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Abstract

A graph acts as a powerful modelling tool to represent complex relationships between objects in the big data
era. Given two vertices, vertex and edge constraints, the multidimensional constraint reachable ( MCR) paths
problem finds the path between the given vertices that match the user-specified constraints. A significant
challenge is to store the graph topology and attribute information while constructing a reachability index.
We propose an optimized hashing-based heuristic search technique to address this challenge while solving
the multidimensional constraint reachability queries. In the proposed technique, we optimize hashing and
recommend an efficient clustering technique based on matrix factorization. We further extend the heuristic
search technique to improve the accuracy. We experimentally prove that our proposed techniques are scalable
and accurate on real and synthetic datasets. Our proposed extended heuristic search technique is able to
achieve an average execution time of 0.17 seconds and 2.55 seconds on MCR true queries with vertex and
edge constraints for Robots and Twitter datasets respectively.
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1. Introduction
Graph mining is the process of extracting useful
knowledge from graphs. Here, graphs are used to
model the data. Some of the important operations
of graph mining include extracting subgraphs [45],
finding the reachability satisfying the given constraints
and detecting the communities in a graph. Graph
reachability is one of the basic operations that finds
the existence of paths between the vertices of the given
graph. However, in real-time, some queries require
certain constraints to be satisfied while finding the
reachability of the graph. The constraints are usually
the conditions on the values of vertex attributes or
edge attributes or both. An attributed graph is a
graph that stores attribute information of vertices
and edges. This attributed graph acts as an efficient
modeling tool to represent information networks [9,
30]. Figure 1 illustrates an attributed graph with
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the vertex labels, edge labels, vertex attributes and
edge attributes. The description of Fig 1 is as follows:
(i) vertex label (dark shaded circles) with values
such as the name of the author, paper details and
affiliation details like university or organization; (ii)
vertex attributes (rectangular box) having values such
as state and location (categorical values), keyword
(categorical values), age (numerical values) and (iii)
edge attribute (shaded rectangular box) having values
such as volume and issue (numerical values), order
(numerical values), studentOf (boolean value) (iv) edge
labels having values such as knows, published, authorOf,
affiliatedTo and citedBy. For instance, consider the vertex
label ‘Paper1’; its vertex attributes include ‘keyword’
whose value is ’graph’. In general, in the real scenario
of social networks, the vertex label denotes the name
of a person or organization of the user. The edge
labels include relationships like friendOf, colleagueOf or
supervisorOf.

A multidimensional constraint reachability query
finds the existence of a path from the source vertex
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Figure (1). Example of an attributed graph

to the destination vertex satisfying the given attribute
constraints. In this paper, we use MCR query, to denote
the term Multidimens-ional Constraint Reachability
query.

For instance, for the given attributed graph G of
Figure 1, the query is to find if there is a path from
Raju to Waheed whose Age is 38 through edge labels
knows. The vertex constraint is Age=38 and the edge
constraint is knows. From the figure 1, we find that
the path exists between Raju and Waheed satisfying the
given constraints. Hence, it returns true for the given
MCR query.

One of the challenges of constraint reachability is
that we need to store both graph topology and attribute
information while indexing the reachability. Another
challenge is that there is no prior information of
constraints before query processing. This problem is
applicable for many real-time information networks
like social networks, transportation networks and
metabolic networks. These observations motivate us
to find a faster and efficient solution to solve
multidimensional constraint reachability queries.

Duncan Yung et al. [9] developed a constraint
verification approach to solve MCR queries to find only
the path’s existence but not the resultant path. They also
implemented a heuristic search technique that offered
direct passage across graph regions which are likely to
satisfy attribute constraints from source to destination.
The heuristic search involved the construction of a
super graph. They used clustering based on BFS by
choosing a random subset of vertices and their traversal
forming clusters.

We observed from the current state-of-the-art liter-
ature ([2, 9, 15, 16]) on constraint reachability and
attribute clustering techniques that we can further opti-
mize the hashing through the Murmur hash function,
which has least collision. We also observed the need to
identify an efficient clustering technique that considers
both graph topology and attributes information while
clustering. Furthermore, we observed that there is a
scope to extend the problem of MCR queries to derive
the resultant paths.

We enhanced the heuristic search [9] by using opti-
mized hashing to handle multidimensional attributes
and recommended to apply an efficient clustering
technique based on matrix factorization. We further
improved the clustering technique by applying gap-
statistic [26] to detect the number of clusters for
efficient supergraph construction. In addition, we
extended the problem of MCR queries by finding not
only the existence of the path but also the resultant
paths.

Our proposed solution is based on an improved
heuristic search that considers both graph topology
and attribute information while creating super graph
for the given attributed graph. Thus, we can solve
the constraint reachability queries faster for even large
attributed graphs.

1.1. Assumptions
The assumptions in this paper include

1. We assume that the values of vertex attributes and
edge attributes are single and discrete.
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2. We assume that reachability can be found along
the super path of the super graph.

The assumptions are formed in order to simplify the
constrained reachability problem and efficiently find
the constrained reachable paths.

1.2. Contributions
The main contributions in this paper include

• We performed a comprehensive literature sur-
vey on recent structural and attributed graph
clustering techniques [2, 4, 6, 8, 16, 32–34] and
constrained reachability techniques described in
Table 2.

• We identified and improved the structural and
attributed graph clustering technique [2] based on
matrix factorization and applied it during super
graph construction to solve multidimensional
constraint reachability queries.

• We solved the multidimensional constrained
reachability queries by computing the path
information instead of finding the existence of
paths [9].

• We proposed an extended heuristic search tech-
nique to reduce the false negative outcomes. We
compared our proposed techniques to the exist-
ing techniques [9] to solve multidimensional con-
straint reachability queries on real and synthetic
datasets.

Section 2 describes the terminologies and problem
statement. In section 3, we describe the literature
on attributed graphs, the constrained reachability
techniques and attributed graph clustering techniques.
Section 4 clearly emphasizes our proposed approach
with examples. In section 5, we describe our proposed
extended heuristic search technique. Section 6 describes
the experiments and evaluation of our proposed
techniques. In section 7, we provide conclusion and
scope for further research.

2. Preliminaries
Definition 1. (Attributed Graph) " An attributed graph,
G, is a graph denoted as G=(V, E, Va, Ea), where V is a set
of vertices, E ⊆ V × V is a set of edges, Va is a set of vertex-
specific attributes and Ea is a set of edge-specific attributes"
[30].

Let Va = (Va1, Va2, ..., Vax) is a set of x vertex-
specific attributes. For each vertex p ∈ V, there exists
a multidimensional tuple Va(p) denoted as Va(p) =
(Va1(p), Va2(p), ..., Vax(p)). Let Ea=(Ea1, Ea2, ..., Ear )
is a set of r edge-specific attributes. There is a
multidimensional tuple Ea(q) denoted as Ea(q)= (Ea1(q),
Ea2(q), ..., Ear (q)) for every edge q ∈ E.

Figure (2). A toy dataset of an email network

For instance, let us consider the attributed graph
for an email network as shown in Figure 2. Let the
vertex attributes be Country and IncomeGroup. The
domain of attribute Country is VCountry={ India (I),
United Kingdom (U)} and the attribute IncomeGroup
is VIncomeGroup={ High (H), Medium (M), Low (L)}.
The domain of edge attribute communication content
is { XML (xml), Skyline (skyl)}. Thus, for vertex
‘a’, VCountry(a)=I and VIncomeGroup(a)=H. Similarly, the
value of the edge attribute between vertices ‘a’ and ‘c’ is
xml.

Table 1 shows the different notations used in this
paper with their description.

2.1. Problem Statement
Definition 2. (Multidimensional Constraint Reacha-

bility) "Given an attributed graph G, a source vertex
s, a destination vertex t, vertex constraint CVa, and
edge constraint CEa, the multidimensional constraint
reachability query on attributed graph verifies whether
s can reach t under vertex and edge constraint CVa, CEa"
[9].

We define Multidimensional Constraint Reachable
path (or MCR path) as the resultant path from the given
source vertex to the destination vertex while satisfying
the vertex or edge attribute constraints.

Let us consider the MCR query q1(‘a’, ‘j’, ‘I:H’, ‘xml’),
for the attributed graph of Fig. 2 as an example. The
given MCR query q1 returns true as the source vertex
‘a’ can reach the destination vertex ‘j’ via vertex ‘c’
while satisfying the given vertex constraints ‘I:H’ and
edge constraint ‘xml’. Thus, the MCR path is {‘a’, ‘c’, ‘j’
}. Consider another instance of MCR query q2(‘b’, ‘c’,
‘I:M’, ‘xml’). The MCR query q2 returns no path as the
source vertex ‘b’ cannot reach ‘c’ as well as the given
constraints are not satisfied.

The objective of our research is to find the resultant
paths for MCR queries faster and propose a scalable
solution based on clustering of large attributed graphs.
We observe that we can optimize hashing for faster hash
generation and constraint verification. We identified the
need to find an efficient graph clustering algorithm
that considers both graph topology and attributes
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Table (1). Notations
Notation Description
Va Set of vertex attributes
Va(p) Set of vertex attributes values for vertex p
Ea Set of edge attributes
Ea(q) Set of edge attributes values for edge q
CVa Constraints on Vertex attribute values
CEa Constraints on Edge attribute values
G(V,E,Va,Ea) Attributed graph
Gs Super graph
SV Super Vertex
SE Super Edge
SP Super Path

while clustering. Thus, we solve MCR queries based
on efficient clustering technique in our proposed
approaches described in section 4 and section 5.

3. Related Work
In this section, we describe the survey related to
constraint reachability techniques [9, 11, 20, 23, 42, 43]
and attributed graph clustering techniques [2, 4, 6, 8,
14, 16, 22, 32–34, 39–41]. We also discuss our important
observations derived to solve MCR queries efficiently
and effectively.

3.1. Constraint Reachability Techniques
Many graph reachability techniques exist, which
include 2-hop [19], 3-hop [21], Dual labeling [28] and
Path-Tree cover [35] indices in the literature. But, these
indices do not consider attribute information. Hence,
we cannot apply the reachability techniques directly to
solve the constraint reachability queries.

Ruoming Jin et al. [20] introduced formally the
problem of Label Constraint Reachability (LCR)
query, which is a special case of attribute constraint
reachability queries. They developed a spanning tree
based solution to solve LCR queries. With this cited
state-of-the-art [20], we performed an extensive survey
about different types of constraint reachability queries
and techniques [13]. Besides, we developed landmark
index based path indexing and query processing
techniques [11], [13] to find bounded paths for LCR
queries in case of edge labeled weighted directed
graphs.

An attributed graph acts as a modeling tool to
represent information networks [9, 30]. Sakr et al.
[31] developed G-SPARQL, a query execution engine
with the defined algebraic operators on the graph by
using join operations to find the reachability for large
attributed graphs. They designed a model that stored
the topology of the graph in main memory and accessed
the attributes of the graph from the secondary memory.
The attributes from the secondary memory are stored

in fully decomposed model which includes storing the
unique vertex attributes and edge attributes in separate
tables. That is, every vertex attribute, its values in the
graph and vertex id are stored in the relational form
in the disk. G-SPARQL system mainly solves graph
pattern matching queries [46, 47].

We observed that Yung et al. [9] developed hashing-
based index instead of fully decomposed model to
store vertex attributes or edge attributes for attributed
graphs. The hash index involved assigning unique hash
values for a group of vertex attributes or edge attributes.
The attributes and the corresponding hash values are
stored in secondary storage. They also designed BFS
based heuristic search using random clustering to solve
the multidimensional constraint reachability queries.

Zhao et al. [12] studied the problem of finding
temporal paths in dynamic attributed graphs for
multiple constraints. They used the constraints on
total time and cost as inputs. They developed forward
and backward pass approximation algorithms to find
the temporal paths between the vertices. Wang et al.
[16] performed an extensive survey on different types
of queries in attributed graphs. They developed a
taxonomy for the variety of queries and also compared
the state-of-the-art literature to solve them. But, in this
literature, only label constrained reachability queries
and techniques are discussed. Peng et al. [23] developed
2-hop label indexing and pruning methods to answer
label constraint reachability queries.

Guo et al. [15] studied the problem of graph
pattern matching with multiple vertex constraints.
They developed sampling-based estimation algorithms
to find the matching of the spatial path patterns.
Namaki et al. [14] developed Q-Chase based algorithms
to handle unexpected entities and missing entities
during pattern matching. The Q-Chase algorithms
perform query writing and query optimization using
atomic operators and pruning.

Table 2 describes the observations of recent studies on
constraint reachability query processing and attributed
graph clustering techniques. We observed that the
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current state-of-the-art techniques are not directly
related to MCR queries. Hence, they cannot be applied
to find MCR paths in attributed graphs. We also
established the fact that there is no progress of research
work done or studied to solve MCR queries in attributed
graph after Yung et al. contributions [9]. Therefore,
based on the observations, we extend to improve and
enhance the works of Yung et al. [9, 10].

We observed that Yung et al. [9, 10] used a probability
cost metric by sampling attributes for each super
vertex. They mentioned the probability cost metric
computation vaguely. So, we improved and enhanced
their technique to solve MCR queries efficiently which
is described in Section 4.

3.2. Attributed Graph Clustering Techniques
Zhou et al. [4] designed Structure and Attribute
clustering (SA clustering) which is one of the prominent
attributed graph clustering techniques based on
random walks over augmented attributed graph. SA
clustering is limited to small networks with few
attribute values. Xu et al. [33] developed a Bayesian
model-based approach to cluster attributed graphs. But,
we observed that this approach is slow and not scalable.

Z. Wu et al. [6] developed Structure and Attributes
using Global structure and Local neighborhood
features (SAGL) clustering algorithm. SAGL clustering
considers both the global importance of the vertex and
local neighbours structure while assigning weights to
different topological links. SAGL clustering technique
is faster than SA clustering as the former technique
doesn’t increase the size of attributed graph yet uses
both global importance of the vertex and attribute
information to find clusters. We observed that SAGL
clustering used page rank [38, 44] centrality measure in
computing clusters. We also observed that though SAGL
clustering [6] is faster than SA clustering to find the
clusters in an attributed graph, it relied on SA clustering
to find the attribute similarity between the vertices.

Issam Falih et al. [2] developed Attributed Network
Clustering Algorithm (ANCA) based on matrix factor-
ization of both graph topology and vertex attributes.
ANCA clustering algorithm is developed by consider-
ing the shortest path metric for topological measure
and Euclidean distance for attribute similarity. Then,
matrix factorization is applied on both topological
and attribute similarity measures. Finally, they used
k-means clustering on the resultant matrix to form k
clusters.

Guo Qi et al. [34] used a matrix factorization-based
technique on edge content to detect communities. Yang
et al. [32] developed non-negative matrix factorization
based model to identify disjoint or overlapping
communities at large scale. Amin et al. [8] developed
a technique based on matrix factorization and gradient

descent to identify polarization and clusters in social
networks, specifically Twitter.

Wang et al. [7] developed a graph-based system for
multi-view clustering. The system can generate clusters
for text data, audio and video data based on their
features. The clustering and optimizing algorithms in
the system used a similarity-induced graph matrix
based on different views of data. This system only
considered the features of the data while computing
clusters. We cannot apply this clustering technique
to our problem as they did not consider the graph
topology information during clustering.

From the literature, we observed that matrix
factorization is a standard technique that has scope
to find similarity by considering graph topology
and vertex /edge attributes. Hence, we apply matrix
factorization in supergraph construction without the
probability cost metric [9] and develop a heuristic-
based BFS search to solve the MCR queries using
hashing.

4. Proposed Approach: Heuristic search using
Hashing and Matrix Factorization
This section describes our proposed techniques to solve
the MCR queries for finding the resultant paths.We
adopt the hashing and heuristic search developed
by Yung et al. [9] by improving and enhancing
the technique to solve MCR queries efficiently and
effectively. The improvements and extensions to Yung
et al. [9] are briefly described as follows:

1. We perform optimized hashing of collated values
of vertex attributes or edge attributes.

2. We identify an efficient attributed graph cluster-
ing algorithm [2] based on matrix factorization for
supergraph construction.

We observed that Yung et al. [10] used a probability
cost metric by sampling attributes for each super
vertex that is vaguely mentioned. In our proposed
approach, we use the supergraph without considering
any probability cost metric. Thus, with the above two
main aspects, we propose techniques to efficiently solve
MCR queries.

4.1. Techniques
This section describes the optimized hashing and
supergraph construction approaches used in our
proposed techniques to solve MCR queries efficiently.

Hashing based index. Initially, we construct an attribute
hash index by collating attribute values of every vertex
into a single string sa. Every unique sa is compressed to a
hash value and stored in primary storage for answering
queries. This hash value is mapped to its vertex. For
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Table (2). Survey of Queries and Graph Clustering Techniques on Attributed Graphs [2015-2021]
S. No. Technique (Authors, Year) Observations

1 Taxonomy of queries in attributed graphs
(Wang Y. et al., 2021 [16])

Performed extensive study and derived
taxonomy of types of queries in attributed
graphs.

2 Two Pass-Approximation Algorithms (Zhao
et al., 2020 [12])

Derived temporal path patterns with multi-
ple constraints on total time and cost.

3 Label- constrained 2-hop indexing tech-
niques (Peng et al., 2020 [23])

Solved label-constrained reachability queries
by using 2-hop indexing and pruning strate-
gies.

4 Sampling based estimation algorithms (Guo
et al., 2020 [15])

Found matching of spatial path patterns
with multiple vertex constraints in attributed
graphs.

5 Multi-view clustering technique (Wang H. et
al. , 2020 [7])

Implemented using similarity-induced graph
matrix based on different views of data.

6 ANCA Clustering (Falih et al., 2018 [2]) Computed clusters in attributed graphs con-
sidering both graph topology and attribute
information through matrix factorization.

7 LandmarkIndex and Query algorithms (Val-
star et al., 2017 [3])

Found reachability satisfying given label con-
straint with significant speedups in query
processing for Label Constrained Reachabil-
ity queries.

8 Ensemble gradient descent algorithm based
on matrix factorization (Amin et al., 2017 [8])

Identified polarization and clusters in social
networks specifically Twitter through matrix
factorization.

9 Heuristic Search Technique through Guid-
edBFS and hashing (Duncan Yung et al., 2016
[9])

Developed heuristic search technique
and computed reachability with multi-
dimensional constraints in attributed graphs
faster.

10 SAGL clustering (Z. Wu et al., 2016 [6]) Developed clustering technique based on
page rank and weighted attribute similarity
in attributed graphs.

instance, consider vertex attribute values of vertex ‘b’ in
Figure 2, i.e., Va(b)={I, H}. The hash value computed for
collated attribute values ‘I:H’ is 2555692664 as shown
in Table 3. Similarly, for every vertex and edge, the
corresponding hash values for the attribute values are
computed and stored in primary memory.

The hash value for the vertex/edge attribute
constraints of the given query is computed. This hash
value is verified against stored hash values in primary
memory without approaching the secondary storage.
Hence, it leads to faster query processing.

Algorithm 1 (HashIndexConstruct) describes the
Hash Index Construction of vertex attributes for an
attributed graph. The functions and variables used in
the algorithm are described as follows:

• GetHashAttr(u,G) returns the hash value of the
given vertex u.

• AttrIO(u,G) retrieves the attribute values for the
vertex u from secondary memory.

Algorithm 1: HashIndexConstruct
Input : Attributed graph G
Output: Hash Index, hInd

1 procedure HashIn(G, hInd)
2 for all u ∈ G do
3 h← GetHashAttr(u, G)
4 aio← AttrIO(u, G)
5 if h==NULL then
6 h← GenerateMHash(aio);
7 Set count=1
8 Append (aio, h, count) to hInd

9 else Append aio to hInd[h] and update count of the
hash value

• GenerateMHash() generates the hash value for
the collated attribute value using Murmur hash
function [37].

• hInd stores the hash value, its corresponding
attribute values and count.
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• aio is the variable that stores the collated attribute
value for the vertex.

• h is the variable that consists of the hash value of
the current vertex u.

• count stores the frequency of assigning the hash
value for the unique collated attribute value.

Algorithm 1 considers the attributed graph as input
and constructs hash index hInd. Initially, it gets the
attribute set of vertex u from secondary memory. This
attribute set is concatenated and stored in variable aio.
Then, it checks whether its hash value h is present
in hInd. If it is NULL, then the new hash value of
u is generated using GenerateMurmurHash() for the
attribute values aio. The resultant hash value (h),
corresponding set of attributes and count are stored in
hInd.

A non-cryptographic hash function like Murmur
hash function [37] generates hash values for the
collated attribute values. Murmur hash function has no
hash collision. During heuristic search, the constraints
of vertex are verified with the constraints given by
the user by retrieving the hash of constraints and
comparing with the hash of collated vertex attribute
values (derived from hash index hInd) stored in primary
memory. This reduces the need to access secondary
memory for multidimensional attributes verification.

For instance, let us consider the attributed graph of
Fig. 2. Table 3 shows the computed hash values for the
collated vertex attribute values of Fig. 2. Let us consider
the computation of hash value of collated attribute
values for vertex ‘a’. Its collated vertex attribute value is
‘I:H’ and the corresponding hash value is 2555692664
as shown in Table 3.

Table (3). Hash Index with vertex attributes and hash values
vattrHash attr count

1071913501 U:M 1
1139838478 I:L 1
2555692664 I:H 1
2608081465 U:H 1

29059796901 I:M 1

Super graph Construction. We divide the attributed graph
based on clustering and construct a structure called
super graph. Yung et al. [10] built the supergraph for
undirected graphs. We define super graph for directed
graphs as follows:
Definition 3. (Super Graph): A super graph Gs is
a directed graph constructed by computing super
vertices and super edges for the given attributed graph
G.
Definition 4. (Super Vertex): A super vertex, SVi , is
a vertex in Gs such that every vertex p of G belongs to

only one super vertex SVi . Thus, ∀ p ∈ V in G, p ∈ SVi ,
p < SVj , if i , j where SVi , SVj ∈ Gs.
Definition 5. (Super Edge): A super edge SEij , is a
directed edge in Gs formed between the super vertices
SVi and SVj . This edge is formed only when, for any
pair of vertices (p, q) ∈ G such that p ∈ SVi and q ∈ SVj ,
there exists an edge between p and q. Thus, if there
exists an edge e(p, q) ∈ E in G, p ∈ SVi , q ∈ SVj and i , j
then ∃ SEij (SVi , SVj ) ∈ Gs.
Definition 6. (Super Path): A super path, SPi , is a
simple path in Gs formed by sequence of super vertices
(SV1, SV2, ..., SVd) such that (SVi−1, SVi) ∈ Gs.

For instance, Fig. 3b shows the super graph for the
attributed graph of Fig. 2. Thus, the super vertices
include SV1, SV2, SV3 and SV4. For instance, in Fig. 2,
there exists edge between vertices ‘j’ and ‘g’. The super
vertex of ‘j’ is SV3, while the super vertex of ‘g’ is SV2.
Hence, we add the super edge (SV3, SV2). Thus, the
super edges are { (SV1, SV3), (SV3, SV2), (SV3, SV1),
(SV4, SV2), (SV3, SV4) }. A super path from SV1 to SV2
is (SV1, SV3, SV2).

(a) Clusters

(b) Super graph
Figure (3). Clusters and the Resultant Super graph of Fig. 2
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During super graph construction, we choose K ver-
tices as super vertices from K clusters using an efficient
clustering algorithm. Algorithm 2 ( SuperGraphMF)
describes the Super Graph construction using cluster-
ing based on Matrix Factorization adopted from [2]. We
further improved the ANCA clustering [2] by applying
gap-statistic [26] to find the optimal K value. The sig-
nificant functions and variables used in the algorithm
are described below:

• SPath(u, v) returns the shortest distance between
the vertices u and v.

• findSuperVertex(v) returns the super vertex of v
from the super graph Gs.

• Mtopo stores the topological matrix of G.

• Mattr stores the attribute matrix of G.

• Utopo stores the topological matrix after singular
value decomposition.

• Uattr stores the attribute matrix of after singular
value decomposition.

• K denotes the number of clusters.

• svu and svv store the super vertices of u and v
respectively.

• In the algorithm 2, initially, the subset of
vertices are identified as seeds. The seeds are
selected by considering top 15% of vertices by
using centrality measures such as highest degree,
closeness centrality, page rank and eigen vector
centrality [2]. The seeds also include the outlier
vertices for coverage by considering 5% of vertices
with the least centrality [2].

• Next, we compute the topological matrix for the
vertices and seeds based on shortest path distance
between them. This matrix is normalized and
singular value decomposition is applied.

• We then find the attribute similarity between
the vertices by computing euclidean distance [29]
between them. The euclidean distance between
the two vertices u, v ∈ V is given by equation 1.

d(u,v) =

√√√ t∑
j=1

(|Aj (u) − Aj (v)|)2,∀u, v ∈ V (1)

• We use matrix factorization on attribute similarity
between the vertices.

• We join the topological similarity and attribute
similarity factorized vectors to get the decom-
posed matrix U and normalize it.

• Then, we apply k-means clustering on the
decomposed matrix U to get resultant K clusters.

• If there exist p ∈ SVi and q ∈ SVj such that there
exists edge from p to q in G, then we add the super
edge SEij to the super graph Gs as described in
steps 11 to 16 of the algorithm.

Algorithm 2: SuperGraphMF
Input : Attributed graph G(V, E, Va), Number of

clusters K
Output: Super Graph Gs with K Clusters

1 Select subset of vertices as seeds S.
2 Compute topological closeness between the vertices

and seeds using shortest path metric
3 Form topological matrix, Mtopo[v,s]=SPath(v, s), ∀v ∈ V

and ∀s ∈ S.
4 Apply singular value decomposition on Mtopo to get

Utopo.
5 Compute attribute similarity matrix Mattr between the

vertices using Euclidean distance based on equation
1.

6 Apply matrix factorization on Mattr to get Uattr .
7 U← Utopo +Uattr

8 Normalize each of U’s rows defined by

Uij=Uij/
√∑

j U
2
ij

9 Apply k-means clustering on U to get K clusters.
10 Construct Super graph Gs (Vs,Es) with K vertices

Vs={sv1, sv2,..., svK }with each cluster considered as
super vertex svi

11 for each edge e(u,v) ∈ E do
12 svu=findSuperVertex(u)
13 svv=findSuperVertex(v)
14 if (svu,svv) then
15 Add edge sei=(svu, svv) to Es
16 i←i+1

Illustration of super graph construction Let us consider
the attributed graph of Fig. 2. The resultant set of seeds
based on the centrality measures is { ‘a’, ‘e’, ‘f’, ‘h’,
‘i’}. We use singular value decomposition as described
in the SuperGraphMF algorithm by considering both
topological distance and attribute similarity. Let us
assume the number of clusters K=4. We can also
compute an optimal K value by applying gap statistic
[26]. The resultant clusters with K=4 after applying k-
means algorithm are the subsets {‘a’, ‘b’, ‘c’, ‘i’}, { ‘g’, ‘h’}
, {‘d’, ‘e’, ‘j’} and {‘f’, ‘k’, ‘l’}. These clusters are denoted
by vertices as SV1, SV2, SV3 and SV4 respectively which
form the super vertices. We add the super edge based on
existence of edge between vertices of the clusters. For
instance, in Fig. 2, there exists edge between vertices ‘e’
and ‘f’. The super vertex of ‘e’ is SV3, while the super
vertex of ‘f’ is SV4. Hence, we add the super edge (SV3,
SV4). Thus, the resultant super graph constructed is
shown in Fig. 3b.
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4.2. Proposed constrained hash search technique
We propose the constrained hash search technique
through optimized hashing to solve MCR queries
efficiently. Algorithm 3 (ConstrainedHash) describes
our proposed constrained hash search technique. The
algorithm is based on BFS and constraint verification
using optimized hashing.

Algorithm 3: ConstrainedHash
Input : Attributed graph G, source vertex s,

destination vertex t, Vertex Constraint Cv ,
Hash index hInd.

Output: Resultant path rp/“No path"
1 Let q be queue
2 Enqueue (s)
3 while isEmpty(q) do
4 Dequeue v
5 if (visited[v] = true) then
6 continue

7 for v′ ∈ v.adjList do
8 if (visited[v′]=true) then
9 continue

10 if (CheckConstraint(v′ , hInd, Cv ,G)=true) then
11 if (v′=t) then
12 return rp

13 Enqueue v′

14 visited[v]← true

15 return “No path"
16 procedure CheckConstraint(v,HashIndex,Cv)
17 hc←GenerateMHash(Cv)
18 hv←GetHashAttr(v,G)
19 if (hc,hv) then
20 return false

21 if (getCount(HashIndex,hc)=1) then
22 return true

23 else attr← Get attributes from secondary storage
24 if (CheckAttrConstraint(attr,Cv)=true) then
25 return true

The significant functions and variables used in the
algorithm are described below:

• CheckConstraint(v,hInd, Cv , G) verifies if the
attribute values of the vertex v match with the
given constraints Cv .

• getCount(hInd, h) returns the count of the hash
value h.

• CheckAttrConstraint() compares the constraints
with attributes retrieved from secondary memory.

• hc stores the hash value of given constraints.

• hv is hash value of collated attribute values for
vertex v.

Optimized Hashing In Algorithm 3, we optimize the
hash retrieval through CheckConstraint() procedure. In
this procedure, we retrieve the hash of given constraints
and compare it with the hash of vertex. If both the hash
values are same, we check the count by retrieving it from
the hash index. If the count is one, then, we need not
check the secondary storage; we declare the two hash
values are equal and return true.

Illustration Let us consider the MCR query q1(‘a’, ‘j’,
‘I:H’) for the attributed graph of Figure 2. The vertex
constraint is collated and its hash value is computed.
Thus, the hash value of constraint ‘I:H’ is 2555692664.
Using Algorithm 3, during traversal, we compare the
hash value of the given vertex constraint to the existing
hash value of every vertex from the hash index table
(Table 3). As the match exists, the algorithm traverses to
the adjacent vertices of the current vertex and verifies
the constraints. This is repeated until the destination
vertex (j) is reached. Thus, our proposed constrained
hash technique technique returns the path {‘a’, ‘c’, ‘j’}
for the MCR query q1.

4.3. Proposed heuristic search technique
We also propose a heuristic search technique that uses
both optimized hashing and efficient attributed graph
clustering to solve MCR queries efficiently. Algorithm
4 (HeuristicSearchMF) describes the Heuristic Search
based on Matrix Factorization to find the MCR path
between the given vertices. The significant functions
and variables used in the algorithm are described
below:

• FindPathBFS(SVi , SVj , Gs) returns the path
between the super vertices SVi and SVj from the
super graph based on BFS.

• sPath stores the super path between the super
vertices.

• superSrc stores the super vertex of s.

• superDst stores the super vertex of t.

• superiv stores the super vertex of an intermediate
vertex iv.

In this algorithm, for the given source vertex,
destination vertex and constraints, initially, the super
vertex of source vertex is identified from the super
graph. Then, the super vertex of destination vertex
is identified. The path between these super vertices
is detected using FindPathBFS() and stored in sPath.
We find the MCR path between the vertices using
BFS and sPath information by verifying the user
given constraints through optimized hashing (from
Algorithm 1).
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Algorithm 4: HeuristicSearchMF
Input : Attributed graph G, source vertex s,

destination vertex t, Vertex Constraint Cv ,
Super Graph Gs, Hash index hInd.

Output: Resultant path rp/“No path"
1 Let q be queue
2 Enqueue (s)
3 superSrc←findSuperVertex(s)
4 superDst←findSuperVertex(t)
5 sPath← FindPathBFS(superSrc, superDst, Gs)
6 while isEmpty(q) do
7 Dequeue v
8 if (visited[v] = true) then
9 continue

10 for v′ ∈ v.adjList do
11 if (visited[v′]=true) then
12 continue

13 superiv← findSuperVertex(v′)
14 if (superiv ∈ sPath) then
15 visited[v′]=true
16 if (CheckConstraint(v′ , hInd, Cv ,G)=true)

then
17 if (v′=t) then
18 return rp

19 Enqueue v′

20 visited[v]← true

21 return “No path"

Heuristic In the proposed approach, we assume that
if reachability exists, it is found along the super path
(sPath). By including this heuristic, we can find the
reachability between the vertices faster as we traverse
only the vertices that belong to the super vertices of
sPath, thus minimizing the search space. In algorithm
4, we include the heuristic through finding super path
(sPath) in step 5 and verifying if each super vertex of
adjacent vertex (step 13) belongs to sPath in step 14.

Illustration For instance, consider the MCR query
q1(‘a’, ‘j’, ‘I:H’). The super vertex of ‘a’ is SV1 and
super vertex of ‘j’ is SV3. There exists a super path
in the super graph from SV1 to SV3, i.e., (SV1, SV3).
Thus, our proposed heuristic search technique traverses
only the vertices within super vertices SV1 and SV3.
The vertex constraint is combined and its hash value
is computed. While traversing, the hash value of the
given vertex constraint is compared to the existing hash
value in the hash index table (Table 3). If the match
exists, it traverses to the next adjacent vertices until the
destination vertex (‘j’) is reached. Thus, our proposed
heuristic search technique returns the path {‘a’, ‘c’, ‘j’}
for the MCR query q1.

Let us consider another MCR query q2(‘c’, ‘h’, ‘I:H’).
The super vertex of ‘c’ is SV1 and super vertex of ‘h’ is

SV2. There exists the super path from SV1 to SV2, i.e.,
(SV1, SV3, SV2). Thus, our proposed heuristic search
technique traverses only the vertices within super
vertices SV1, SV3 and SV2. As the vertex constraints do
not match at vertex ‘g’, the result of query q2 is ‘No path’.

5. Proposed Extended Heuristic Search
In our proposed HeuristicSearchMF algorithm, we
observed that there might exist a path that is
not included in the super path of the constructed
supergraph. We modified our proposed approach to
overcome this problem by extending the heuristic
to include those vertices whose super vertices have
destination super vertex as the adjacent vertex in the
supergraph.

Heuristic We assume that the vertex attribute values
and edge attribute values are single and discrete. We
assume that if reachability exists, it is found along
the super path of the super graph. The heuristic also
includes the super path having adjacent super vertices
to the destination super vertex.

We extended the heuristic by including those ver-
tices whose super vertices have destination super ver-
tex as the adjacent vertex. Algorithm 5 (Extended-
HeuristicSearchMF) describes the Extended Heuristic
Search technique based on Matrix Factorization. The
algorithm applies both optimized hashing and efficient
graph clustering based on matrix factorization. In the
algorithm, the extensions are described from step 13
to step 19. For each adjacent vertex traversed, we find
its super vertex and check if it is neighbor to the super
vertex of the destination vertex using the edgeExists()
procedure. If such an adjacent vertex exists, then its
attribute values are verified with the given constraints.
This process is repeated till the destination vertex is
reached and the resultant path rp is retrieved. Thus, our
proposed extended heuristic search technique improves
the accuracy by finding most of the MCR paths.

Let us consider the example of Fig. 4. To find the path
from source vertex ‘s’ to destination vertex ‘t’, we first
compute the super path between the super vertices of
‘s’ and ‘t’. Each dotted rectangular box is considered as
super vertex. The super vertices thus formed include
SV1, SV2, SV3, SV4, SV5, SV6 and SV7. The resultant
super path is (SV1, SV2, SV4, SV3). When we execute
the HeuristicSearchMF algorithm, we cannot reach
the destination vertex through the super path. But,
in the ExtendedHeuristicSearchMF algorithm, we can
reach the destination vertex via intermediate vertex ‘v9’
whose super vertex SV7 is adjacent to the destination
super vertex SV3. This is because of including the
extended heuristic of considering adjacent vertices of
the destination super vertex while finding the path.
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Thus, we can reduce the number of missed reachable
paths using the extended heuristic efficiently.

Algorithm 5: ExtendedHeuristicSearchMF
Input : Attributed graph G, source vertex s,

destination vertex t, Vertex Constraint Cv ,
Super Graph Gs.

Output: rp/“No path"
1 Let q be queue
2 Enqueue (s)
3 superSrc←findSuperVertex(s)
4 superDst←findSuperVertex(t)
5 sPath← FindPathBFS(superSrc, superDst, Gs)
6 while isEmpty(q) do
7 Dequeue v
8 reached← false
9 if (visited[v] = true) then

10 continue

11 for v′ ∈ v.adjList do
12 if (visited[v′]=true) then
13 continue

14 superiv← findSuperVertex(v′)
15 for v′′ ∈ v′ .adjList do
16 superiv2← findSuperVertex(v′′)
17 if (edgeExists(superiv2,superDst,Gs) OR

superiv2=superDst) then
18 reached←true

19 if ((superiv ∈ sPath)OR reached=true) then
20 if (CheckConstraint(v′ , Gh, Cv)=true) then
21 if (v′=t) then
22 return rp

23 Enqueue v′

24 if (reached=true) then
25 break

26 visited[v]← true

27 return “No path"

6. Experiments and Results
This section describes the datasets, the parameters, the
experiments’ domain and the result analysis of our
proposed techniques.

6.1. Experiment Setup
All experiments are conducted in laptop with Core
i3 2GHz CPU (2-core), 8GB RAM in Ubuntu Linux
OS. We implemented our proposed and conventional
techniques in C++. For secondary storage, we used the
MySQL database. For hashing, we used the Murmur
hash function [37]. We constructed the supergraph
by using the existing R code [2] and implemented
the naive clustering [9] in R programming. We set
the number of super vertices to 15 (default) and

Figure (4). Example for proposed extended heuristic search
technique

constructed the supergraph for all the datasets. Besides,
we also computed optimal K value by applying gap
statistic [26].

Table 4 describes the real and synthetic datasets
used for experiments. Table 6 describes the different
parameter settings used in the experiments adopted
from [9]. We used vertex attributes and vertex
constraints throughout our experiments. Besides, we
used edge attributes and edge constraints along with
vertex constraints for the real datasets to demonstrate
that we can extend our proposed techniques to edge
constraints. This paper focused on vertex constraints
as our proposed techniques mainly use vertex attribute
values during clustering. We generated 25 to 100
MCR queries (whose path length is greater than
1) for the real and synthetic datasets by randomly
selecting attribute values and verifying the constraints
through constrained breadth-first search and traversal.
We performed experiments on synthetic graphs by
varying graph size to test the scalability of our proposed
techniques.

6.2. Baselines
We evaluated the efficiency of our proposed approaches
(HeuristicSearchMF and ExtendedHeuristicSearchMF
algorithms) by comparing them with two existing
techniques described below:

(1) Breadth First Search or BFS [27] is the baseline
idea. Here, the constraints are also checked
while performing breadth first search from source
vertex till the destination vertex is reached [3].

(2) Yung et al. developed BFS based heuristic search
technique using naive clustering [9].
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To solve MCR queries, we have the following three
approaches with respect to proposed techniques.

(i) We can solve only by using hashing mechanism
described in section 4.2 (with optimized hashing
only). We denote this approach by Constrained-
Hash.

(ii) We can solve using both hashing and clustering
mechanism to obtain the resultant path efficiently.
We consider HMF as the implementation of our
proposed HeuristicSearchMF algorithm described
in section 4.3.

(iii) We consider EHMF technique as the implementa-
tion of our proposed ExtendedHeuristicSearchMF
algorithm described in section 5.

(a) Average Execution Time

(b) False -ve Ratio
Figure (5). Varying Graph Size for ForestFire graphs

6.3. Datasets Description
Table 4 summarizes the real and synthetic datasets
used for experiments. We generated synthetic graphs
from SNAP [18] in C++. We randomly assigned vertex
attribute values for the vertices and edge attribute
values for edges. Table 5 states the synthetic vertex
attributes that are assigned randomly to the datasets.

Table (4). Datasets Overview
Real Graph |V| |E|
Robots [36] 1724 3596
Twitter[1] 2511 37154

Synthetic Graph |V| |E|
Erdos-Renyi [18] 1000 2000

1000 3000
2000 6000
3000 9000
4000 12000
5000 15000

ForestFire [18] 5000 12620
4000 10252
3000 7751
2000 4865
1000 2833

Robots. Robots is a real trust network [36] with edge
labels that denote the level of trust interaction between
the users. We pre-process the dataset by assigning
unique identifiers to the vertices, resulting in 1724
vertices and 3596 edges. Each vertex has synthetic
attributes whose values are randomly assigned (Table
5). We considered each edge had Trustlevel as the real
attribute and derived its value from the data set. The
trust level can be Master (M), Apprentice (A), Journeyer
(J) or Observer (O). Besides, we randomly assigned
values for the synthetic attributes for every edge of the
Robots dataset.

Twitter. Twitter is a real pre-processed dataset [1] with
2511 vertices and 37154 edges. We processed the vertex
attributes further into two real attributes that denote
the visibility and the tag of the vertices. In addition,
we randomly assigned two synthetic edge attributes
described in Table 5 to evaluate MCR queries with both
vertex and edge constraints.

Erdos-Renyi Graph. Erdos-Renyi (E-R) graphs are the
synthetic graphs that follow power-law distribution
[25]. These graphs have vertices with nearly uniform
degree distribution. We generate E-R graph using SNAP
[18] with the number of vertices set to 1000 and
maximum degree for each vertex set to 2. Besides,
we assign two attributes (as described in Table 5) for
each vertex. The attribute values are randomly assigned
within the domain. We also generated E-R graphs to test
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for scalability by varying vertices from 1000 to 5000
with maximum degree set to 3 as shown in Table 4.

ForestFire Graph. ForestFire graphs are the synthetic
random graphs [24]. The ForestFire model graphs
exhibit the properties of time-evolving real-world
graphs [24] that include densification of graphs and
decreasing effective diameter. We generate ForestFire
graphs using SNAP [18] for testing scalability with the
number of vertices varying from 1000 to 5000 and the
maximum degree for each vertex set to 4. The forward
probability is set to 0.4, the backward probability is set
to 0.2 [18] and the maximum degree of each vertex is set
to 2. Besides, we assigned two attributes for each vertex
as described in Table 5.

Table (5). Vertex Attributes and Edge Attributes
Vertex Attribute Domain Size, Distribution

Country 5, uniform
Region 3, uniform
Gender 2, uniform

Edge Attribute Domain Size, Distribution
Trustlevel 4, real
isFamily 2, uniform
isFriend 2, uniform

Table (6). Parameter Values
Parameter Value

Number of Vertex Attributes 2, 3
Number of Edge Attributes 3
Number of Super-vertex (K) 15, 50

Number of Vertex Constraints 2
Number of Edge Constraints 1

6.4. Results and Analysis
We evaluated the efficiency of our proposed techniques
based on average execution time and false negative
ratio. The MCR true queries are the constrained
reachable queries with at least one path between the
given vertices. The accuracy of our proposed techniques
is based on false negative ratio for true queries. The
false negative ratio (τ) is defined as "The fraction of
queries which fail to return any path that satisfies the given
constraint, although at least one such path exists" [5].

Table 7 shows the average execution time and false
negative ratio of MCR queries for Robots dataset
using our proposed techniques compared to existing
techniques. We computed optimal K value for Robots
dataset by applying gap statistic [26]. The resultant
computed K value is 15. We generated 100 MCR queries
for the evaluation of Robots dataset.

From Table 7, using our proposed HMF approach,
the false negative ratio (τ) is 0.32. Based on our

(a) Average Execution Time

(b) False -ve Ratio
Figure (6). Varying Graph Size for E-R graphs

proposed extended heuristic technique, i.e., EHMF,
the false negative ratio reduced to 0. Our proposed
HMF and EHMF techniques executed faster than the
existing technique [9]. Furthermore, our proposed
ConstrainedHash technique executed faster than all the
techniques.

Table 8 shows the average execution time and
false negative ratio of 25 MCR queries with vertex
constraints and edge constraints for Robots dataset. We
choose the TrustLevel as edge constraint and generated
MCR true queries based on constrained BFS. For
clustering, we assumed K to be 50. We observed that
our proposed techniques have a lesser false negative
ratio than that of the existing technique [9]. Besides,
we observed that ConstrainedHash technique executed
faster for MCR queries than the other techniques.

Table 9 shows the average execution time and
false negative ratio of 30 MCR queries with vertex
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Table (7). Average Execution Time (AET) of queries for Robots dataset with only vertex constraints
S.No. Technique AET (s) for true queries τ AET (s) for false queries

Proposed
1 HMF 0.21464 0.32000 0.03071
2 EHMF 0.22904 0.00000 0.02829
3 ConstrainedHash 0.00011 0.00000 0.00048

Conventional
4 Valstar et al. [3] 0.30114 0.00000 0.53873
5 Yung et al. [9] 0.09214 0.60000 0.18706

Table (8). Average Execution Time (AET) of queries for Robots dataset with vertex constraints and edge constraints
S.No. Technique AET (s) for true queries τ AET (s) for false queries

Proposed
1 HMF 0.46840 0.80000 0.00680
2 EHMF 0.17826 0.00000 0.00674
3 ConstrainedHash 0.01519 0.00000 0.00182

Conventional
4 Valstar et al. [3] 0.30061 0.00000 0.20006
5 Yung et al. [9] 0.03488 0.96000 0.00605

Table (9). Average Execution Time (AET) of queries with only vertex constraints for Twitter dataset
S.No. Technique AET (s) for true queries τ AET (s) for false queries

Proposed
1 HMF 5.16573 0.96700 0.25429
2 EHMF 4.12166 0.30000 1.58136
3 ConstrainedHash 0.01461 0.00000 0.00558

Conventional
4 Valstar et al. [3] 4.72921 0.00000 2.26847
5 Yung et al. [9] 0.73027 0.73000 0.21685

Table (10). Average Execution Time (AET) of queries with vertex constraints and edge constraints for Twitter dataset
S.No. Technique AET (s) for true queries τ AET (s) for false queries

Proposed
1 HMF 0.95781 0.80000 0.16164
2 EHMF 2.57739 0.03000 1.9176
3 ConstrainedHash 2.55130 0.00000 2.0261

Conventional
4 Valstar et al. [3] 9.34007 0.00000 3.74253
5 Yung et al. [9] 0.89415 0.46667 0.31173

constraints for Twitter dataset. For clustering, we
assumed K to be 50. In Table 10, we describe the
execution of MCR queries with both vertex and edge
constraints for Twitter dataset. We observed that our
proposed EHMF technique has a lesser false negative
ratio than that of the existing technique [9]. Further,
we observed that ConstrainedHash technique executed
faster than the other techniques. From Table 10, we also
observed that with the increase in the constraints, the
proposed HMF technique has least execution time for
false queries.

Table 11 shows the average execution time and false
negative ratio of MCR queries using our proposed

techniques compared with existing techniques for E-
R graphs. From the table 11, we find that there is
considerable decrease in the false negative ratio for our
proposed extended heuristic technique i.e. EHMF than
that of HMF. We also observed that ConstrainedHash
technique executed faster for MCR queries than the
other techniques.

Figure 5a shows the average execution time for Forest
Fire graphs with varying graph size from 1000 vertices
to 5000 vertices. Figure 6a shows the average execution
time for E-R graphs with varying graph size from 1000
vertices to 5000 vertices whose maximum degree is
set to 3. From Fig. 5a and Fig. 6a, we observe that
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Table (11). Average Execution Time (AET) of queries for Erdos-Renyi graph with only vertex constraints
S.No. Technique AET (s) for true queries τ AET (s) for false queries

Proposed
1 HMF 0.01280 0.65000 0.00294
2 EHMF 0.01290 0.05000 0.00296
3 ConstrainedHash 0.00009 0.00000 0.00002

Conventional
4 Valstar et al. [3] 0.01162 0.00000 0.00651
5 Yung et al. [9] 0.01304 0.55000 0.00342

ConstrainedHash technique executed faster than the
other proposed techniques and existing techniques. We
also observed that , in case of ForestFire graphs, our
proposed HMF and EHMF techniques executed faster
than the existing technique [9] with the increase in
the number of vertices. Figure 5b shows that the false
negative ratio varied from 0.04 to 0.36 for the MCR
true queries on ForestFire graphs using our proposed
HMF approach. But, in the case of E-R graphs, we
observed higher false negative ratio using our proposed
HMF approach than the conventional approach with
increase in the number of vertices as shown in Figure
6b. By using our proposed EHMF and ConstrainedHash
techniques, we find that the false negative ratio is 0 for
both the synthetic datasets.

7. Conclusion and Future Scope
In this paper, we solved MCR queries on attributed
graphs by finding the resultant paths. We proposed
an efficient heuristic search technique that includes
hashing and clustering. The hash value is computed
for multidimensional attribute values using optimized
hashing. We used matrix factorization based graph
clustering on the attributed graph to construct
supergraph. We used the shortest path from the super
graph and hashing to match the constraints in our
proposed approach and efficiently found MCR paths.
Further, we proposed an extended heuristic search
technique that increased the accuracy. We find that
our proposed techniques are scalable and solved MCR
queries efficiently evaluated on real and synthetic
datasets.

We plan to extend the research by developing
an efficient index for membership-based constraint
reachability queries. Besides, we can use optimization
techniques [10] of computing extra hash values to
find reachability between two vertices with constraints
specified on only some of the vertex/edge attributes.
We can also use our proposed technique to solve
constrained reachability queries for single source vertex
and multiple destination vertices. We can also extend
our proposed approaches for streaming graph data by
using incremental clustering techniques [22].
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