deduplication. Finally we note that a larger deduplication block
size improves compression and thus leads to a smaller image size
(237.3 GB for the 48 KB block size versus 263.8 GB for 4 KB).

Whereas Table 2 shows just the image data stored in Venti, Table 3
shows the total amount of storage required, including the image
metadata. The table includes baseline Frisbee ‘.ndz’ image files
as the basis for computing storage savings. For baseline Frisbee,
metadata consists of the per-chunk headers that record the ranges
present in each chunk; the “Total” column shows the total size of the
‘.ndz’ files for our 430-image collection. For VF images, metadata
includes the fingerprints (SHA–1 hashes) for retrieving data from
Venti and chunk headers for chunk construction, while “Total” is
the sum of metadata size and the size of the Venti repository. This
table shows that we can reduce the total storage space by more than
60%. That also means that we can store more disk images, given a
fixed storage space.

Based on Table 2 and Table 3, it is tempting to choose the small-
est Venti block size for VF in order to maximize storage savings.
This is the decision one would make if only considering storage
savings. However, it is also important to consider the effect on
image construction.
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Figure 6: Average image-construction time for different Venti block
sizes.

To produce an overall image-construction time, we measured
the times required to construct individual chunks. These times are
summed, for every chunk in an image, to get the construction time
for a single image. We then averaged the per-image times to get an
average image construction time for each block size. Because Venti
maintains a cache of recently accessed blocks, we further consider
two cases: one in which that cache is completely empty (“cold”)
and one in which it is not (“hot”).

Figure 6 presents the results of this experiment. The stacked bars
represent the average time required to construct an image in both
the cold and hot cases. The horizontal line shows the average disk
write time when installing an image at the target disk (from Table 1).
This time is the “goal” that we must beat in order to avoid becoming
the bottleneck in the image-deployment pipeline. From this figure
it is clear that increasing the block size significantly decreases the
image-construction overhead, especially for Venti with a cold cache.
It is also clear that we can not use 4 KB and 8 KB as the block size
because even with a hot cache, image-construction time exceeds the
time required to write the image to disk. Of the remaining block
sizes, it is tempting to use 48K since the image construction time,
even with a cold cache, can match the disk-write time. However,
for the purposes of this work, we chose to use 32K given that the
majority of the time, the Venti cache will not be empty and we
do gain slightly better deduplication. We note that the optimal
block size is, in large part, an artifact of the specific performance
characteristics of the deduplicating store. If we were to use a storage
system other than Venti, we would need to re-evaluate the exact
optimal block size, though the fundamental tradeoffs would remain
the same.

4.4 Delivering a Large Catalog
The experiments described below compare VF to the baseline Fris-
bee system for deploying images.

4.4.1 Storage Savings
To explore storage savings at scale, we loaded our corpus of 430
disk images into the Venti repository in 32 KB blocks and measured
the storage size of the repository after adding each image. We
loaded the images into Venti in order of their creation times, oldest
to newest, to obtain a realistic sense of the growth rate for an image
repository over time. As we did this, we also tracked the storage
that would be required by a conventional Emulab image store—a
directory of ‘.ndz’ image files—in which the images are added in
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Figure 8: Average time to deploy an image to 20 clients with stag-
gered start times. Clients start in five groups of four; for each group,
we measure the time from client start to client finish.

the same order.
The results show the growth of these two repositories is approx-

imately linear in the number of images, but the Venti repository
grows much more slowly than the ‘.ndz’ file repository. The abso-
lute difference between the Venti storage and the file-based ‘.ndz’
storage is ≈75 GB vs. ≈233 GB. With a fixed storage budget, VF
can store ≈3× more disk images. In the long run, VF may give
more substantial savings. This is especially true in environments
where new images are most often derived from existing images.

4.4.2 End-to-End Image Deployment
To determine how well VF works in a production environment, we
performed end-to-end tests, deploying an image from the Frisbee
server to one or more client machines using both baseline Frisbee
and VF with a 32 KB block size. Frisbee scales quite well with an
increasing number of clients [7]. We therefore ran tests to measure
image deployment with 1, 8, and 16 simultaneous clients. Running
with simultaneous clients increases the request load on the server and
also tends to randomize and duplicate requests—situations which
the VF server must be able to handle efficiently to compete with
baseline Frisbee.

Our tests involved deploying an Ubuntu 10 image to one or more



clients, measuring the time until the last client completes. For
both baseline Frisbee and VF, the Frisbee server was configured to
distribute image data at a maximum throughput of 500 Mbps. The
Ubuntu image contained 1.4 GB of uncompressed filesystem data.
The compressed ‘.ndz’ file for baseline Frisbee is 394 chunks, while
the image encoded by VF is 422 chunks. Each test configuration
used either baseline Frisbee or VF to send the image to a given
number of clients. We ran each configuration ten times, measuring
the time required for all clients to download and install the image.

Figure 7 summarizes our results. The bars in the figure show the
average time to deploy over the ten runs of each configuration. (The
figure plots the standard deviation of the time in each configuration,
but these are so small that they are hardly visible.) The results show
that for 1, 8, or 16 clients, VF has just over a 2% increase in run
time compared to baseline Frisbee.

Another scenario that Frisbee was designed to handle well is
efficient deployment of images in the face of clients joining and
leaving a session at different times. To ensure that VF handled this
case efficiently as well, we ran another test with 20 clients evenly
divided into five groups. Groups joined the Frisbee session at five-
second intervals: the first group joined at time zero, and the last after
20 seconds. We designed this experiment so that the final group
joins just before the first group is expected to finish, based on the
run times from the previous experiment. For baseline Frisbee and
VF, we ran this experiment ten times.

Figure 8 shows the results. The times shown are the average
elapsed time for each group over the ten trials. Clients in all groups
took a similar amount of time to finish. The difference between
baseline Frisbee and VF is always less than 3%. These results show
that VF performance is very close to that of baseline Frisbee.

4.4.3 Pipelined Distribution
The experiments in Section 4.4.2 show that VF suffered only a
small performance impact compared to baseline Frisbee. Yet the
most significant source of additional overhead in VF is the chunk-
construction process (described in Section 4.3) which could take
significant time. To understand how this overhead is masked, we
instrumented the end-to-end distribution process and analyzed the
steps involved.

Figure 9 presents the timeline for deploying the first 10 chunks
of an image using both the baseline Frisbee and VF. Each vertical
bar represents the time taken to deploy a single chunk, with each
pair of bars showing the time for the same chunk using both Frisbee
implementations. Within each bar, the time is divided into seven
categories:

1. image construction: the time to read (baseline) or read and
construct (VF) the chunk.

2. network transfer: the time to transfer the entire chunk over the
network, measured from the server sending the first packet of
the chunk to the client receiving the final packet of the chunk.

3–5. decompress, decompress + disk write, and disk write: be-
cause chunk decompression is overlapped with writing de-
compressed data to the disk, we break down time to show
when only the decompressor is active, both are active, or only
the disk writer is active.

6. in decompress queue: the time between when the last packet
of a chunk is received over the network and the chunk starts
to be decompressed.

7. in disk writer queue: the time between when the last piece of
a chunk is decompressed and the first piece of the chunk starts
to be written to disk. Where this time is non-zero, it represents
idle time in the processing of the chunk and indicates that the
disk is the bottleneck in the system.

Note that the clocks for the server and client machines were syn-
chronized within one millisecond.

For most chunks sent by the baseline Frisbee (the long bars), one
can see a rapid read, transmission, and decompression followed by a
long queue time before the chunk is written to disk. The long queue
time is due to earlier chunks still being written and clearly illustrates
that the disk is the bottleneck in chunk processing.

For chunks sent by VF, there is a construction cost (the “image
construction” bar), requiring more server processing per chunk. This
is reflected by the increasing gap between the start of processing
of each chunk relative to baseline Frisbee. However, this cost is
not reflected in the overall time for chunk processing as it is largely
masked by the client-side disk bottleneck. This is shown by the
decreased queue time for each chunk in VF. Thus, chunks arrive at
the client later in VF, but join a shorter write queue once they arrive.

5. DISCUSSION
The design of Frisbee and VF were influenced heavily by the design
of the Emulab system. In this section, we discuss how this affects
the applicability of VF to other environments and what changes
might be required to increase its generality.

A major assumption in the design of Frisbee is that the complete
resources of the client machine are available during the image de-
ployment process. This ability to dedicate full CPU, RAM, and
network bandwidth resources to image deployment, coupled with
the use of commodity SATA hard drives, leads to the situation where
the hard drive is clearly the bottleneck. We believe this situation is
not unique to Emulab and is true for many image deployment sys-
tems, whether in a network testbed or a cloud infrastructure. Even
using today’s commodity Solid State Drives (SSDs) is not likely
to move the bottleneck, since even a 1 Gbs network is capable of
transmitting data more quickly, given a reasonable (3×) compres-
sion ratio. However, continuing improvements in SSD performance
coupled with increased prevalence of 10 Gbs Ethernet will increase
pressure on the Frisbee server. The read performance of Venti will
need to be revisited along with other aspects of the server such as
the system used to store disk images.

The collection of disk images we used in this study were created
between 2002 and 2011 and cover a diverse assortment of Linux
distributions, including RedHat, Fedora, CentOS and Ubuntu. They
also represent a mix of system-provided and user-customized ver-
sions. The provenance of this data set raises the question as to
whether it is representative of today’s images. If anything, we be-
lieve the images chosen for this study are more “conservative” with
respect to the potential for deduplication than are today’s images.
This is largely because, at least in Emulab, we have increasingly
“incentivized” the use of custom images through newer, more conve-
nient interfaces. These include single-click snapshotting of nodes
and explicit versioning of images. Images created this way are more
likely to be small variations of previous versions, and therefore
deduplicate even better.

A final question is whether it is feasible to apply techniques
used in VF (and Frisbee) in other environments, specifically Open-
Stack [16]—one of the most popular Cloud software platforms. The
image service in OpenStack is provided by Glance [17] which pro-
vides a RESTful API to add, retrieve, and query images. Glance
provides a very basic image distribution service: the image data is
retrieved from Glance by HTTP requests and responses. We believe
the set of techniques used in Frisbee can be applied Glance. These
include transmission of image data in compressed format, use of
multicast for scalable image deployment, partitioning of image data
into independently installable data units and the pipelining design
in image deployment. We can also use data deduplication to store
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virtual machine images.

6. RELATED WORK
The work related to VF falls into four categories: analysis of du-
plication in disk images, use of deduplicating storage for storing
disk images, storage for virtual machines, and scalable and efficient
disk-image deployment.

Several studies have analyzed data across disk images and have
found significant amounts of duplicate data; this work supplies the
basic motivation for VF. Jin and Miller [9] analyzed deduplication
for a set of 52 disk images, applying various chunking algorithms.
For a set of fourteen related images, they showed that deduplication
can reduce storage space by up to 78%. Meyer and Bolosky [13]
compared block-based and whole-file deduplication over a dataset
collected from 850 Windows desktop PCs in production use. They
observed that there exists up to 72% and 83% duplicate data, for file-
based and block-based deduplication. Jayaram et al. [8] analyzed
a set of 525 virtual machine images from their production cloud
datacenter and found more than 30% blocks appear at least twice.
Smaldone et al. [27] and Lin et al. [11] analyzed virtual machine
backup files and found there exists significantly amount of duplicate
data. Atkinson et al. [2] found that disk images derived from a “base”
image commonly share 60–80% of blocks with their base image.

Others have designed storage systems with deduplication to store
disk images. Both the Mirage image format (MIF) [22] and the
Marvin Image Store (MIS) [24] utilize file-based deduplication to
improve storage efficiency. However, these stores optimize only
for storage size, and are not designed specifically for scalable and
efficient image deployment. Liguori et al. [10] used Venti to host
live disk images for running virtual machines. Since most reads and
writes inside the client virtual machine must communicate over the
network with the Venti server, performance is poor and does not
scale well. On contrast, VF installs an image on the client’s local
disk, giving consistent, high performance.

Systems, like Parallax [12], Capo [25] and Lithium [6], were built

for running virtual machines. With Parallax, Meyer et al. proposed
to run a storage virtual machine at each host, to provide access to a
shared block device. This approach will not scale well because it
relies on centralized, shared storage. To improve scalability, Capo
uses the disk at each host machine as the persistent cache for disk
images. However, it requires a special block device in the hypervisor
layer. I/O performance depends on whether an I/O request hits in
the cache, and it becomes less consistent and predictable. Lithium
is a distributed storage system, built from local disks at each host. It
uses peer-to-peer sharing to replicate per-VM storage volumes. The
problem with some of these approaches is that they only work for
running virtual machines; they are not applicable when users request
physical machines (which testbed environments like Emulab must
support). Others require running storage services in the background,
which could interfere with user applications. Our approach works
for both virtual machines and physical machines, and no background
storage service is needed.

Other related work looks at scalable image deployment. VM-
Torrent [21] and VMThunder [29] use peer-to-peer (P2P) sharing
for image deployment. To further improve the opportunity to share
data blocks, VDN [18] and Liquid [30] use deduplication in P2P
sharing, by using block IDs based on block content, rather than
the combination of image name and offset. P2P imaging is un-
suitable for testbed environments, as machines are unavailable to
participate most of the time: running an intensive data-transfer ap-
plication would risk interfering with active experiments. Instead,
Frisbee [7] uses an application-level multicast protocol for scalable
image deployment.

The work most similar to VF is LiveDFS [15], which examined
both the deduplication effect and image-deployment performance.
However, LiveDFS scales poorly: distribution time increases lin-
early with the number of virtual machine instances, whereas VF
inherits Frisbee’s flat scaling [7]. LiveDFS did not consider compres-
sion neither and failed to explore the trade-off between disk-space
saving and image-deployment performance, using a single block



size for experiments. VF used compression and considered several
options for how to include it. We also evaluated various block sizes.

Versioning is another technique to store multi-version data effi-
ciently, where the new version is stored as a delta (the difference
between the new version and the original version), with a reference
to the original version. A common use case is to implement effi-
cient snapshots (e.g., LVM [3] and Parallax [12]). While versioning
might be effective to reduce storage space, it has several limitations.
First, the complexity and the runtime to retrieve data from the latest
version increases linearly with the number of versions. This is unde-
sirable since the latest version is likely to be used more frequently
and should get the best performance. Second, the comparison in
versioning is only between two versions while deduplication can
be done globally across all stored disk images and within a single
image.

Pullakandam [19] made an early attempt at using Venti to store
disk images for Frisbee. It was not optimized in two ways. First, the
earlier design stored raw image data into Venti, and compression
of image data was done before image distribution (Approach (b) as
shown in Figure 3b). At a block size of 32 KB, the image construc-
tion time in the earlier work took 80 seconds while it only took 10
seconds with a warm cache in VF. Given that it took only 22 seconds
to deploy an image, image construction in the earlier work clearly
becomes a significant bottleneck. Second, the chunking algorithm
used in the earlier work was fixed-size chunking at the disk-level
while we propose a new chunking algorithm (AFC), achieving a
similar deduplication effect with a shorter runtime.

7. CONCLUSION
This paper has presented the design and evaluation of a system
that couples deduplicating storage with a high-performance disk-
deployment system. Integrating these components effectively re-
quires an end-to-end view; the use of deduplicating storage in our
complete VF system balances the goals of storage reduction and fast
image deployment. The principles and trade-offs in the design of
VF, which balances these goals, are the primary contributions of this
paper. By optimizing the storage using compression and deduplica-
tion and architecting an efficient pipeline, VF produces substantial
image-storage savings while incurring very modest overhead in im-
age deployment. These properties are valuable for “infrastructure
as a service” (IaaS) facilities, including both clouds and network
testbeds, that must manage large catalogs of disk images and deploy
images quickly to produce a good user experience.
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